High-Precision GNSS PWV and Its Variation Characteristics in China Based on Individual Station Meteorological Data
"> Figure 1
<p>Distribution of GPS stations from the infrastructure construction of national geodetic datum modernization and Crustal Movement Observation Network of China (CMONC) in mainland China. The green circle is the radiosonde station, and the red triangle is the GPS station.</p> "> Figure 2
<p>Distribution of the <span class="html-italic">T<sub>m</sub></span>-<span class="html-italic">T<sub>s</sub></span> fitting coefficients a and b at each station by <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mi>m</mi> </msub> <mo>=</mo> <mi>a</mi> <mo>∗</mo> <msub> <mi>T</mi> <mi>s</mi> </msub> <mo>+</mo> <mi>b</mi> </mrow> </semantics></math>. (<b>a</b>) The slope coefficient <math display="inline"><semantics> <mi>a</mi> </semantics></math> and (<b>b</b>) the intercept coefficient <math display="inline"><semantics> <mi>b</mi> </semantics></math>.</p> "> Figure 3
<p>Distribution of the <span class="html-italic">T<sub>m</sub></span>-<span class="html-italic">T<sub>s</sub></span> model slope coefficient with the elevation (<b>a</b>), latitude (<b>b</b>), and longitude (<b>c</b>).</p> "> Figure 4
<p>Monthly slope coefficient of the <span class="html-italic">T<sub>m</sub></span>-<span class="html-italic">T<sub>s</sub></span> model from 2011 to 2019.</p> "> Figure 5
<p>RMSE (K) (<b>a</b>) and accuracy improvement of the <span class="html-italic">T<sub>m</sub></span> (<b>b</b>) calculated by the site-specific piecewise-linear and Bevis <span class="html-italic">T<sub>m</sub></span>-<span class="html-italic">T<sub>s</sub></span> relationship.</p> "> Figure 6
<p>RMSE (K) distribution of the <span class="html-italic">T<sub>m</sub></span> calculated by the site-specific piecewise-linear relationship (<b>a</b>), Bevis <span class="html-italic">T<sub>m</sub></span>-<span class="html-italic">T<sub>s</sub></span> relationship (<b>b</b>), and reduction of the RMSE (%) by the site-specific piecewise-linear <span class="html-italic">T<sub>m</sub></span>-<span class="html-italic">T<sub>s</sub></span> relationship (<b>c</b>).</p> "> Figure 7
<p>Bias (mm) (<b>a</b>) and relative error (%) (<b>b</b>) of the precipitable water vapor (PWV) calculated based on different <span class="html-italic">T<sub>m</sub></span>-<span class="html-italic">T<sub>s</sub></span> models at GXHC station in 2018. The blue dots are the PWV based on the Bevis model, and the red dots are the PWV based on the site-specific piecewise-linear model.</p> "> Figure 8
<p>Annual averaged PWV (mm) in China from 2011 to 2019.</p> "> Figure 9
<p>Nine-year averaged daily PWV (mm) in four regions of China from 2011 to 2019.</p> "> Figure 10
<p>Annual PWV variation amplitudes (mm) at 377 GPS sites.</p> "> Figure 11
<p>Semiannual PWV variation amplitudes (mm) at 377 GPS sites.</p> "> Figure 12
<p>Long-term variation trend of the PWV. The red upward arrows (<b>a</b>) stand for the increase of the PWV variation trend (mm/year), and the green downward arrows (<b>b</b>) represent the decrease of the PWV variation trend (mm/year).</p> "> Figure 13
<p>Monthly anomaly (mm) of the PWV in four regions of China.</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. Observation Data
2.2. Establishment of Site-Specific Piecewise-Linear Tm-Ts Relationship
2.3. PWV from Site-Specific Piecewise-Linear Tm-Ts Relationship
2.4. PWV from Radiosonde
2.5. Fitting Function of the PWV Time Series
3. Evaluation and Comparison
3.1. Spatial Distribution and Time-Varying Characteristics of the Tm-Ts Coefficient
