Retracking Cryosat-2 Data in SARIn and LRM Modes for Plateau Lakes: A Case Study for Tibetan and Dianchi Lakes
<p>Dianchi Lake, China, overlapped with one cycle of CryoSta-2 LRM ground tracks (in red) in 2011.</p> "> Figure 2
<p>TP lakes Gemang Co (left) and Zhangnai Co (right) overlapped with one cycle of CryoSat-2 SARIn-mode ground tracks in 2016. The white-dot lines are the nominal ground tracks, while the red dots are the corresponding slope-corrected ground tracks when considering off-nadir measurements. Note that some off-nadir measurements are located on land, but have been deleted during the data editing process.</p> "> Figure 3
<p>CryoSat-2 along-track SARIn-mode waveforms and sigma-0 over lakes of Gemang Co (<b>a</b>,<b>c</b>) and Zhangnai Co (<b>b</b>,<b>d</b>). The color bar in (<b>a</b>,<b>b</b>) presents the power of waveforms.</p> "> Figure 4
<p>The CryoSat-2 track (top) and its retracked surface height profile (bottom) on 16 June 2016 over lake Gemang Co, which corresponds to the peaky waveforms shown in <a href="#remotesensing-13-01078-f003" class="html-fig">Figure 3</a>a and were retracked by retrackers of the Wingham and Wallis model-fit waveform (WWMFW) algorithm, primary peak threshold (PPT), OCOG and our APD-detected primary peak threshold (APD-PPT). Outliers and bias have been removed using the method described in <a href="#sec3dot3-remotesensing-13-01078" class="html-sec">Section 3.3</a>.</p> "> Figure 5
<p>Similar to <a href="#remotesensing-13-01078-f004" class="html-fig">Figure 4</a> but over lake Zhangnai Co and corresponding to the specular waveforms shown in <a href="#remotesensing-13-01078-f003" class="html-fig">Figure 3</a>b on 3 December 2016.</p> "> Figure 6
<p>Lake level variations with error bars for (<b>a</b>) Gemang Co and (<b>b</b>) Zhangnai Co. Both (<b>a</b>,<b>b</b>) share the same labels shown in (<b>a</b>). Arbitrary constants (5 m) are added for visual clarity of lake levels of each retracker.</p> "> Figure 7
<p>Validation of lake level variations derived from CryoSat-2 against those from Jason-2 over Zhangnai Co. The lake level anomaly is computed by subtracting a median value of lake levels between 2011 and 2015 from each lake level.</p> "> Figure 8
<p>(<b>a</b>) A Cryostat-2 track passing Dianchi Lake at different time; (<b>b</b>,<b>c</b>) LRM waveforms along white and red tracks in (<b>a</b>), respectively.</p> "> Figure 9
<p>Lake level variations of Dianchi Lake from retrackers of ICE, ALES and MBP over the period of 2010–2019.</p> "> Figure 10
<p>The annual lake level derived from retrackers of ICE, ALES and MBP over Dianchi Lake (<b>left</b>) and corresponding number of surface heights used to derive the annual level (<b>right</b>).</p> "> Figure 11
<p>Validation of variations of annual lake level anomalies derived from CryoSat-2 LRM against those from in situ gauge data in Dianchi Lake from 2011 to 2016. Here, we adopted the annual lake levels in [<a href="#B25-remotesensing-13-01078" class="html-bibr">25</a>,<a href="#B26-remotesensing-13-01078" class="html-bibr">26</a>] as the in situ truth (in black) of Dianchi Lake over the period of 1988–2016.</p> ">
Abstract
:1. Introduction
2. Study Areas and Data
2.1. Dianchi Lake and Tibetan Lakes
2.2. CryoSat-2 LRM and SARIn Mode 20 Hz Data
2.3. Validation Datasets
3. Methods
3.1. Retracking Methods
3.2. Lake Surface Height
3.3. Estimations of the Lake Level and Trend
- Outliers in along-track retracked surface heights are detected and removed track by track using the generalized extreme studentized deviate (ESD) test [39]. The generalized ESD test is capable of detecting one or more outliers in a univariate dataset, which has been widely used in data analysis. We also tried to remove outliers using a 3-sigma filter (equivalent to a 99.75% confidence level), but found that the generalized ESD test has high sensitivity in detecting outliers in our cases.
