Driving Forces of the Changes in Vegetation Phenology in the Qinghai–Tibet Plateau
<p>Location of the QTP and the distribution of the different vegetation types. The different color legends in the upper left represent all of the vegetation types in the study area. The lower left in the figure represents the location of the study area in the world.</p> "> Figure 2
<p>Characteristics of the interannual changes in vegetation phenology. The green, red and blue lines represent the interannual changes in SOS, the EOS, and the LOS, respectively. The blue and green equations at the upper left of the graph represent the interannual changes in 1982 to 1998, respectively. The blue and green equations at the lower right of the graph represent the interannual changes in 1998 to 2015, respectively. The red equation at the lower left represents the interannual changes in 1982 to 2015. Days of Year (DOY) represents the change in the vegetation growing season in the study area.</p> "> Figure 3
<p>Characteristics of the changes in vegetation phenology. (<b>A</b>–<b>C</b>) represent the average changes in the SOS, the EOS, and the LOS from 1982 to 2015, respectively. The histogram in the lower left represents the percentage of different color bands in the total number.</p> "> Figure 4
<p>Characteristics of the changes in vegetation phenology with altitude. (<b>A</b>–<b>C</b>) represent the average changes in the SOS, the EOS, and the LOS from 1982 to 2015 at different elevations, respectively.</p> "> Figure 5
<p>Changes in vegetation phenology during different periods of the growing season. (<b>A</b>–<b>C</b>) represent the trend in the start, the end, and the length of the growing season from 1982 to 2015, respectively. The right side of each trend chart is significant according to the M-K test (<span class="html-italic">p</span> < 0.05). In the lower left of the bar chart, red represents the proportion of the number of regions with a significant trend (<span class="html-italic">p</span> < 0.05). Gray represents the proportion of the number of areas with a non-significant trend.</p> "> Figure 6
<p>Annual and monthly change in climatic factors. (<b>A</b>) represents the monthly average of air temperature, precipitation and snow depth from 1982 to 2015 in the study area, while (<b>B</b>–<b>D</b>) represent the monthly average of air temperature, precipitation, and snow depth from 1982 to 2015, respectively.</p> "> Figure 7
<p>The correlation between vegetation phenology and pre-season climatic factors. (<b>A</b>,<b>B</b>) represent the correlation between the SOS and pre-season air temperature and precipitation, respectively. (<b>C</b>,<b>D</b>) represent the correlation between the EOS and pre-season air temperature and precipitation, respectively. The inset panels in the lower left of each submap present pixels with a significantly (<span class="html-italic">p</span> < 0.05) positive (red) and negative (blue) value. The percentages of positive (P) and negative (N) correlations (percentage of significant correlations in parentheses) are shown at the top of each submap. SW, MD, EA and NH represent the southwestern, middle, eastern and northern regions of the study area, respectively.</p> "> Figure 8
<p>Trends in air temperature and precipitation in different areas of the study area. (<b>A</b>,<b>B</b>) represent the interannual changes in pre-season air temperature and precipitation in different areas of the study area, respectively. The left half of (<b>A</b>) presents the interannual changes in air temperature at the SOS, and the right half presents the interannual changes in air temperature at the EOS. The left half of (<b>B</b>) presents the interannual changes in precipitation at the SOS, and the right half presents the interannual changes in precipitation at the EOS. AL, SW, MD, EA, and NH represent all of and the southwestern, middle, eastern, and northern regions of the study area, respectively.</p> "> Figure 9
