
remote sensing  

Article

Joint Learning of Contour and Structure for
Boundary-Preserved Building Extraction

Cheng Liao 1 , Han Hu 1,* , Haifeng Li 2 , Xuming Ge 1, Min Chen 1, Chuangnong Li 1 and Qing Zhu 1

����������
�������

Citation: Liao, C.; Hu, H.; Li, H.; Ge,

X.; Chen, M.; Li, C.; Zhu, Q. Joint

Learning of Contour and Structure

for Boundary-Preserved Building

Extraction. Remote Sens. 2021, 13,

1049. https://doi.org/10.3390/

rs13061049

Academic Editor: John Trinder

Received: 8 February 2021

Accepted: 8 March 2021

Published: 10 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University,
Chengdu 611756, China; liaocheng@my.swjtu.edu.cn (C.L.); xuming.ge@swjtu.edu.cn (X.G.);
minchen@home.swjtu.edu.cn (M.C.); lichuangnong123@sina.com (C.L.); zhuq66@263.net (Q.Z.)

2 School of Geosciences and Info-Physics, Central South University, Changsha 410012, China;
lihaifeng@csu.edu.cn

* Correspondence: han.hu@swjtu.edu.cn

Abstract: Most of the existing approaches to the extraction of buildings from high-resolution or-
thoimages consider the problem as semantic segmentation, which extracts a pixel-wise mask for
buildings and trains end-to-end with manually labeled building maps. However, as buildings are
highly structured, such a strategy suffers several problems, such as blurred boundaries and the
adhesion to close objects. To alleviate the above problems, we proposed a new strategy that also
considers the contours of the buildings. Both the contours and structures of the buildings are jointly
learned in the same network. The contours are learnable because the boundary of the mask labels of
buildings implicitly represents the contours of buildings. We utilized the building contour informa-
tion embedded in the labels to optimize the representation of building boundaries, then combined
the contour information with multi-scale semantic features to enhance the robustness to image spatial
resolution. The experimental results showed that the proposed method achieved 91.64%, 81.34%, and
74.51% intersection over union (IoU) on the WHU, Aerial, and Massachusetts building datasets, and
outperformed the state-of-the-art (SOTA) methods. It significantly improved the accuracy of building
boundaries, especially for the edges of adjacent buildings. The code is made publicly available.

Keywords: structural features; building extraction; remote sensing image; semantic segmentation;
deep learning

1. Introduction

Building extraction from high-resolution orthoimages is of great significance for
applications ranging from urban land use to three-dimensional reconstruction [1,2]. Due
to the complex background and diversity of building styles, the problem of building
extraction suffers severe intra-class variability and small inter-class differences in remote
sensing images [3,4]. Thus, it is still a great challenge to extract buildings efficiently and
accurately in a complex urban environment.

With the advent of deep learning, building extraction methods that benefit from
deep convolutional neural networks (DCNNs) have been improved substantially. Most of
the existing approaches [5–7] use an encoder–decoder architecture to extract a pixel-wise
building mask. The network is learned end-to-end: one end is the orthoimage and the other
end is a pixel-wise building mask. Although the end-to-end paradigm has significantly
improved the ease of use of supervised deep learning approaches, there are still some
issues remaining to be resolved:

1. Contradiction of feature representation and spatial resolution. The encoder–decoder
structure will produce more representative features in deeper layers, however, at
the cost of coarser spatial resolution. This issue is widely acknowledged in the
computer vision community. Although the decrease of spatial resolution may only
cause issues for small objects in terrestrial or natural images, it causes blurry or zigzag
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effects on building boundaries when applied to orthoimages, which is undesirable
for subsequent applications. As column (b) of Figure 1 shows, the boundary of the
buildings are inaccurately extracted, and the smallest buildings cannot be recognized.