- The bias between retracked surface heights from different retrackers due to using different retracking algorithms are removed. Here, we simply calculate the bias as the mean of differences between along-track retracked heights from different retrackers due to the relatively small size of lakes. The method has been used to calculate sea-surface-height bias over oceans, e.g., [40].
- The median value and standard deviation are computed from the outlier-free and unbiased surface heights along each track. This is to form the time series of the lake levels and the quality estimation from CryoSat-2 measurements over the lake.
- The trend of lake level variations are estimated by fitting a harmonic function to the time series.
4. Results and Discussions
4.1. Results of Gemang Co and Zhangnai Co
4.1.1. SARIn-Mode Waveforms
4.1.2. Surface Height Profiles over Gemang Co and Zhangnai Co
4.1.3. Validation
4.2. Results of Dianchi Lake
4.2.1. LRM Waveforms
4.2.2. Lake Surface Heights
4.2.3. Validation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, G.; Chen, W.; Li, G.; Yang, W.; Yi, S.; Luo, W. Lake water and glacier mass gains in the northwestern Tibetan Plateau observed from multi-sensor remote sensing data: Implication of an enhanced hydrological cycle. Remote Sens. Environ. 2020, 237, 111554. [Google Scholar] [CrossRef]
- Wang, L. Moving Towards Integrated Management of the Plateau Lakes in Yunnan Province, China. Available online: https://ilec.or.jp/ILBMTrainingMaterials/authors (accessed on 12 March 2021).
- Kleinherenbrink, M.; Lindenbergh, R.; Ditmar, P. Monitoring of lake level changes on the Tibetan Plateau and Tian Shan by retracking Cryosat SARIn waveforms. J. Hydrol. 2015, 521, 119–131. [Google Scholar] [CrossRef]
- Jiang, L.; Schneider, R.; Andersen, O.B.; Bauer-Gottwein, P. CryoSat-2 Altimetry Applications over Rivers and Lakes. Water 2017, 9, 211. [Google Scholar] [CrossRef]
- Crétaux, J.-F.; Calmant, S.; Romanovski, V.; Shabunin, A.; Lyard, F.; Bergé-Nguyen, M.; Cazenave, A.; Hernandez, F.; Perosanz, F. An absolute calibration site for radar altimeters in the continental domain: Lake Issykkul in Central Asia. J. Geod. 2008, 83, 723–735. [Google Scholar] [CrossRef]
- Crétaux, J.-F.; Abarca-Del-Río, R.; Bergé-Nguyen, M.; Arsen, A.; Drolon, V.; Clos, G.; Maisongrande, P. Lake Volume Monitoring from Space. Surv. Geophys. 2016, 37, 269–305. [Google Scholar] [CrossRef] [Green Version]
- Hwang, C.; Chu, Y.; Huang, Z.; Chao, N. Robust, Long-term Lake Level Change from Multiple Satellite Altimeters in Tibet: Observing the Rapid Rise of Ngangzi Co over a New Wetland. Remote Sens. 2019, 11, 558. [Google Scholar] [CrossRef] [Green Version]
- Hwang, C.; Cheng, Y.-S.; Yang, W.-H.; Zhang, G.; Huang, Y.-R.; Shen, W.-B.; Pan, Y. Lake level changes in the Tibetan Plateau from Cryosat-2, SARAL, ICESat, and Jason-2 altimeters. Terr. Atmos. Ocean. Sci. 2019, 30, 33–50. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Andersen, O.B.; Nielsen, K.; Zhang, G.; Bauer-Gottwein, P. Influence of local geoid variation on water surface elevation estimates derived from multi-mission altimetry for Lake Namco. Remote Sens. Environ. 2019, 221, 65–79. [Google Scholar] [CrossRef]