<p>The importance scores of the pre-season climatic factors affecting the SOS and the EOS of different vegetation types during different months. The horizontal axes represent the different vegetation types in the study area. tem3, tem4, and tem5 represent air temperature in March, April, and May from 1982 to 2015, respectively. pre3, pre4, and pre5 represent precipitation in March, April, and May from 1982 to 2015, respectively. tem7, tem8, and tem9 represent air temperature in July, August, and September from 1982 to 2015, respectively. pre7, pre8, and pre9 represent precipitation in July, August, and September from 1982 to 2015, respectively. The colored circle size represents the importance score of different indicators—the larger the circle, the higher the score.</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Data Acquisition
2.3. Data Processing
2.3.1. Extraction of Data on Vegetation Phenology
2.3.2. Meteorological Data Processing
2.4. Analyses
3. Results
3.1. Characteristics of the Changes in Vegetation Phenology in the Qinghai–Tibet Plateau
3.1.1. Characteristics of the Temporal Changes in Vegetation Phenology
3.1.2. Characteristics of the Spatial Changes in Vegetation Phenology
3.2. Relationship between Changes in Vegetation Phenology and Climatic Factors
3.2.1. Characteristics of Different Climatic Factors
3.2.2. Relationship between Growing Season and Climatic Factors
Analysis of the Relationship between the Start of the Growing Season and Climatic Factors
Analysis of the Relationship between the End of the Growing Season and Climatic Factors
3.2.3. Analysis of the Driving Forces of the Changes in Vegetation Phenology during the Growing Season
4. Discussion
4.1. Changes in Vegetation Phenology in the Study Area
4.2. Response of Vegetation Phenology and Climatic Factors
4.3. Analysis of the Driving Forces of the Changes in Vegetation Phenology
5. Conclusions
6. Shortcomings and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 637–669. [Google Scholar] [CrossRef] [Green Version]
- Linderholm, H.W. Growing season changes in the last century. Agric. For. Meteorol. 2006, 137, 1–14. [Google Scholar] [CrossRef]
- Richardson, A.D.; Keenan, T.F.; Migliavacca, M.; Ryu, Y.; Sonnentag, O.; Toomey, M. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 2013, 169, 156–173. [Google Scholar] [CrossRef]
- Walther, G.R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.C.; Fromentin, J.-M.; Hoegh-Guldberg, O.; Bairlein, F. Ecological responses to recent climate change. Nature 2002, 416, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Kelly, A.E.; Goulden, M.L. Rapid shifts in plant distribution with recent climate change. Proc. Natl. Acad. Sci. USA 2008, 105, 11823–11826. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Zhao, X.; Liang, S.; Zhou, T.; Huang, K.; Tang, B.; Zhao, W. Time-lag effects of global vegetation responses to climate change. Glob. Chang. Biol. 2015, 21, 3520–3531. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Tian, Y.; Myneni, R.B.; Ciais, P.; Saatchi, S.; Liu, Y.Y.; Piao, S.; Chen, H.; Vermote, E.F.; Song, C. Widespread decline of Congo rainforest greenness in the past decade. Nature 2014, 509, 86–90. [Google Scholar] [CrossRef]
- Peñuelas, J.; Filella, I. Phenology feedbacks on climate change. Science 2009, 324, 887–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, J.; Piao, S.; Chen, A.; Zeng, Z.; Ciais, P.; Janssens, I.A.; Mao, J.; Myneni, R.B.; Peng, S.; Peñuelas, J. Seasonally different response of photosynthetic activity to daytime and night-time warming in the Northern Hemisphere. Glob. Change Biol. 2015, 21, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Lieth, H. Phenology and Seasonality Modeling; Springer: Berlin/Heidelberg, Germany, 1974. [Google Scholar]
- Piao, S.; Liu, Q.; Chen, A.; Janssens, I.A.; Fu, Y.; Dai, J.; Liu, L.; Lian, X.; Shen, M.; Zhu, X. Plant phenology and global climate change: Current progresses and challenges. Glob. Chang. Biol. 2019, 25, 1922–1940. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, X.; Silander, J.A. Deciduous forest responses to temperature, precipitation, and drought imply complex climate change impacts. Proc. Natl. Acad. Sci. USA 2015, 112, 13585–13590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, J.; Körner, C.; Muraoka, H.; Piao, S.; Shen, M.; Thackeray, S.J.; Yang, X.J.E. Emerging opportunities and challenges in phenology: A review. Ecosphere 2016, 7, e01436. [Google Scholar] [CrossRef] [Green Version]