2. Ignorance of building contours. Buildings have clear outlines, as opposed to the
background, which is typically represented as the vector boundary in applications.
However, the existing end-to-end paradigm generally ignores intuitive and important
prior knowledge, even if the junction of the building and the background of man-
ually labeled masks contains such vector outline information of the building. As a
consequence, the extracted buildings are generally not regularized and adhesive in
a complex urban environment. As Figure 1 shows, indicated by the yellow circle,
column (b) extracted by MAP-Net [8], which proposed an independently parallel
network that preserves multiscale spatial details and rich high-level semantics fea-
tures, is inaccurate at the building boundary, specifically in adjacent areas. Even if
the pixel-wise metrics such as the intersection over union (IoU) scores (as explicitly
optimized in the end-to-end objective function) are relatively high, the above flaw
still renders the results less useful.
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Figure 1. The building extracted by existing methods is zigzag and adhesive at the building boundary, specifically in
adjacent areas. Columns (a–c) represent sample images, extracted results by MAP-Net, and ours, respectively. Columns
(d,e) represent the details of the MAP-Net and ours.

To alleviate these problems, we proposed a boundary-preserved building extraction
approach by jointly learning the contour and structure of buildings. We utilized the building
contour information embedded in the labels to optimize the representation of building
boundaries, then combined the contour information with multi-scale features extracted by
the extractor of MAP-Net to alleviate the problems of edge blurring, zigzag, and boundary
adhesion in existing methods. Specifically, the steps of this paper’s method are as follows.
First, we designed a building structure extraction module to learn the building geometric
features, which ensures that the detailed boundary information is fully utilized. Second,
we introduced dice loss in the structure feature extraction module to optimize the learned
structural features and combine it with the cross-entropy loss for segmentation branching.
Finally, we redesigned the multiscale feature extraction backbone, with more resolution to
make it robust for remote sensing at different resolutions. Considering the large amounts
of parameters introduced by the high-resolution feature, we replaced the convolution
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layers with dilated convolutions [9] in an added feature extraction path to maintain a lower
computational complexity.

In summary, our contributions are as follows: (1) We proposed a joint learning contour
and structure information for a boundary-preserved building extraction method. (2) We
proposed a structural feature constraint module that combines the structure information
for refinement boundary extraction, especially for the edge of the dense, adjacent buildings.
The rest of this paper is organized as follows. Section 2 summarizes the related work
on building footprint extraction. The details of the proposed method for the refinement
of building extraction are introduced in Section 3. Section 4 describes the experiments
and analyses the results. The discussions and conclusions of this paper are presented in
Section 5.

2. Related Works

Over the recent few decades, numerous building extraction algorithms have been
proposed. They can be divided into traditional image processing-based and machine
learning-based methods. Traditional building extraction methods utilize the threshold or
design feature operators according to the characteristics of spectrum, texture, geometry,
and shadow [10–16] to extract buildings from optical images. These methods can resolve
only specific issues for specific data, since the feature operators vary with illumination
conditions, sensor types, and building architecture. To relieve these problems, refs. [17–24]
combined optical imagery with GIS data, digital surface models (DSMs) obtained from
light detection and ranging (lidar), or synthetic aperture radar interferometry to distinguish
non-buildings that are highly similar to buildings, increasing the robustness of building
extraction, are used. However, obtaining a wide range of corresponding multisource data
is always costly.

With the development of DCNNs in recent years, many algorithms have been pro-
posed for processing remote sensing images [25–32]. The fully convolutional network [33]
(FCN) replaces the fully connected layers with convolutional layers, making it possible for
large-scale dense prediction. CNN-based methods [34–36] have been proposed to extract
buildings from remote sensing data, but the details and boundaries of buildings are still
inaccurate, because detailed spatial information is lost during repeated downsampling
operations, which is difficult to recover.

