Improved Calibration of Wind Estimates from Advanced Scatterometer MetOp-B in Korean Seas Using Deep Neural Network
<p>Study areas with (<b>a</b>) ten buoy locations and (<b>b</b>) an example of the ASCAT observation path on 2 January 2013.</p> "> Figure 2
<p>Flowchart of deep learning approach to calibrate ASCAT-based wind speed estimates.</p> "> Figure 3
<p>Histogram of the wind speed difference between the ASCAT-based and the in-situ wind speeds computed from the validation set: (<b>a</b>) Before calibration, (<b>b</b>) by linear regression-2 model, (<b>c</b>) by SVR approach, and (<b>d</b>) by DNN-4 model approach.</p> "> Figure 4
<p>Scatter plot for comparison between ASCAT-based and in-situ measured wind speeds: (<b>a</b>) before calibration, (<b>b</b>) after linear regression-2 model-based calibration, and (<b>c</b>) after DNN-4 model-based calibration.</p> "> Figure 5
<p>Statistical indications (i.e., the median, the first and third quartiles, the minimum and maximum bounds excluding outliers) of the absolute wind speed differences between the ASCAT and the buoy wind speeds at each buoy location (<b>a</b>) before calibration and (<b>b</b>) after DNN-4 model-based calibration.</p> "> Figure 6
<p>Statistical indications (i.e., the mean and the standard deviation) of absolute wind speed differences between the ASCAT and buoy wind speeds over the wind speed range of interest (<b>a</b>) before calibration, (<b>b</b>) after DNN-4 model-based calibration and (<b>c</b>) relative difference between before and after calibration.</p> "> Figure 7
<p>Statistical indications (i.e., the mean and the standard deviation) of absolute wind speed differences between ASCAT and the buoy wind speeds over all wind directions (<b>a</b>,<b>b</b>) before and after calibration in Yellow sea (<b>c</b>,<b>d</b>) before and after calibration in Korean Strait (<b>e</b>,<b>f</b>) before and after calibration in East sea.</p> "> Figure 8
<p>Seasonal variability of wind speed differences between ASCAT and the buoy wind speeds over observation period (<b>a</b>) before calibration (<b>b</b>) after linear regression-2 model-based calibration (<b>c</b>) after DNN-4 model-based calibration.</p> "> Figure 9
<p>Monthly box-plot to quantitatively represent seasonal variability of wind speed differences between ASCAT and the buoy wind speeds over observation period (<b>a</b>) before calibration (<b>b</b>) after linear regression-2 model-based calibration (<b>c</b>) after DNN-4 model-based calibration.</p> "> Figure 10
<p>DNN model application result for ASCAT swath at 12:00 on 19 January 2016 (UTC): (<b>a</b>) Before application, (<b>b</b>) After application, (<b>c</b>) Difference between before and after application, and (<b>d</b>) Zoomed area of the red box in (<b>c</b>).</p> ">
Abstract
:1. Introduction
2. Study Area and Dataset
3. Methodology
3.1. Pre-Processing
3.2. Calibration of ASCAT wind Speed Using DNN
4. Results
4.1. Pre-Processing Results
4.2. Comparison of Results by the DNN-Based Model and Other Calibration Methods
4.3. Consistency of DNN-Based Calibration Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jang, J.C.; Park, K.A.; Yang, D. Validation of Sea Surface Wind Estimated from KOMPSAT-5 Backscattering Coefficient Data. Korean J. Remote Sens. 2018, 34, 1383–1398. [Google Scholar]