- Visser, M.E. Interactions of climate change and species. Nature 2016, 535, 236–237. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.; Friedlingstein, P.; Ciais, P.; Viovy, N.; Demarty, J. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Glob. Biogeochem. Cycle 2007, 21, GB3018. [Google Scholar] [CrossRef]
- Richardson, A.D.; Hollinger, D.Y.; Dail, D.B.; Lee, J.T.; Munger, J.W. Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests. Tree Physiol. 2009, 29, 321–331. [Google Scholar] [CrossRef]
- Churkina, G.; Schimel, D.; Braswell, B.H.; Xiao, X. Spatial analysis of growing season length control over net ecosystem exchange. Glob. Chang. Biol. 2005, 11, 1777–1787. [Google Scholar] [CrossRef]
- Jeong, S.J.; Medvigy, D.; Shevliakova, E.; Malyshev, S. Uncertainties in terrestrial carbon budgets related to spring phenology. J. Geophys. Res. Biogeosci. 2012, 117, G01030. [Google Scholar] [CrossRef]
- Bigler, C.; Vitasse, Y. Daily maximum temperatures induce lagged effects on leaf unfolding in temperate woody species across large elevational gradients. Front. Plant. Sci. 2019, 10, 398. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.H.; Zhao, H.; Piao, S.; Peaucelle, M.; Peng, S.; Zhou, G.; Ciais, P.; Huang, M.; Menzel, A.; Peñuelas, J. Declining global warming effects on the phenology of spring leaf unfolding. Nature 2015, 526, 104–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, Y.H.; Piao, S.; Delpierre, N.; Hao, F.; Hänninen, H.; Liu, Y.; Sun, W.; Janssens, I.A.; Campioli, M. Larger temperature response of autumn leaf senescence than spring leaf-out phenology. Glob. Chang. Biol. 2018, 24, 2159–2168. [Google Scholar] [CrossRef] [PubMed]
- Garonna, I.; De Jong, R.; De Wit, A.J.; Mücher, C.A.; Schmid, B.; Schaepman, M.E. Strong contribution of autumn phenology to changes in satellite-derived growing season length estimates across Europe (1982–2011). Glob. Chang. Biol. 2014, 20, 3457–3470. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, Y.; Dong, J.; Xiao, X. Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011. Proc. Natl. Acad. Sci. USA 2013, 110, 4309–4314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, M.; Zhang, G.; Cong, N.; Wang, S.; Kong, W.; Piao, S. Increasing altitudinal gradient of spring vegetation phenology during the last decade on the Qinghai–Tibetan Plateau. Agric. For. Meteorol. 2014, 189, 71–80. [Google Scholar] [CrossRef]
- Zhang, Q.; Kong, D.; Shi, P.; Singh, V.P.; Sun, P. Vegetation phenology on the Qinghai-Tibetan Plateau and its response to climate change (1982–2013). Agric. For. Meteorol. 2018, 248, 408–417. [Google Scholar] [CrossRef]
- Che, M.; Chen, B.; Innes, J.L.; Wang, G.; Dou, X.; Zhou, T.; Zhang, H.; Yan, J.; Xu, G.; Zhao, H. Spatial and temporal variations in the end date of the vegetation growing season throughout the Qinghai–Tibetan Plateau from 1982 to 2011. Agric. For. Meteorol. 2014, 189, 81–90. [Google Scholar] [CrossRef]
- Ding, M.; Zhang, Y.; Sun, X.; Liu, L.; Wang, Z.; Bai, W. Spatiotemporal variation in alpine grassland phenology in the Qinghai-Tibetan Plateau from 1999 to 2009. Chin. Sci. Bull. 2013, 58, 396–405. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Zhu, Q.; Peng, C.; Zhang, J.; Wang, M.; Zhang, J.; Ding, J.; Zhou, X. Change in Autumn Vegetation Phenology and the Climate Controls From 1982 to 2012 on the Qinghai-Tibet Plateau. Front. Plant. Sci. 2020, 10, 1677. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Fu, Y.H.; Zeng, Z.Z.; Huang, M.T.; Li, X.R.; Piao, S.L. Temperature, precipitation, and insolation effects on autumn vegetation phenology in temperate China. Glob. Chang. Biol. 2016, 22, 644–655. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.; Fang, J.; Zhou, L.; Ciais, P.; Zhu, B. Variations in satellite-derived phenology in China’s temperate vegetation. Glob. Chang. Biol. 2006, 12, 672–685. [Google Scholar] [CrossRef]