To resolve this problem, encoder–decoder-based methods [5–7], represented by UNet [37],
introduced skip connections to fuse high-resolution features extracted from shallow layers
in the encoder stage during the decoder process to recover detailed information. These
methods extract more details compared to the FCN-based methods, while noise can be
introduced, since the high-resolution features are extracted from shallow layers. Refer-
ences [38–42] introduced many postprocesses for refining building boundaries, such as
conditional random fields (CRF). Although the boundary could be more accurate, the
complexity of the calculation was greatly increased. ResNet [43] improved the training
stability and performance of a deeper CNN by introducing a residual connection module,
which makes it possible to extract rich higher-level semantic features. It is often used as a
backbone to achieve better performance in many tasks, such as in [44,45].

To improve the accuracy of multiscale building extraction, refs. [46–49] designed a
module for multiscale input and fused multimodules to extract buildings with multiscales.
It obviously improved the accuracy, but increased the complexity of the model, especially
when processing a large number of remote sensing images. DeepLab [38,50] series methods
introduced atrous convolution for segmentation tasks, which enlarged the receptive field
without increasing the computational complexity. These methods could extract multiscale
objects efficiently compared with [47,48]. Moreover, refs. [44,45,51,52] fused the multi-
scale features extracted from different stages to recover a detailed localization. MAP-Net
extracts multiscale features through an independent parallel network that contains mul-
tiscale spatial details and rich high-level semantics, and achieved SOTA results on the
WHU dataset.
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Despite the most recent building extraction methods being able to obtain higher per-
formance in many public benchmarks, the boundaries of buildings are rarely identified
accurately, which is vital for many remote sensing applications. Many types of research
have implied that edge information is potentially valuable for better segmentation bound-
aries. References [7,53,54] combined the superpixel segmentation result with deep features
to enhance the segmentation boundary. Similarly, refs. [55–58] integrated the edge features
extracted by an additional lightweight CNN from edge extraction operators, to improve
the accuracy of the segmentation results. However, in research of CNN-based building
extraction, inaccurate boundary identification, especially in the area of densely distributed
buildings, is still unavoidable.

3. Methodology
3.1. Architecture Overview

To resolve the problem of the extracted results not being accurate at the building
boundaries in existing methods, especially between building which are closely distributed,
we proposed a boundary-preserved building extraction method by jointly learning the
contour and structure of buildings. Our architecture is shown in Figure 2. It mainly
contains two parts: a robust and efficient multiscale feature extraction backbone network,
and a building structural constraint module. The backbone is inherited from the feature
extractor of MAP-Net, due to its potential for preserving detailed multiscale features. First,
we redesigned the multiscale feature extraction network for robustness to image resolution
and a trade-off between accuracy and efficiency. Then, we designed a structural constrained
module to learn contours from the gradient information for extracting refined building
boundaries with a dice loss for structural feature optimization. The details of these parts
are described in the following sections.
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Figure 2. Structure of the proposed network. There are two main parts: a multiscale feature extraction backbone, and a
building structural constraint module.

3.2. Structural Constraint Module

The existing building extraction methods cannot accurately identify boundaries, espe-
cially for buildings that are distributed closely adjacent. The CNN-based methods learn the
weight of the convolution kernel from the features of each receptive field. The structural
information at the edges of buildings can be underutilized.

Intuitively, this kind of boundary information is important for extracting accurate
instances of boundaries between buildings. Based on the hypothesis that there is a sig-
nificant difference between the building and the background at the junction, there is a
high consistency in the area of the building instance or background. We introduced the
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Sobel operator to capture the gradient information, since it has excellent characteristics for
capturing the differences of the edges of buildings.

We designed a residual network branch to extract the structural features that capture
the boundary information of buildings from the gradient, named the structural constraints
module, as shown in Figure 3. The extracted features as a constraint were concatenated
to the multiscale features extracted from the main segmentation branch. Similarly, the
features with the highest resolution extracted from the main branch were concatenated to
structural features as complementary information. In addition, we introduced the dice loss
to evaluate the consistency between the learned structure features and the ground truth
for optimizing the residual module, as described in Section 3.4. In this way, the extracted
features retain the multiscale detailed information, and enhance the feature expression of
the edge of the building.
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at the edge of the building, column (c) compared with column (b), which implies that the 
boundary was enhanced after the introduction of the structural features. 