- Kao, H.-C.; Kuo, C.-Y.; Tseng, K.-H.; Shum, C.; Tseng, T.-P.; Jia, Y.-Y.; Yang, T.-Y.; Ali, T.A.; Yi, Y.; Hussain, D. Assessment of Cryosat-2 and SARAL/AltiKa altimetry for measuring inland water and coastal sea level variations: A case study on Tibetan Plateau lake and Taiwan Coast. Mar. Geod. 2019, 42, 327–343. [Google Scholar] [CrossRef]
- Li, X.; Long, D.; Huang, Q.; Han, P.; Zhao, F.; Wada, Y. High-temporal-resolution water level and storage change data sets for lakes on the Tibetan Plateau during 2000–2017 using multiple altimetric missions and Landsat-derived lake shoreline positions. Earth Syst. Sci. Data 2019, 11, 1603–1627. [Google Scholar] [CrossRef] [Green Version]
- Song, C.; Ye, Q.; Cheng, X. Shifts in water-level variation of Namco in the central Tibetan Plateau from ICESat and CryoSat-2 altimetry and station observations. Sci. Bull. 2015, 60, 1287–1297. [Google Scholar] [CrossRef] [Green Version]
- Hwang, C.; Cheng, Y.-S.; Han, J.; Kao, R.; Huang, C.-Y.; Wei, S.-H. Multi-Decadal Monitoring of Lake Level Changes in the Qinghai-Tibet Plateau by the TOPEX/Poseidon-Family Altimeters: Climate Implication. Remote Sens. 2016, 8, 446. [Google Scholar] [CrossRef] [Green Version]
- Bouzinac, C. CryoSat-2 Product Handbook. 2014. Available online: https://earth.esa.int/documents/10174/125272/CryoSat_Product_Handbook (accessed on 12 March 2020).
- Wingham, D.; Francis, C.; Baker, S.; Bouzinac, C.; Brockley, D.; Cullen, R.; de Chateau-Thierry, P.; Laxon, S.; Mallow, U.; Mavrocordatos, C.; et al. CryoSat: A mission to determine the fluctuations in Earth’s land and marine ice fields. Adv. Space Res. 2006, 37, 841–871. [Google Scholar] [CrossRef]
- Villadsen, H.; Deng, X.; Andersen, O.B.; Stenseng, L.; Nielsen, K.; Knudsen, P. Improved inland water levels from SAR altimetry using novel empirical and physical retrackers. J. Hydrol. 2016, 537, 234–247. [Google Scholar] [CrossRef] [Green Version]
- Jain, M.; Andersen, O.B.; Dall, J.; Stenseng, L. Sea surface height determination in the Arctic using Cryosat-2 SAR data from primary peak empirical retrackers. Adv. Space Res. 2015, 55, 40–50. [Google Scholar] [CrossRef]
- Villadsen, H.; Andersen, O.B.; Stenseng, L.; Nielsen, K.; Knudsen, P. CryoSat-2 altimetry for river level monitoring—Evaluation in the Ganges–Brahmaputra River basin. Remote Sens. Environ. 2015, 168, 80–89. [Google Scholar] [CrossRef]
- Kleinherenbrink, M.; Ditmar, P.; Lindenbergh, R. Retracking Cryosat data in the SARIn mode and robust lake level extraction. Remote Sens. Environ. 2014, 152, 38–50. [Google Scholar] [CrossRef]
- Roohi, S.; Sneeuw, N.; Benveniste, J.; Dinardo, S.; Issawy, E.; Zhang, G. Evaluation of CryoSat-2 water level derived from different retracking scenarios over selected inland water bodies. Adv. Space Res. 2019. [Google Scholar] [CrossRef]
- Wingham, D.J.; Rapley, C.G.; Griffiths, H. New Techniques in Satellite Tracking Systems. In Proceedings of the IGARSS’ 88 Symposium, Zurich, Switzerland, 8–11 September 1986; pp. 1339–1344. [Google Scholar]
- Davis, C. Growth of the Greenland ice sheet: A performance assessment of altimeter retracking algorithms. IEEE Trans. Geosci. Remote Sens. 1995, 33, 1108–1116. [Google Scholar] [CrossRef]