- Pinzon, J.E.; Tucker, C.J. A Non-Stationary 1981–2012 AVHRR NDVI3g Time Series. Remote Sens. 2014, 6, 6929–6960. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Yao, T.; Xie, H.; Yang, K.; Zhu, L.; Shum, C.; Bolch, T.; Yi, S.; Allen, S.; Jiang, L. Response of Tibetan Plateau’s lakes to climate changes: Trend, pattern, and mechanisms. Earth-Sci. Rev. 2020, 208, 103269. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; van Beek, L.P.H.; Bierkens, M.F.P. Climate Change Will Affect the Asian Water Towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Lutz, A.; Andrade, M.; Bahl, A.; Biemans, H.; Bolch, T.; Hyde, S.; Brumby, S.; Davies, B.; Elmore, A. Importance and vulnerability of the world’s water towers. Nature 2020, 577, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.K.; Shen, R. Discussion on the interaction among population, Resources, Environment and Development in Qinghai-Tibet Plateau. J. Nat. Resour. 2000, 15, 297–304. [Google Scholar]
- Kang, S.; Xu, Y.; You, Q.; Flügel, W.-A.; Pepin, N.; Yao, T. Review of climate and cryospheric change in the Tibetan Plateau. Environ. Res. Lett. 2010, 5, 015101. [Google Scholar] [CrossRef]
- Hollmann, R.; Merchant, C.J.; Saunders, R.; Downy, C.; Buchwitz, M.; Cazenave, A.; Chuvieco, E.; Defourny, P.; de Leeuw, G.; Forsberg, R. The ESA climate change initiative: Satellite data records for essential climate variables. Bull. Am. Meteorol. Soc. 2013, 94, 1541–1552. [Google Scholar] [CrossRef] [Green Version]
- Shen, M.; Sun, Z.; Wang, S.; Zhang, G.; Kong, W.; Chen, A. No evidence of continuously advanced green-up dates in the Tibetan Plateau over the last decade. Proc. Natl. Acad. Sci. USA 2013, 110, E2329. [Google Scholar] [CrossRef] [Green Version]
- Tan, B.; Morisette, J.; Wolfe, R.; Gao, F.; Ederer, G.; Nightingale, J. An enhanced TIMESAT algorithm for estimating vegetation phenology metrics from MODIS data. IEEE J.-STARS. 2011, 4, 361–371. [Google Scholar] [CrossRef]
- Chen, J.; Jönsson, P.; Tamura, M.; Gu, Z.; Matsushita, B.; Eklundh, L. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote Sens. Environ. 2004, 91, 332–344. [Google Scholar] [CrossRef]
- White, M.A.; Beurs, K.M.D.; Didan, K.; Inouye, D.W.; Richardson, A.D.; Jensen, O.P. Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006. Glob. Chang. Biol. 2009, 15, 2335–2359. [Google Scholar] [CrossRef]
- Hufkens, K.; Friedl, M.; Sonnentag, O.; Braswell, B.H.; Milliman, T.; Richardson, A.D. Linking near-surface and satellite remote sensing measurements of deciduous broadleaf forest phenology. Remote Sens. Environ. 2012, 117, 307–321. [Google Scholar] [CrossRef]
- Jonsson, P.; Eklundh, L. Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1824–1832. [Google Scholar] [CrossRef]
- Yu, H.; Luedeling, E.; Xu, J. Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proc. Natl. Acad. Sci. USA 2010, 107, 22151–22156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Kelsey, K.C.; Pedersen, S.H.; Leffler, A.J.; Sexton, J.O.; Feng, M.; Welker, J.M. Winter snow and spring temperature have differential effects on vegetation phenology and productivity across Arctic plant communities. Glob. Chang. Biol. 2021, 27, 1572–1586. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22. [Google Scholar] [CrossRef]
- Piao, S.; Cui, M.; Chen, A.; Wang, X.; Ciais, P.; Liu, J.; Tang, Y. Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang Plateau. Agric. For. Meteorol. 2011, 151, 1599–1608. [Google Scholar] [CrossRef]
- Keenan, T.F.; Richardson, A.D. The timing of autumn senescence is affected by the timing of spring phenology: Implications for predictive models. Glob. Chang. Biol. 2015, 21, 2634–2641. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Hänninen, H.; Rossi, S.; Smith, N.G.; Pau, S.; Liu, Z.; Feng, G.; Gao, J.; Liu, J. Leaf senescence exhibits stronger climatic responses during warm than during cold autumns. Nat. Clim. Chang. 2020, 10, 777–780. [Google Scholar] [CrossRef]
- Wipf, S. Phenology, growth, and fecundity of eight subarctic tundra species in response to snowmelt manipulations. Plant. Ecol. 2010, 207, 53–66. [Google Scholar] [CrossRef] [Green Version]