Figure 3. Details of the residual module as shown in (a). (b) represents the details of each convolu-
tional block.

We visualized the learned features of the network without/with the structural con-
straint module for a clear understanding in Figure 4. The features have a higher response
at the edge of the building, column (c) compared with column (b), which implies that the
boundary was enhanced after the introduction of the structural features.

3.3. Robust Feature Extraction

MAP-Net extracts multiscale features with a parallel multipath network. The resolu-
tion of features in each path remains fixed and independent during extraction to contain
detailed context and rich semantic information. The optimal combination of scales is
adaptively fused based on channel attention-based modules, which improves the accuracy
of the building boundaries and small buildings, since detailed contexts are kept in the
features with higher resolution. While the limited scale of features is not optimal for remote
sensing images with different resolutions, as the paper mentioned, higher resolution feature
extraction causes considerable computational complexity.
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In this paper, we inherited the structure of the multipath feature extraction network
for buildings with multiple scales. Considering the different resolutions of remote sensing
images, we added a path to extract features with half the resolution of the original image,
which is vital for extracting buildings from low-resolution remote sensing images and
identifying tiny buildings. Since the extracted features cover a greater scale space, the
detailed contexts and semantics can be more abundant, which can enhance the robustness
of the resolution. Additionally, we introduced dilated convolutions and omitted the spatial
pyramid pooling module as a trade-off between the performance and complexity of the
network.

3.4. Loss Function

For the loss function, we used binary entropy loss, which is presented as Formula (1)
as follows, for the segmentation branch, since it has great performance for evaluating the
distance between prediction and label, and has been widely used in building extraction
networks. Where pi represents predicted result for index i in the image, yi represents the
ground truth of pixel in the index i, and N represent the number of pixel in the image.

Lbce =
1
N ∑

i
Li = −

1
N ∑

i
[yi·log(pi) + (1− yi)·log(1− pi)] (1)
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In addition, we introduced dice loss, which was first proposed in [59], so the structural
features extracted from residual module have more consistency with the labels. As For-
mula (2) shows, pi and yi represent the predict result and ground truth of pixel i. The total
loss is weighted by Lbce and Ldice, as shown in Formula (3). We conducted comparative
experiments to compare different coefficients with a step of 0.1. The results showed little
difference when α is between 0.3 and 0.5, and were superior to others, since we set α and β
to 0.4 and 0.6 in our experiments.

Ldice = 1− 2∑N
i yi·pi + 1

∑N
i y2

i + ∑N
i p2

i + 1
(2)

Loss = α · Lbce + β · Ldice (3)

3.5. Evaluation Metrics

Semantic segmentation-based building footprint extraction from remote sensing im-
ages aims to label each pixel belong to the building or background for a specific input
image. Generally, evaluation metric methodologies can be divided into pixel-level, and
instance-level. To compare with most recent studies, we applied pixel-level metrics in-
cluding precision, recall, F1-score, and IoU to evaluate the performance of our and other
compared methods. Equations are given as follows:

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(6)

IoU =
Precision ∗ Recall

Precision + Recall − Precision ∗ Recall
(7)

4. Experiments and Analysis
4.1. Datasets

We evaluated the performance of the proposed method on three open datasets, includ-
ing the WHU building dataset [60], the Inria aerial image labelling dataset (Aerial) [61], the
and Massachusetts dataset [25]. The details of these datasets are described as follows.

The WHU building dataset includes both aerial and satellite subsets, with correspond-
ing images and labels. We selected the aerial subset that has been widely used in existing
works for comparison with the proposed algorithm. It covers a 450 km2 area, with a 30 cm
ground resolution. Each of the images has three bands, corresponding to red (R), green
(G), and blue (B) wavelengths with a size of 512 × 512 pixels. There are 8188 tiles of
images, including 4736, 2416, and 1036 tiles for the training, test, and validation datasets,
respectively. We conducted our experiment with the original provided dataset partitioning.