- Cheng, H.; Yang, J.; Lu, Z.; Zhang, L. The flow field simulation on Dianchi Lake. Procedia Eng. 2012, 31, 696–702. [Google Scholar] [CrossRef] [Green Version]
- Hou, P.; Luo, Y.; Yang, K.; Shang, C.; Zhou, X. Changing Characteristics of Chlorophyll a in the Context of Internal and External Factors: A Case Study of Dianchi Lake in China. Sustainability 2019, 11, 7242. [Google Scholar] [CrossRef] [Green Version]
- Kediao, H.; Wei, G.; Changqun, D.; Yuangao, Z.; Ying, P.; Chang’E, L.; Wei, Z.; Guiying, Y. Water level variation and its driving factors in Lake Dianchi, Fuxian and Yangzong during 1988. J. Lake Sci. 2019, 31, 1379–1390. [Google Scholar] [CrossRef]
- Wen, D.; Jin, C.; Shixiang, G.; Gang, C.; Jinming, C.; Mi, Z. Hydrological Variability of Water Level of Dianchi Lake and Its Application. IOP Conf. Series Mater. Sci. Eng. 2020, 780, 062048. [Google Scholar] [CrossRef]
- Yang, K.; Yu, Z.; Luo, Y.; Yang, Y.; Zhao, L.; Zhou, X. Spatial and temporal variations in the relationship between lake water surface temperatures and water quality—A case study of Dianchi Lake. Sci. Total. Environ. 2018, 624, 859–871. [Google Scholar] [CrossRef]
- Wang, X.; Pang, G.; Yang, M. Precipitation over the Tibetan Plateau during recent decades: A review based on observations and simulations. Int. J. Clim. 2018, 38, 1116–1131. [Google Scholar] [CrossRef]
- Abulaitijiang, A.; Andersen, O.B.; Stenseng, L. Coastal sea level from inland CryoSat-2 interferometric SAR altimetry. Geophys. Res. Lett. 2015, 42, 1841–1847. [Google Scholar] [CrossRef]
- Hayne, G. Radar altimeter mean return waveforms from near-normal-incidence ocean surface scattering. IRE Trans. Antennas Propag. 1980, 28, 687–692. [Google Scholar] [CrossRef] [Green Version]
- Wingham, D.J.; Wallis, D.W. The Rough Surface Impulse Response of a Pulse-Limited Altimeter with an Elliptical Antenna Pattern. IEEE Antennas Wirel. Propag. Lett. 2010, 9, 232–235. [Google Scholar] [CrossRef]
- Peng, F.; Deng, X. A New Retracking Technique for Brown Peaky Altimetric Waveforms. Mar. Geodesy 2017, 41, 99–125. [Google Scholar] [CrossRef]
- Peng, F.; Deng, X. Validation of Sentinel-3A SAR mode sea level anomalies around the Australian coastal region. Remote Sens. Environ. 2020, 237, 111548. [Google Scholar] [CrossRef]
- Passaro, M.; Cipollini, P.; Vignudelli, S.; Quartly, G.D.; Snaith, H.M. ALES: A multi-mission adaptive subwaveform retracker for coastal and open ocean altimetry. Remote Sens. Environ. 2014, 145, 173–189. [Google Scholar] [CrossRef] [Green Version]
- Brown, G. The average impulse response of a rough surface and its applications. IRE Trans. Antennas Propag. 1977, 25, 67–74. [Google Scholar] [CrossRef]
- Peng, F.; Deng, X. Improving precision of high-rate altimeter sea level anomalies by removing the sea state bias and intra-1-Hz covariant error. Remote Sens. Environ. 2020, 251, 112081. [Google Scholar] [CrossRef]
- Peng, F.; Deng, X. Validation of Wind Speeds from Brown-Peaky Retracker in the Gulf of Mexico and East Coast of North America. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5793–5803. [Google Scholar] [CrossRef]
- Pavlis, N.K.; Holmes, S.A.; Kenyon, S.C.; Factor, J.K. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res. Space Phys. 2012, 117, 117. [Google Scholar] [CrossRef] [Green Version]