3.2. Comparison with Bevis Tm-Ts Relationship
3.3. Comparison with GPS-Derived PWV and Radiosonde PWV
4. Variations Characteristics of GNSS PWV
4.1. Spatial Distribution of PWV in China
4.2. Seasonal Variations of PWV in China
4.3. Long-Term Variation Trend of PWV in China
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Philipona, R.; Dürr, B.; Ohmura, A.; Ruckstuhl, C. Anthropogenic greenhouse forcing and strong water vapor feedback increase temperature in Europe. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Gendt, G.; Dick, G.; Reigber, C.; Tomassini, M.; Liu, Y.; Ramatschi, M. Near real time GPS water vapor monitoring for numerical weather prediction in Germany. J. Meteorol. Soc. Jpn. Ser. II 2004, 82, 361–370. [Google Scholar] [CrossRef] [Green Version]
- Boutiouta, S.; Lahcene, A. Preliminary study of GNSS meteorology techniques in Algeria. Int. J. Remote Sens. 2013, 34, 5105–5118. [Google Scholar] [CrossRef]
- Sapucci, L.F. Evaluation of modeling water-vapor-weighted mean tropospheric temperature for GNSS-integrated water vapor estimates in Brazil. J. Appl. Meteorol. Climatol. 2014, 53, 715–730. [Google Scholar] [CrossRef]
- Ning, T.; Wickert, J.; Deng, Z.; Heise, S.; Dick, G.; Vey, S.; Schöne, T. Homogenized time series of the atmospheric water vapor content obtained from the GNSS reprocessed data. J. Clim. 2016, 29, 2443–2456. [Google Scholar] [CrossRef]
- Jin, S.; Su, K. PPP models and performances from single-to quad-frequency BDS observations. Satell. Navig. 2020, 1, 1–13. [Google Scholar] [CrossRef]
- Jin, S.; Gao, C.; Li, J. Atmospheric sounding from Fengyun-3C GPS radio occultation observations: First results and validation. Adv. Meteorol. 2019, 1, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Jin, S.; Li, Z.; Cho, J. Integrated water vapor field and multiscale variations over China from GPS measurements. J. Appl. Meteorol. Climatol. 2008, 47, 3008–3015. [Google Scholar] [CrossRef]
- Jones, J.; Guerova, G.; Douša, J.; Dick, G.; de Haan, S.; Pottiaux, E.; van Malderen, R. Advanced GNSS Tropospheric Products for Monitoring Severe Weather Events and Climate; COST Action ES1206 Final Action Dissemination Report; Springer: Berlin/Heidelberg, Germany, 2019; p. 563. [Google Scholar]
- Steiner, A.; Kirchengast, G.; Foelsche, U.; Kornblueh, L.; Manzini, E.; Bengtsson, L. GNSS occultation sounding for climate monitoring. Phys. Chem. Earth Part A Solid Earth Geod. 2001, 26, 113–124. [Google Scholar] [CrossRef]
- Smith, T.L.; Benjamin, S.G.; Gutman, S.I.; Sahm, S. Short-range forecast impact from assimilation of GPS-IPW observations into the Rapid Update Cycle. Mon. Weather Rev. 2007, 135, 2914–2930. [Google Scholar] [CrossRef]
- Kourtidis, K.; Stathopoulos, S.; Georgoulias, A.; Alexandri, G.; Rapsomanikis, S. A study of the impact of synoptic weather conditions and water vapor on aerosol–cloud relationships over major urban clusters of China. Atmos. Chem. Phys. 2015, 15, 10955–10964. [Google Scholar] [CrossRef] [Green Version]
- Bevis, M.; Businger, S.; Herring, T.A.; Rocken, C.; Anthes, R.A.; Ware, R.H. GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System. J. Geophys. Res. Atmos. 1992, 97, 15787–15801. [Google Scholar] [CrossRef]
- Ross, R.J.; Rosenfeld, S. Estimating mean weighted temperature of the atmosphere for Global Positioning System applications. J. Geophys. Res. Atmos. 1997, 102, 21719–21730. [Google Scholar] [CrossRef] [Green Version]
- Bokoye, A.I. Multisensor analysis of integrated atmospheric water vapor over Canada and Alaska. J. Geophys. Res. Atmos. 2003, 108, 4480. [Google Scholar] [CrossRef]