- Son, D.; Jun, K.; Shim, J.S.; Kown, J.I.; Yoo, J. Validation of MetOp-B and Jason-2 Sea Surface Wind Data around the Korean Peninsula. Korea Soc. Coast. Disaster Prev. 2020, 7, 233–241. [Google Scholar] [CrossRef]
- Janssen, P.A.E.M. Quasi-Linear Theory of Wind-Wave Generation Applied to Wave Forecasting. J. Phys. Oceanogr. 1991, 21, 1631–1642. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Kara, A.B.; Metzger, E.J.; Bourassa, M.A. Ocean current and wave effects on wind stress drag coefficient over the global ocean. Geophys. Res. Lett. 2007, 34, 1–4. [Google Scholar] [CrossRef]
- Brostrom, G. On the influence of large wind farms on the upper ocean circulation. J. Mar. Syst. 2008, 74, 585–591. [Google Scholar] [CrossRef]
- Debernard, J.B.; Roed, L.P. Future wind, wave and storm surge climate in the Northern Seas: A revisit. Tellus A Dyn. Meteorol. Oceanogr. 2008, 60, 427–438. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.M.; Orlic, M.; Poulain, P.M.; Cushman-Roisin, B. Introduction to special section: Recent advances in oceanography and marine meteorology of the Adriatic Sea. J. Geophys. Res. Ocean 2007, 112, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Chelton, D.B.; Freilich, M.H.; Sienkiewicz, J.M.; Von Ahn, J.M. On the use of QuikSCAT scatterometer measurements of surface winds for marine weather prediction. Mon. Weather Rev. 2006, 134, 2055–2071. [Google Scholar] [CrossRef]
- Atlas, R.; Hoffman, R.N.; Leidner, S.M.; Sienkiewicz, J.; Yu, T.W.; Bloom, S.C.; Brin, E.; Ardizzone, J.; Terry, J.; Bungato, D.; et al. The effects of marine winds from scatterometer data on weather analysis and forecasting. Bull. Am. Meteorol. Soc. 2001, 82, 1965–1990. [Google Scholar] [CrossRef] [2.3.CO;2" target='_blank'>Green Version]
- Cavaleri, L.; Barbariol, F.; Benetazzo, A. Wind-Wave Modeling: Where We Are, Where to Go. J. Mar. Sci. Eng. 2020, 8, 260. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Salcines, P.; Salles, P.; Robles-Diaz, L.; Diaz-Hernandez, G.; Torres-Freyermuth, A.; Appendini, C.M. On the Use of Parametric Wind Models for Wind Wave Modeling under Tropical Cyclones. Water 2019, 11, 2044. [Google Scholar] [CrossRef] [Green Version]
- Choo, T.H.; Kim, Y.S.; Sim, S.B.; Son, J.K. Development of the Wind Wave Damage Predicting Functions in southern sea based on Annual Disaster Reports. J. Korea Acad. Ind. Coop. Soc. 2018, 19, 668–675. [Google Scholar]
- Zheng, C.W.; Li, C.Y.; Pan, J.; Liu, M.Y.; Xia, L.L. An overview of global ocean wind energy resource evaluations. Renew. Sustain. Energy Rev. 2016, 53, 1240–1251. [Google Scholar] [CrossRef]
- Li, J.; Wang, D.X.; Chen, J.; Yang, L. Comparison of remote sensing data with in-situ wind observation during the development of the South China Sea monsoon. Chin. J. Oceanol. Limnol. 2012, 30, 933–943. [Google Scholar] [CrossRef]
- Rashmi, R.; Aboobacker, V.M.; Vethamony, P.; John, M.P. Co-existence of wind seas and swells along the west coast of India during non-monsoon season. Ocean Sci. 2013, 9, 281–292. [Google Scholar] [CrossRef] [Green Version]
- Pickett, M.H.; Tang, W.Q.; Rosenfeld, L.K.; Wash, C.H. QuikSCAT satellite comparisons with nearshore buoy wind data off the US West Coast. J. Atmos. Ocean. Technol. 2003, 20, 1869–1879. [Google Scholar] [CrossRef] [Green Version]