The Aerial dataset contains 180 orthorectified RGB images for training with corre-
sponding public labels, and 180 images for testing without public labels, covering 810 km2

with a spatial resolution of 0.3 m. We only used the former in our experiments, which
covers dissimilar urban settlements (Austin, Chicago, Kitsap, Tyrol, and Vienna). Similar to
many existing works, we choose the first five images in each area for testing and the others
for training, and we randomly clipped the images to a size of 512 × 512 pixels during the
training stage.

The Massachusetts Building Dataset consists of 151 aerial images of the Boston area.
The entire dataset covers approximately 340 square kilometers with a resolution of 1 m,
and the size of each image is 1500 × 1500 pixels. There are 137 sets of aerial images
and corresponding single-channel label images for training; 10 for the test, and four for
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validation. We randomly clipped the training set to 512 × 512 pixels, while the validation
and test sets were clipped to 512 × 512 for prediction, and merged to evaluate the accuracy.

4.2. Performance Comparison

We compared the performance of the proposed methods with some classical semantic
segmentation methods, such as U-NetPlus [5], PSPNet [44], and DeepLabv3+ [50], as well
as the most recent building extraction methods, such as MAP-Net, DE-Net, and MA-FCN,
on the WHU, Aerial, and Massachusetts datasets.

U-NetPlus achieved a great improvement by redesigning the encoder according to
VGG, and replacing the transposed convolution with the nearest interpolation based
on UNet, which is widely used in remote sensing imagery segmentation. Since ResNet
improved the training stability and performance of deeper CNNs by introducing residual
connections, we implemented PSPNet with ResNet50 for feature extraction and replaced
the upsampling module with ours for building extraction. In addition, DeepLabv3+ and
MAP-Net were implemented as in the public source code.

Our method designed a structural constraint module to enhance the detailed informa-
tion on the edge of the building. It outperformed the latest building extraction works and
achieved SOTA results without pretraining and postprocessing on the three datasets with
different spatial resolutions.

Our research was implemented in TensorFlow using a single 2080Ti GPU with 11
Gigabytes of memory. The Adam optimizer was chosen with an initial learning rate of
0.001, and beta1 and beta2 were set to default, as recommended. All compared methods in
the experiment were trained from scratch for approximately 150 epochs to ensure that the
training model converged, with random rotation and flipping for data augmentation on
each dataset described in Section 4.1. The batch size was set to four, restricted by the GPU
memory size, to ensure that the hyperparameters remained the same among the compared
methods for equal performance evaluation.

4.2.1. Experiments on the WHU Dataset

The WHU dataset has a higher spatial resolution, which means the intersection of the
buildings and the backgrounds contains more accurate and valuable contour information.
We conducted comparative experiments on the WHU dataset to compare the similarity of
the building boundaries extracted by our, and related, methods.

SRI-Net [45] generated multiscale features by a spatial residual inception module
based on the ResNet101 encoder. DE-Net [51] aggregated many lasting segmentation
techniques, such as linear activation units, residual blocks, and densely upsampling con-
volutions to recover better spatial information. EU-Net [52] used deep spatial pyramid
pooling (DSPP) and introduced focal loss to reduce the effect of incorrect labels. MA-
FCN [40] introduced a feature pyramid network (FPN) for multiscale feature extraction,
and a polygon regularization strategy for boundary optimization. The experimental re-
sults were as shown in Table 1. The results of the related methods marked as quoted are
referenced from the corresponding papers, since the source code is unavailable.

Our method outperformed the compared methods, and achieved a 0.78% IoU im-
provement in pixel-level metrics compared with our previous work, MAP-Net. To compare
the results extracted by our, and other compared, methods, we visualized examples of
results on WHU datasets in Figure 5. There are two sample images and the corresponding
extracted results through the related method. The partial details are shown in the last row
for convenient comparison. The proposed method can extract buildings more accurately,
as shown in the area marked by yellow dashed circles. In particular, the edges between
buildings with dense, adjacent areas were identified more clearly.
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Table 1. Performance evaluation of the compared methods and ours on the WHU test datasets.