- Emardson, T.R.; Derks, H.J. On the relation between the wet delay and the integrated precipitable water vapour in the European atmosphere. Meteorol. Appl. A J. Forecast. Pract. Appl. Train. Tech. Model. 2000, 7, 61–68. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, L.; Dai, A.; Hove, T.V.; Baelen, J.V. A near-global, 2-hourly data set of atmospheric precipitable water from ground-based GPS measurements. J. Geophys. Res. Atmos. 2007, 112, 112. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.P.; Liu, J.N.; Zhu, W.Y.; Huang, C. Remote sensing of PWV using ground-based GPS data in Wuhan region. Prog. Astron. 2005, 23, 169–179. [Google Scholar]
- Yao, Y.; Liu, J.; Zhang, B.; He, C. Nonlinear relationships between the surface temperature and the weighted mean temperature. Geomat. Inf. Sci. Wuhan Univ. 2015, 40, 112–116. [Google Scholar]
- Jade, S.; Vijayan, M. GPS-based atmospheric precipitable water vapor estimation using meteorological parameters interpolated from NCEP global reanalysis data. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Means, J.D.; Cayan, D. Precipitable water from GPS Zenith delays using North American regional reanalysis meteorology. J. Atmos. Ocean. Technol. 2013, 30, 485–495. [Google Scholar] [CrossRef]
- Zhao, Q.; Yao, Y.; Yao, W.; Zhang, S. GNSS-derived PWV and comparison with radiosonde and ECMWF ERA-Interim data over mainland China. J. Atmos. Sol. Terr. Phys. 2019, 182, 85–92. [Google Scholar] [CrossRef]
- Lu, C.; Li, X.; Cheng, J.; Dick, G.; Ge, M.; Wickert, J.; Schuh, H. Real-time tropospheric delay retrieval from multi-GNSS PPP ambiguity resolution: Validation with final troposphere products and a numerical weather model. Remote Sens. 2018, 10, 481. [Google Scholar] [CrossRef] [Green Version]
- Abimbola, O.J.; Falaiye, O.A.; Omojola, J. Estimation of Precipitable Water Vapour in Nigeria Using NIGNET GNSS/GPS, NCEP-DOE Reanalysis II and Surface Meteorological Data. J. Phys. Sci. 2017, 28, 19. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Yuan, Y.; Li, W.; Zhang, B.; Sensing, R. A real-time precipitable water vapor monitoring system using the national GNSS network of China: Method and preliminary results. IEEE J. Sel. Top. Appl. Earth Obs. 2019, 12, 1587–1598. [Google Scholar] [CrossRef]
- Yao, Y.; Zhu, S.; Yue, S. A globally applicable, season-specific model for estimating the weighted mean temperature of the atmosphere. J. Geod. 2012, 86, 1125–1135. [Google Scholar] [CrossRef]
- Yao, Y.; Hu, Y.; Yu, C.; Zhang, B.; Guo, J. An improved global zenith tropospheric delay model GZTD2 considering diurnal variations. Nonlinear Process. Geophys. 2016, 23, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Wu, J.; Sun, Z. Construction and Service of the National Geodetic Datum. Geomat. World 2018, 25, 39–41, 46. [Google Scholar]
- Gan, W.; Li, Q.; Zhang, R.; Shi, H. Construction and Application of Tectonic and Environmental Observation Network of Mainland China. J. Eng. Stud. 2012, 4, 16–23. [Google Scholar]
- Jin, S.; Park, P.-H.; Zhu, W. Micro-plate tectonics and kinematics in Northeast Asia inferred from a dense set of GPS observations. Earth Planet. Sci. Lett. 2007, 257, 486–496. [Google Scholar] [CrossRef]
- Dach, R.; Lutz, S.; Walser, P.; Fridez, P. Bernese GNSS Software, version 5.2; Astronomical Institute, University of Bern: Bern, Switzerland, 2015. [Google Scholar]
- Li, Z.; Wen, Y.; Zhang, P.; Liu, Y.; Zhang, Y. Joint Inversion of GPS, Leveling, and InSAR Data for The 2013 Lushan (China) Earthquake and Its Seismic Hazard Implications. Remote Sens. 2020, 12, 715. [Google Scholar] [CrossRef] [Green Version]