- Hwang, P.A.; Teague, W.J.; Jacobs, G.A.; Wang, D.W. A statistical comparison of wind speed, wave height, and wave period derived from satellite altimeters and ocean buoys in the Gulf of Mexico region. J. Geophys. Res. Ocean 1998, 103, 10451–10468. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.V.V.A.; Nagababu, G.; Kumar, R. Comparative study of offshore winds and wind energy production derived from multiple scatterometers and met buoys. Energy 2019, 185, 599–611. [Google Scholar] [CrossRef]
- Ebuchi, N.; Graber, H.C.; Caruso, M.J. Evaluation of wind vectors observed by QuikSCAT/SeaWinds using ocean buoy data. J. Atmos. Ocean. Technol. 2002, 19, 2049–2062. [Google Scholar] [CrossRef]
- Satheesan, K.; Sarkar, A.; Parekh, A.; Kumar, M.R.R.; Kuroda, Y. Comparison of wind data from QuikSCAT and buoys in the Indian Ocean. Int. J. Remote Sens. 2007, 28, 2375–2382. [Google Scholar] [CrossRef]
- Carvalho, D.; Rocha, A.; Gomez-Gesteira, M.; Santos, C.S. Comparison of reanalyzed, analyzed, satellite-retrieved and NWP modelled winds with buoy data along the Iberian Peninsula coast. Remote Sens. Environ. 2014, 152, 480–492. [Google Scholar] [CrossRef]
- Gower, J.F.R. Intercalibration of wave and wind data from TOPEX POSEIDON and moored buoys off the west coast of Canada. J. Geophys. Res. Ocean 1996, 101, 3817–3829. [Google Scholar] [CrossRef]
- Jones, W.L.; Schroeder, L.C.; Boggs, D.H.; Bracalente, E.M.; Brown, R.A.; Dome, G.J.; Pierson, W.J.; Wentz, F.J. The SEASAT-A satellite scatterometer: The geophysical evaluation of remotely sensed wind vectors over the ocean. J. Geophys. Res. 1982, 87, 3297–3317. [Google Scholar] [CrossRef]
- Yang, J.G.; Zhang, J. Comparison of Oceansat-2 Scatterometer Wind Data with Global Moored Buoys and ASCAT Observation. Adv. Meteorol. 2019, 2019, 1651267. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.F.; Li, X.F.; Pichel, W.G.; Li, Z.W. Comparison of Ocean Surface Winds From ENVISAT ASAR, MetOp ASCAT Scatterometer, Buoy Measurements, and NOGAPS Model. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4743–4750. [Google Scholar] [CrossRef]
- Sharoni, S.M.H.; Reba, M.N.M.; Hossain, M.S. Tropical Cyclone Wind Speed Estimation From Satellite Altimeter-Derived Ocean Parameters. J. Geophys. Res. Ocean 2021, 126, e2020JC016988. [Google Scholar] [CrossRef]
- Wang, Z.X.; Stoffelen, A.; Zou, J.H.; Lin, W.M.; Verhoef, A.; Zhang, Y.; He, Y.J.; Lin, M.S. Validation of New Sea Surface Wind Products From Scatterometers Onboard the HY-2B and MetOp-C Satellites. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4387–4394. [Google Scholar] [CrossRef]
- Witter, D.L.; Chelton, D.B. A Geosat Altimeter Wind-Speed Algorithm and a Method for Altimeter Wind-Speed Algorithm Development. J. Geophys. Res. Ocean 1991, 96, 8853–8860. [Google Scholar] [CrossRef]
- Horstmann, J.; Schiller, H.; Schulz-Stellenfleth, J.; Lehner, S. Global wind speed retrieval from SAR. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2277–2286. [Google Scholar] [CrossRef] [Green Version]
- Ménard, Y.; Fu, L.-L.; Escudier, P.; Parisot, F.; Perbos, J.; Vincent, P.; Desai, S.; Haines, B.; Kunstmann, G. The Jason-1 Mission Special Issue: Jason-1 Calibration/Validation. Mar. Geod. 2003, 26, 131–146. [Google Scholar] [CrossRef]