- Rosner, B. Percentage Points for a Generalized ESD Many-Outlier Procedure. Technometrics 1983, 25, 165–172. [Google Scholar] [CrossRef]
- Deng, X.; Featherstone, W.E. A coastal retracking system for satellite radar altimeter waveforms: Application to ERS-2 around Australia. J. Geophys. Res. Space Phys. 2006, 111, 111. [Google Scholar] [CrossRef] [Green Version]
- Kropáček, J.; Maussion, F.; Chen, F.; Hoerz, S.; Hochschild, V. Analysis of ice phenology of lakes on the Tibetan Plateau from MODIS data. Cryosphere 2013, 7, 287–301. [Google Scholar] [CrossRef] [Green Version]
- Lei, Y.; Zhu, Y.; Wang, B.; Yao, T.; Yang, K.; Zhang, X.; Zhai, J.; Ma, N. Extreme Lake Level Changes on the Tibetan Plateau Associated With the 2015/2016 El Niño. Geophys. Res. Lett. 2019, 46, 5889–5898. [Google Scholar] [CrossRef]
- Yao, F.; Wang, J.; Yang, K.; Wang, C.; A Walter, B.; Crétaux, J.-F. Lake storage variation on the endorheic Tibetan Plateau and its attribution to climate change since the new millennium. Environ. Res. Lett. 2018, 13, 064011. [Google Scholar] [CrossRef]
Retracker | Max (m) | Min (m) | Mean (m) | No |
---|---|---|---|---|
WWMFW | 1.956 | 0.079 | 0.433 | 17 |
PPT | 1.155 | 0.014 | 0.344 | 18 |
OCOG | 1.688 | 0.080 | 0.424 | 18 |
APD-PPT | 2.200 | 0.029 | 0.303 | 18 |
Retracker | Max (m) | Min (m) | Mean (m) | No |
---|---|---|---|---|
WWMFW | 0.901 | 0.070 | 0.253 | 15 |
PPT | 0.746 | 0.022 | 0.284 | 15 |
OCOG | 0.535 | 0.022 | 0.204 | 15 |
APD-PPT | 0.540 | 0.023 | 0.186 | 15 |
Mission | Retracker | Trend (mm/yr) | Period | Correlation 1 | MAD (m) | Period 3 |
---|---|---|---|---|---|---|
C2 | WWMFW | 55.3 ± 10.8 | 2011–2018 | 0.76 | 0.434 | 2011–2015 |
C2 | PPT | 51.1 ± 10.8 | 2011–2018 | 0.73 | 0.323 | 2011–2015 |
C2 | OCOG | 61.5 ± 10.8 | 2011–2018 | 0.73 | 0.322 | 2011–2015 |
C2 | APD-PPT | 61.0 ± 10.8 | 2011–2018 | 0.74 | 0.234 | 2011–2015 |
J2 | [13] 2 | 59.9 ± 5.8 | 2009–2015 |
Retracker | Min | Max | Mean |
---|---|---|---|
ICE | 0.161 | 0.355 | 0.254 |
ALES | 0.050 | 0.402 | 0.298 |
MBP | 0.192 | 0.398 | 0.303 |
Retracker | ICE | ALES | MBP |
---|---|---|---|
Trend (mm/yr) | 30.9 ± 64.9 | 28.8 ± 64.9 | 36.7 ± 73.0 |
Correlation | 0.96 | 0.90 | 0.89 |
MAD (m) | 0.027 | 0.046 | 0.055 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, X.; Wang, R.-B.; Peng, F.; Yang, Y.; Mo, N.-M. Retracking Cryosat-2 Data in SARIn and LRM Modes for Plateau Lakes: A Case Study for Tibetan and Dianchi Lakes. Remote Sens. 2021, 13, 1078. https://doi.org/10.3390/rs13061078
Deng X, Wang R-B, Peng F, Yang Y, Mo N-M. Retracking Cryosat-2 Data in SARIn and LRM Modes for Plateau Lakes: A Case Study for Tibetan and Dianchi Lakes. Remote Sensing. 2021; 13(6):1078. https://doi.org/10.3390/rs13061078
Chicago/Turabian StyleDeng, Xiaoli, Ren-Bin Wang, Fukai Peng, Yong Yang, and Nan-Ming Mo. 2021. "Retracking Cryosat-2 Data in SARIn and LRM Modes for Plateau Lakes: A Case Study for Tibetan and Dianchi Lakes" Remote Sensing 13, no. 6: 1078. https://doi.org/10.3390/rs13061078
APA StyleDeng, X., Wang, R. -B., Peng, F., Yang, Y., & Mo, N. -M. (2021). Retracking Cryosat-2 Data in SARIn and LRM Modes for Plateau Lakes: A Case Study for Tibetan and Dianchi Lakes. Remote Sensing, 13(6), 1078. https://doi.org/10.3390/rs13061078