- Krab, E.J.; Roennefarth, J.; Becher, M.; Blume-Werry, G.; Keuper, F.; Klaminder, J.; Kreyling, J.; Makoto, K.; Milbau, A.; Dorrepaal, E. Winter warming effects on tundra shrub performance are species-specific and dependent on spring conditions. J. Ecol. 2018, 106, 599–612. [Google Scholar] [CrossRef]
- Shen, M. Spring phenology was not consistently related to winter warming on the Tibetan Plateau. Proc. Natl. Acad. Sci. USA 2011, 108, E91–E92. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.; Zhou, J.; Bai, M.; Qu, G. Investigation on Kobresia resources in Tibet Plateau. Wild Plant. Res. China 2019, 38, 80–85. [Google Scholar] [CrossRef]
- Xu, W.; Xin, Y.; Zhang, J.; Xiao, R.; Wang, X. Changes in growth period of grasses in northeastern Qinghai-Tibet Plateau in recent 20 years. Acta Ecol. Sin. 2014, 34, 1781–1793. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Serrano, S.M.; Gouveia, C.; Camarero, J.J.; Beguería, S.; Trigo, R.; López-Moreno, J.I.; Azorín-Molina, C.; Pasho, E.; Lorenzo-Lacruz, J.; Revuelto, J.; et al. Response of vegetation to drought time-scales across global land biomes. Proc. Natl. Acad. Sci. USA 2013, 110, 52–57. [Google Scholar] [CrossRef] [Green Version]
- Hou, M.; Gao, J.; Ge, J.; Li, Y.; Jassamyn, L.; Yin, J.; Feng, Q.; Liang, T. Study on dynamic changes and driving factors of alpine swamp wetlands in eastern Qinghai-Tibet Plateau. Acta Pratac. Sin. 2020, 29, 13–27. [Google Scholar] [CrossRef]
- Shen, X.; Xue, Z.; Jiang, M.; Lu, X. Spatiotemporal change of vegetation coverage and its relationship with climate change in freshwater marshes of Northeast China. Wetlands. 2019, 39, 429–439. [Google Scholar] [CrossRef]
- Starr, G.; Oberbauer, S.F. Photosynthesis of Arctic Evergreens under Snow: Implications for Tundra Ecosystem Carbon Balance. Ecology 2003, 84, 1415–1420. [Google Scholar] [CrossRef]
- Bell, K.L.; Bliss, L. Autecology of Kobresia bellardii: Why winter snow accumulation limits local distribution. Ecol. Monogr. 1979, 49, 377–402. [Google Scholar] [CrossRef]
- Huang, K.; Zhang, Y.; Zhu, J.; Liu, Y.; Zu, J.; Zhang, J. The influences of climate change and human activities on vegetation dynamics in the Qinghai-Tibet Plateau. Remote Sens. 2016, 8, 876. [Google Scholar] [CrossRef] [Green Version]
- Pereira, P.; Cerdà, A.; Lopez, A.J.; Zavala, L.M.; Mataix-Solera, J.; Arcenegui, V.; Misiune, I.; Keesstra, S.; Novara, A. Short-term vegetation recovery after a grassland fire in Lithuania: The effects of fire severity, slope position and aspect. Land Degrad Dev. 2016, 27, 1523–1534. [Google Scholar] [CrossRef]
- Wu, W.-B.; Ma, J.; Meadows, M.E.; Banzhaf, E.; Huang, T.-Y.; Liu, Y.-F.; Zhao, B. Spatio-temporal changes in urban green space in 107 Chinese cities (1990–2019): The role of economic drivers and policy. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102525. [Google Scholar] [CrossRef]
- Li, P.; Peng, C.; Wang, M.; Luo, Y.; Li, M.; Zhang, K.; Zhang, D.; Zhu, Q. Dynamics of vegetation autumn phenology and its response to multiple environmental factors from 1982 to 2012 on Qinghai-Tibetan Plateau in China. Sci. Total Environ. 2018, 637–638, 855–864. [Google Scholar] [CrossRef] [PubMed]
Vegetation Type | SOS (%) | EOS (%) |
---|---|---|
Cropland | 47.28 | 36.57 |
Grassland | 72.37 | 58.96 |
Forest | 29.36 | 45.88 |
Shrubland | 58.43 | 62.95 |
Sparse vegetation | 42.81 | 37.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Chen, Y.; Li, Z.; Li, Y.; Zhang, Q.; Zan, M. Driving Forces of the Changes in Vegetation Phenology in the Qinghai–Tibet Plateau. Remote Sens. 2021, 13, 4952. https://doi.org/10.3390/rs13234952
Liu X, Chen Y, Li Z, Li Y, Zhang Q, Zan M. Driving Forces of the Changes in Vegetation Phenology in the Qinghai–Tibet Plateau. Remote Sensing. 2021; 13(23):4952. https://doi.org/10.3390/rs13234952
Chicago/Turabian StyleLiu, Xigang, Yaning Chen, Zhi Li, Yupeng Li, Qifei Zhang, and Mei Zan. 2021. "Driving Forces of the Changes in Vegetation Phenology in the Qinghai–Tibet Plateau" Remote Sensing 13, no. 23: 4952. https://doi.org/10.3390/rs13234952
APA StyleLiu, X., Chen, Y., Li, Z., Li, Y., Zhang, Q., & Zan, M. (2021). Driving Forces of the Changes in Vegetation Phenology in the Qinghai–Tibet Plateau. Remote Sensing, 13(23), 4952. https://doi.org/10.3390/rs13234952