Methods IoU (%) Precision (%) Recall (%) F1-Score (%)

UNet 89.51 95.11 93.83 94.47
PSPNet 88.87 94.28 93.93 94.10

DeepLabv3+ 88.16 94.64 92.79 93.71
MAPNet 90.86 95.62 94.81 95.21

SRI-Net [45] 89.23 95.67 93.69 94.51
DE-Net [51] 90.12 + 0.24 95.00 + 0.16 94.60 + 0.19 94.80 + 0.18
EU-Net [52] 90.56 94.98 95.10 95.04

MA-FCN [40] 90.70 95.20 95.10 95.15

Ours 91.64 95.83 95.44 95.64
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4.2.2. Experiments on the Aerial Dataset

The buildings are distributed very densely in the Aerial dataset. Existing methods
have difficultly in distinguishing the boundaries of building instances accurately, resulting
in multiple adjacent buildings being adhering together in the extracted results. We con-
ducted comparative experiments on the Aerial dataset to compare the segmentation results
extracted by our model and the comparison methods at adjacent building boundaries. As
shown in Table 2, the results of related methods marked as quoted are referenced from the
corresponding papers, since the source code is unavailable.

Table 2. Performance evaluation of the compared methods and ours on the Aerial test dataset.

Methods IoU (%) Precision (%) Recall (%) F1-Score (%)

UNet 77.51 88.83 85.88 87.33
PSPNet 78.18 88.48 87.40 87.75

DeepLabv3+ 73.83 87.27 82.75 84.95
MAPNet 80.33 89.61 88.58 89.09

SRI-Net [45] 71.76 85.77 81.46 83.56
EU-Net [52] 80.50 90.28 88.14 89.20

Ours 81.15 91.78 87.51 89.59

Our method outperformed the classical semantic methods and the most recent works.
Especially, our method achieved a 0.82% IoU improvement in pixel-level metrics compared
with MAP-Net, and 0.65% compared with the EU-Net, which, as far as we know, is the
most recent published result on this dataset.

We also visualized examples of results on Aerial datasets in Figure 6 to compare
the results extracted by our and other compared methods. As can be seen from the
experimental results, our method could extract a more accurate building boundary than the
compared methods, since we introduced learnable contour information to joint-optimize
the building outline. Our proposed method distinguished the boundaries between adjacent
building instances more accurately than the compared methods, especially for the densely
distributed building, such as the results between our method and MAP-Net in the partial
detail results.

4.2.3. Experiments on the Massachusetts Dataset

To validate the generalization of the proposed method on imagery with a different
spatial resolution, we conducted experiments on the Massachusetts dataset to compare
the performance of our and related works. BRRNet [62] designed a prediction module
based on the encoder–decoder structure with a residual refinement module for accurate
boundary extraction.

The results showed that our method outperformed the classical semantic segmentation
methods and the most recent building extraction methods, as shown in Table 3. This implies
that combining the contour information embedded in the building and the background
with the semantic features could enhance the robustness of the spatial resolution of images.

We illustrate the example results on the Massachusetts datasets in Figure 7 for intuitive
comparison. The proposed methods could identify more detailed instance boundaries,
especially for buildings that were densely distributed, as shown in the first sample image.
In addition, the outlines of the extracted building were also closer to the ground-truth than
those without combining the contour information, as shown in the partial detail results.



Remote Sens. 2021, 13, 1049 11 of 18
Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 19 
 

 

 
Figure 6. Example of extracted results on the Aerial test dataset. The bottom column represents the 
corresponding partial details for convenience of comparison. 

4.2.3. Experiments on the Massachusetts Dataset 
To validate the generalization of the proposed method on imagery with a different 

spatial resolution, we conducted experiments on the Massachusetts dataset to compare 
the performance of our and related works. BRRNet [62] designed a prediction module 
based on the encoder–decoder structure with a residual refinement module for accurate 
boundary extraction.  