- Abdalla, S.; Janssen, P.A.E.M.; Bidlot, J.R. Jason-2 OGDR Wind and Wave Products: Monitoring, Validation and Assimilation. Mar. Geod. 2010, 33, 239–255. [Google Scholar] [CrossRef]
- Yang, J.G.; Zhang, J.; Jia, Y.J.; Fan, C.Q.; Cui, W. Validation of Sentinel-3A/3B and Jason-3 Altimeter Wind Speeds and Significant Wave Heights Using Buoy and ASCAT Data. Remote Sens. 2020, 12, 2079. [Google Scholar] [CrossRef]
- Horstmann, J.; Koch, W.; Lehner, S. Ocean wind fields retrieved from the advanced synthetic aperture radar aboard ENVISAT. Ocean. Dyn. 2004, 54, 570–576. [Google Scholar] [CrossRef]
- Park, J.; Kim, D.W.; Jo, Y.H.; Kim, D. Accuracy Evaluation of Daily-gridded ASCAT Satellite Data Around the Korean Peninsula. Korean J. Remote Sens. 2018, 34, 213–225. [Google Scholar]
- Verhoef, A.; Portabella, M.; Stoffelen, A. High-Resolution ASCAT Scatterometer Winds Near the Coast. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2481–2487. [Google Scholar] [CrossRef] [Green Version]
- Bentamy, A.; Croize-Fillon, D.; Perigaud, C. Characterization of ASCAT measurements based on buoy and QuikSCAT wind vector observations. Ocean Sci. 2008, 4, 265–274. [Google Scholar] [CrossRef] [Green Version]
- Ribal, A.; Young, I.R. Calibration and Cross Validation of Global Ocean Wind Speed Based on Scatterometer Observations. J. Atmos. Ocean. Technol. 2020, 37, 279–297. [Google Scholar] [CrossRef]
- Bentamy, A.; Fillon, D.C. Gridded surface wind fields from Metop/ASCAT measurements. Int. J. Remote Sens. 2012, 33, 1729–1754. [Google Scholar] [CrossRef] [Green Version]
- Jeong, J.Y.; Shim, J.S.; Lee, D.K.; Min, I.K.; Kwon, J.I. Validation of QuikSCAT Wind with Resolution of 12.5 km in the Vicinity of Korean Peninsula. Ocean Polar Res. 2008, 30, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.W.; Byun, H.R. Spatial and temporal distribution of wind resources over Korea. Atmosphere 2008, 18, 171–182. [Google Scholar]
- Kalra, R.; Deo, M.C. Derivation of coastal wind and wave parameters from offshore measurements of TOPEX satellite using ANN. Coast. Eng. 2007, 54, 187–196. [Google Scholar] [CrossRef]
- Huang, C.J.; Kuo, P.H. A Short-Term Wind Speed Forecasting Model by Using Artificial Neural Networks with Stochastic Optimization for Renewable Energy Systems. Energies 2018, 11, 2777. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.X.; Collett, I.; Morton, Y.J. Application of Neural Network to GNSS-R Wind Speed Retrieval. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9756–9766. [Google Scholar] [CrossRef]
- Duan, J.K.; Zuo, H.C.; Bai, Y.L.; Duan, J.Z.; Chang, M.H.; Chen, B.L. Short-term wind speed forecasting using recurrent neural networks with error correction. Energy 2021, 217, 119397. [Google Scholar] [CrossRef]
- Kim, M.K.; Kim, Y.H.; Lee, W.S. Seasonal prediction of Korean regional climate from preceding large-scale climate indices. Int. J. Climatol. 2007, 27, 925–934. [Google Scholar] [CrossRef]
- Figa-Saldana, J.; Wilson, J.J.W.; Attema, E.; Gelsthorpe, R.; Drinkwater, M.R.; Stoffelen, A. The advanced scatterometer (ASCAT) on the meteorological operational (MetOp) platform: A follow on for European wind scatterometers. Can. J. Remote Sens. 2002, 28, 404–412. [Google Scholar] [CrossRef]