- Saastamoinen, J. Contributions to the theory of atmospheric refraction. Bull. Géodésique 1973, 107, 13–34. [Google Scholar] [CrossRef]
- Jin, S.; Luo, O. Variability and climatology of PWV from global 13-year GPS observations. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1918–1924. [Google Scholar]
- Liou, Y.-A.; Teng, Y.-T.; Van Hove, T.; Liljegren, J.C. Comparison of Precipitable Water Observations in the Near Tropics by GPS, Microwave Radiometer, and Radiosondes. J. Appl. Meteorol. 2001, 40, 5–15. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, L.; Dai, A. Global estimates of water-vapor-weighted mean temperature of the atmosphere for GPS applications. J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Guan, X.; Yang, L.; Zhang, Y.; Li, J. Spatial distribution, temporal variation, and transport characteristics of atmospheric water vapor over Central Asia and the arid region of China. Glob. Planet. Chang. 2019, 172, 159–178. [Google Scholar] [CrossRef]
- Liu, Y.; Ding, Y. Analysis of the basic features of the onset of Asian summer monsoon. Acta Meteorol. Sin. 2007, 21, 511–526. [Google Scholar]
- Zhao, Q.; Yang, P.; Yao, W.; Yao, Y. Hourly PWV Dataset Derived from GNSS Observations in China. Sensors 2020, 20, 231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gui, K.; Che, H.; Chen, Q.; Zeng, Z.; Zheng, Y.; Long, Q.; Sun, T.; Liu, X.; Wang, Y.; Liao, T.; et al. Water vapor variation and the effect of aerosols in China. Atmos. Environ. 2017, 165, 322–335. [Google Scholar] [CrossRef]
- Durre, I.; Williams, C.N.; And, X.Y.; Vose, R.S. Radiosonde-based trends in precipitable water over the Northern Hemisphere: An update. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Wang, R. Characteristics of Water Vapor, Precipitation, Temperature and Humidity in Mainland China Based on IGRA and TRMM PR. Ph.D. Thesis, University of Science and Technology of China, Hefei, China, 2019. [Google Scholar]
- Wong, M.S.; Jin, X.; Liu, Z.; Nichol, J.; Chan, P. Multi-sensors study of precipitable water vapour over mainland China. Int. J. Climatol. 2015, 35, 3146–3159. [Google Scholar] [CrossRef]
Name | Number | Latitude (°) | Longitude (°) | Height (m) |
---|---|---|---|---|
YICHUN | 50,774 | 47.72 | 128.83 | 264.8 |
HARBIN | 50,953 | 45.93 | 126.57 | 118.3 |
SIMAO | 56,964 | 22.77 | 100.98 | 1303.0 |
ANQING | 58,424 | 30.62 | 116.97 | 62.0 |
Statistics | Bevis | TVGG | NN-I | Piecewise Linear |
---|---|---|---|---|
Bias (K) | −0.74 | −1.25 | 0.03 | 0.00 |
RMS (K) | 4.58 | 3.84 | 3.62 | 3.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, M.; Jin, S.; Li, Z.; Cao, Y.; Ping, F.; Tang, X. High-Precision GNSS PWV and Its Variation Characteristics in China Based on Individual Station Meteorological Data. Remote Sens. 2021, 13, 1296. https://doi.org/10.3390/rs13071296
Wu M, Jin S, Li Z, Cao Y, Ping F, Tang X. High-Precision GNSS PWV and Its Variation Characteristics in China Based on Individual Station Meteorological Data. Remote Sensing. 2021; 13(7):1296. https://doi.org/10.3390/rs13071296
Chicago/Turabian StyleWu, Mingliang, Shuanggen Jin, Zhicai Li, Yunchang Cao, Fan Ping, and Xu Tang. 2021. "High-Precision GNSS PWV and Its Variation Characteristics in China Based on Individual Station Meteorological Data" Remote Sensing 13, no. 7: 1296. https://doi.org/10.3390/rs13071296
APA StyleWu, M., Jin, S., Li, Z., Cao, Y., Ping, F., & Tang, X. (2021). High-Precision GNSS PWV and Its Variation Characteristics in China Based on Individual Station Meteorological Data. Remote Sensing, 13(7), 1296. https://doi.org/10.3390/rs13071296