Figure 6. Example of extracted results on the Aerial test dataset. The bottom column represents the corresponding partial
details for convenience of comparison.



Remote Sens. 2021, 13, 1049 12 of 18

Table 3. Performance evaluation of the compared methods and ours on the Massachusetts test
dataset.

Methods IoU (%) Precision (%) Recall (%) F1-Score (%)

UNet 70.99 85.53 80.68 83.33
PSPNet 71.57 88.24 79.12 83.43

DeepLabv3+ 66.18 82.84 76.69 79.65
MAPNet 73.34 85.49 83.76 84.62

EU-Net [52] 73.93 86.70 83.40 85.01
BRRNet [62] 74.46 - - 85.36

Ours 74.51 85.44 85.34 85.39
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4.3. Analysis on Instance-Level Metrics

To verify whether the proposed method significantly improved the edge of extracted
buildings, especially the boundary discrimination between adjacent buildings in dense
areas, we also used instance-level metrics to verify the effectiveness of the proposed method
in optimizing building instance boundary discrimination, compared with the pixel-level
metrics, on the WHU, Aerial, and Massachusetts datasets.

The instance-level evaluation method is similar to the pixel-level method, except that
the basic unit of calculation is the building instance instead of pixels. The building is
identified correctly when the IoU between every building instance in the prediction results
and the corresponding instance in the labels exceeds a certain threshold value. Usually, the
higher the threshold is, the more stringent the requirement for accuracy in the assessment
of the prediction result. The results are presented in Table 4, which shows the improved
performance on instance-level F1 and IoU scores under different instance thresholds, from
0.4 to 0.8 on three datasets.

Table 4. The instance-level performance improvement between our method and MAP-Net, with
different thresholds on the WHU, Aerial, and Massachusetts datasets.

Data
Sets

TH 0.4 0.5 0.6 0.7 0.8

Methods F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU

MAP-Net 90.70 82.99 89.48 80.97 87.68 78.06 84.84 73.67 78.80 65.02
WHU Ours 91.66 84.59 90.66 82.92 89.22 80.55 86.80 76.68 81.46 68.73

Improved +0.96 +1.60 +1.18 +1.95 +1.54 +2.49 +1.96 +3.01 +2.66 +3.71

MAP-Net 79.56 66.06 75.53 60.68 70.98 55.02 62.81 45.78 45.57 29.51
Aerial Ours 81.87 69.30 77.95 63.87 73.75 58.41 66.40 49.70 49.31 32.72

Improved +2.31 +3.24 +2.42 +3.19 +2.77 +3.39 +3.59 +3.92 +3.74 +3.21

MAP-Net 87.29 77.44 82.65 70.44 73.67 58.31 53.01 36.06 20.49 11.41
Massa Ours 89.64 81.23 85.48 74.65 77.49 63.26 57.94 40.79 24.11 13.70

Improved +2.35 +3.79 +2.83 +4.21 +3.82 +4.95 +4.93 +4.73 +3.62 +2.29

The results implied that our proposed method achieved greater accuracy improvement
in the instance-level metric than in the pixel-level metric, which is reflected in Table 3. In
addition, the improved accuracy grew with the threshold, especially in higher resolution
remote sensing imagery, such as the WHU dataset. This can be explained by, the higher the
resolution of the images, the more separable the boundaries between buildings, as well as
the more accurate identification of tiny buildings. Since our research introduced gradient
information to enhance building boundary response, this information becomes weaker in
low-resolution images for unclear building contours. This probably explains why when the
threshold becomes extremely large, for 0.8 example, the improved instance-level accuracy
becomes reduced on the Massachusetts dataset. We display the improved instance-level
performance in F1 and IoU metrics on the WHU, Aerial, and Massachusetts datasets in
Figure 8, for a more obvious representation.