- Fairall, C.W.; Bradley, E.F.; Hare, J.E.; Grachev, A.A.; Edson, J.B. Bulk parameterization of air-sea fluxes: Updates and verification for the COARE algorithm. J. Clim. 2003, 16, 571–591. [Google Scholar] [CrossRef]
- Smith, S.D. Coefficients for Sea-Surface Wind Stress, Heat-Flux, and Wind Profiles as a Function of Wind-Speed and Temperature. J. Geophys. Res. Ocean 1988, 93, 15467–15472. [Google Scholar] [CrossRef]
- Byun, D.S.; Kim, H.; Lee, J.; Lee, E.; Park, K.A.; Woo, H.J. Converting Ieodo ocean research station wind speed observations to reference height data for real-time operational use. J. Koream Soc. Ocean. 2018, 23, 153–178. [Google Scholar]
- Mohandes, M.A.; Halawani, T.O.; Rehman, S.; Hussain, A.A. Support vector machines for wind speed prediction. Energy 2004, 29, 939–947. [Google Scholar] [CrossRef]
- Serdar, C.C.; Cihan, M.; Yücel, D.; Serdar, M.A. Sample size, power and effect size revisited: Simplified and practical approaches in pre-clinical, clinical and laboratory studies. Biochem. Med. 2021, 31, 010502. [Google Scholar] [CrossRef] [PubMed]
- Choo, T.H.; Kwak, K.S.; Ahn, S.H.; Yamg, D.U.; Son, J.K. Development for the function of Wind wave Damage Estimation at the Western Coastal Zone based on Disaster Statistics. J. Korea Acad. Ind. Coop. Soc. 2017, 18, 14–22. [Google Scholar]
- Choo, Y.M.; Chun, K.H.; Jeon, H.S.; Sim, S.B. A Predictive Model for Estimating Damage from Wind Waves during Coastal Storms. Water 2021, 13, 1322. [Google Scholar] [CrossRef]
- Kim, C.K.; Yum, S.S. Local meteorological and synoptic characteristics of fogs formed over Incheon international airport in the west coast of Korea. Adv. Atmos. Sci. 2010, 27, 761–776. [Google Scholar] [CrossRef]
No. | Station Name | Abbr. Name | Lat. (Deg) | Lon. (Deg) | Observation Period | Height * (m) | Number of Observations |
---|---|---|---|---|---|---|---|
1 | Oeyendo | OY | 36.25 | 125.75 | Oct 2012–Dec 2019 | 3.60 | 66,234 |
2 | Marado | MA | 33.08 | 126.03 | Oct 2012–Dec 2019 | 4.60 | 65,371 |
3 | Chujado | CJ | 33.79 | 126.14 | Jan 2014–Dec 2019 | 4.10 | 46,514 |
4 | Geomundo | GM | 34.00 | 127.50 | Jan 2012–Dec 2019 | 4.70 | 65,812 |
5 | Pohang | PH | 36.35 | 129.78 | Oct 2012–Dec 2019 | 4.60 | 65,389 |
6 | Donghae | DH | 37.48 | 129.95 | Oct 2012–Dec 2019 | 4.10 | 64,964 |
7 | Buan | BU | 35.66 | 125.81 | Dec 2015–Jul 2019 | 4.70 | 30,059 |
8 | Ulsan | US | 35.35 | 129.84 | Dec 2015–Jul 2019 | 4.10 | 29,668 |
9 | Uljin | UJ | 36.91 | 129.87 | Dec 2015–Jul 2019 | 4.10 | 30,975 |
10 | Incheon | IC | 37.09 | 125.43 | Dec 2015–Jul 2019 | 4.00 | 28,972 |
total | 493,958 |
No. | OY | MA | CJ | GM | PH | DH | BU | US | UJ | IC | Total |
---|---|---|---|---|---|---|---|---|---|---|---|
Number of Matched Data | 1924 | 1677 | 1369 | 1989 | 1821 | 1795 | 930 | 852 | 875 | 907 | 14,139 |
Matching Ratio | 2.90 | 2.57 | 2.94 | 3.02 | 2.78 | 2.76 | 3.09 | 2.87 | 2.82 | 3.13 | 2.86 |
Method | Input Variable for Finding the Best Fit Function | Results | |||
---|---|---|---|---|---|
Mean | Median | RMSE | Kurtosis | ||
Before calibrated | - | 0.41 | 0.31 | 1.40 | 7.04 |
Linear Regression-1 | Wind speed | 0.02 | −0.08 | 1.34 | 6.85 |
Linear Regression-2 | Wind speed + Wind direction + Location + Date + Time | −0.03 | −0.11 | 1.27 | 2.97 |