4.4. Ablation Experiments

To evaluate the effectiveness of the different modules involved in the proposed method,
we designed an ablation experiment to compare the contributions with precision, recall,
F1-Score, and IoU metrics on the WHU dataset. The results are shown in Table 5.
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Table 5. Comparison the performance of the modules in the proposed methods on the WHU dataset.

Methods Structural Multi-Loss IoU Precision Recall F1-Score

MAP-Net [8] × × 90.86 95.62 94.81 95.21
Baseline × × 91.00 95.21 95.36 95.29

Baseline-S
√

× 91.43 95.95 95.10 95.52
BaseLine+S+M

√ √
91.64 95.83 95.44 95.64

First, our baseline was based on MAP-Net, which was composed of four paths that
extract features with different resolutions and introduce dilated convolution, which cap-
tures more global context during multiscale feature extraction, and reduces computational
complexity. It slightly surpassed MAP-Net, with a lightweight network, since the extracted
features cover more scales, and make it more robust to image resolution. Second, a par-
allel prior structural constraints module (S) was combined with the baseline, which was
represented as Baseline+S, and achieved 0.43% IoU improvement on the baseline. This
means that the introduced low-level geometric prior has a greater impact on building
extraction since it has stronger generalizability than the RGB values. Finally, the proposed
method introduced multiloss, which combines CE loss for segmentation and dice loss for
the structural constraint module, based on Baseline+S. It enhanced the IoU metric since the
dice loss promotes the optimization of structural features extracted by the prior structural
constraint module.

In summary, the proposed method achieved a great improvement compared with
MAP-Net, since robust feature extraction, generalized structural information, and edges
contributed to the optimal function. The prior structural constraints had the greatest
contribution to the extraction of the generalized context.

4.5. Efficiency Comparison

According to the above experiments, the proposed method obtained a better accuracy
than the most recent related building extraction methods on the three datasets. To verify
the timing performance, we calculated the trainable parameters and the number of floating-
point operations (FLOPs) of the compared methods. The experimental results are shown in
Table 6.
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Table 6. Comparison of the efficiency of the related methods on the WHU test dataset.

Methods IoU (%) FLOPs (M) Parameters (M)

U-NetPlus 89.51 17.28 8.64
PSPNet 88.87 93.48 46.72

DeepLabv3+ 88.16 51.40 25.63
MAP-Net 90.86 48.09 24.00

Ours 91.64 49.42 24.55

Although the U-NetPlus was the most efficient, its accuracy was much lower than ours.
Comparing our method with the MAP-Net, the number of trainable network parameters
had no significant increase. However, the proposed method significantly improved the IoU
accuracy of building recognition on the WHU test dataset.

In summary, although the backbone of the proposed method extracts multi-scale
features to improve the robustness of varied image resolutions, it does this without intro-
ducing higher computational complexity due to the introduction of dilated convolution.
The proposed method introduced building structural information and achieved better per-
formance without significantly increasing computational complexity, since the structural
constraint module is lightweight.

5. Discussion and Conclusions

This paper inherited the structure of MAP-Net and improved the trade-off between
accuracy and computational complexity to extract building footprints accurately, especially
for the boundaries of densely distributed building instances. To relieve the problem of not
being able to exactly detect the building boundary in recent methods, we first designed the
structural prior constraints module to enhance the feature representation of the building
edges, under the hypothesis that the buildings have great differences from the background,
especially between the boundaries. Furthermore, we introduced dice loss to optimize the
representation of geometric features in the S module combined with the CE loss in the
segmentation branch.

We explored the effectiveness of the proposed method through sufficient experimental
demonstration and proved that the proposed method outperforms the most recent building
extraction methods on the WHU, Aerial, and Massachusetts datasets, and achieved SOTA
results. In addition, we evaluated the improved performance of our method with instance-
level metrics to prove its ability to extract fine building boundaries. This research performed
sufficient experiments on building extraction and implied that some low-level features
could be considered for better generalization. We will perform further studies on land-
cover classification on a large scale in the future. The source code is available at https:
//github.com/liaochengcsu/jlcs-building-extracion (accessed on 8 February 2021).
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