SVR | Wind speed + Wind direction + Location + Date + Time | −0.29 | −0.37 | 1.38 | 6.24 |
DNN-1 | Wind speed + Wind direction | −0.04 | −0.13 | 1.26 | 9.37 |
DNN-2 | Wind speed + Location | −0.13 | −0.21 | 1.22 | 4.39 |
DNN-3 | Wind speed + Date + Time | 0.12 | 0.04 | 1.25 | 9.24 |
DNN-4 | Wind speed + Wind direction + Location + Date + Time | 0.05 | 0.02 | 1.00 | 12.54 |
Wind Speed (m/s) | Before Calibration | After Calibration | ||
---|---|---|---|---|
Mean of △WS (m/s) | Std. of △WS (m/s) | Mean of △WS (m/s) | Std. of △WS (m/s) | |
0–1 | 1.35 | 1.46 | 0.46 | 0.60 |
1–2 | 1.21 | 1.23 | 0.52 | 0.74 |
2–3 | 1.16 | 1.05 | 0.63 | 0.71 |
3–4 | 1.05 | 0.92 | 0.65 | 0.62 |
4–5 | 0.99 | 0.93 | 0.69 | 0.68 |
5–6 | 0.94 | 0.86 | 0.72 | 0.71 |
6–7 | 0.89 | 0.84 | 0.71 | 0.70 |
7–8 | 0.89 | 0.89 | 0.67 | 0.60 |
8–9 | 0.92 | 0.81 | 0.68 | 0.61 |
9–10 | 0.94 | 0.83 | 0.71 | 0.64 |
10–11 | 0.96 | 0.87 | 0.69 | 0.65 |
11–12 | 0.93 | 0.88 | 0.57 | 0.48 |
12–13 | 0.93 | 0.88 | 0.53 | 0.47 |
13–14 | 0.86 | 0.73 | 0.44 | 0.37 |
14–15 | 0.85 | 0.68 | 0.35 | 0.32 |
15–16 | 0.88 | 0.71 | 0.30 | 0.25 |
Before Calibration | After Calibration | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Yellow Sea | Korean Strait | East Sea | Yellow Sea | Korean Strait | East Sea | |||||||
Wind Direction | Mean △WS (m/s) | Std. △WS (m/s) | Mean △WS (m/s) | Std. △WS (m/s) | Mean △WS (m/s) | Std. △WS (m/s) | Mean △WS (m/s) | Std. △WS (m/s) | Mean △WS (m/s) | Std. △WS (m/s) | Mean △WS (m/s) | Std. △WS (m/s) |
North | 0.78 | 0.69 | 1.04 | 0.95 | 1.11 | 0.99 | 0.59 | 0.55 | 0.68 | 0.65 | 0.74 | 0.70 |
North-east | 0.80 | 0.70 | 1.16 | 1.01 | 1.00 | 0.90 | 0.58 | 0.52 | 0.71 | 0.71 | 0.73 | 0.66 |
East | 0.81 | 0.78 | 0.98 | 1.03 | 0.91 | 0.90 | 0.58 | 0.66 | 0.68 | 0.67 | 0.59 | 0.61 |
South-east | 0.79 | 0.74 | 1.17 | 1.21 | 0.87 | 0.98 | 0.58 | 0.53 | 0.68 | 0.86 | 0.61 | 0.66 |
South | 0.82 | 0.92 | 0.98 | 1.00 | 0.93 | 0.75 | 0.51 | 0.45 | 0.55 | 0.58 | 0.63 | 0.56 |
South-west | 0.85 | 0.81 | 1.02 | 1.03 | 1.04 | 0.86 | 0.55 | 0.56 | 0.51 | 0.55 | 0.68 | 0.66 |
West | 1.02 | 1.28 | 1.08 | 1.13 | 1.12 | 0.98 | 0.56 | 0.75 | 0.58 | 0.83 | 0.73 | 0.73 |
North-west | 0.87 | 0.84 | 1.20 | 1.12 | 1.23 | 0.97 | 0.62 | 0.69 | 0.68 | 0.74 | 0.79 | 0.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.-H.; Yoo, J.; Son, D.; Kim, J.; Jung, H.-S. Improved Calibration of Wind Estimates from Advanced Scatterometer MetOp-B in Korean Seas Using Deep Neural Network. Remote Sens. 2021, 13, 4164. https://doi.org/10.3390/rs13204164
Park S-H, Yoo J, Son D, Kim J, Jung H-S. Improved Calibration of Wind Estimates from Advanced Scatterometer MetOp-B in Korean Seas Using Deep Neural Network. Remote Sensing. 2021; 13(20):4164. https://doi.org/10.3390/rs13204164
Chicago/Turabian StylePark, Sung-Hwan, Jeseon Yoo, Donghwi Son, Jinah Kim, and Hyung-Sup Jung. 2021. "Improved Calibration of Wind Estimates from Advanced Scatterometer MetOp-B in Korean Seas Using Deep Neural Network" Remote Sensing 13, no. 20: 4164. https://doi.org/10.3390/rs13204164
APA StylePark, S. -H., Yoo, J., Son, D., Kim, J., & Jung, H. -S. (2021). Improved Calibration of Wind Estimates from Advanced Scatterometer MetOp-B in Korean Seas Using Deep Neural Network. Remote Sensing, 13(20), 4164. https://doi.org/10.3390/rs13204164