Phytoplankton Bloom Changes under Extreme Geophysical Conditions in the Northern Bering Sea and the Southern Chukchi Sea
<p>Scatter plots showing relationships between satellite measured Chl-a and modeled Chl-a for (<b>a</b>) training and (<b>b</b>) test sets.</p> "> Figure 2
<p>(<b>a</b>) Monthly climatology of satellite-derived Chl-a, and (<b>b</b>) time-series of spatially mean Chl-a. The gray and red lines in (<b>b</b>) indicate the measured and reconstructed Chl-a.</p> "> Figure 3
<p>(<b>a</b>) Annual mean time-series of Chl-a (black) and SIC (blue). (<b>b</b>) Seasonal sea ice phenology (2003–2020). The thick black line denotes the mean of ice phenology in each year (thin gray lines). (<b>c</b>) The time-varying annual mean Chl-a trend. The Theil–Sen estimator estimated the trends. (<b>d</b>) Pearson’s correlation map between spatially averaged annual Chl-a (<a href="#remotesensing-13-04035-f003" class="html-fig">Figure 3</a>a) and yearly Chl-a at each pixel. The shaded area indicates the region where the statistical significance exceeds 95% of the confidence level according to the Student’s t-test.</p> "> Figure 4
<p>(<b>a</b>–<b>c</b>) Two-monthly composite climatology for SIC (color shading), T2M (red contours), and 10-m wind field (gray vectors) during January-June. Two-monthly composite anomalies for (<b>d</b>–<b>f</b>) 2018 and (<b>g</b>–<b>i</b>) 2019 for SIC, T2M, and wind field. The solid green line indicates marginal sea ice edge (SIC = 15%). Solid (dashed) lines indicate the positive (negative) contours of T2M.</p> "> Figure 5
<p>The spatial distribution of Chl-a anomalies in (<b>a</b>,<b>d</b>,<b>g</b>) 2018 and (<b>b</b>,<b>e</b>,<b>h</b>) 2019, and (<b>c</b>,<b>f</b>,<b>i</b>) the difference between Chl-a anomalies in both years during early spring (March–April, top panel), spring (May to June, middle, middle panel) and summer (July to August, bottom panel) seasons. The thick black dotted and solid lines indicate the climatological marginal sea ice edges of the previous and later months (e.g., May and June in <a href="#remotesensing-13-04035-f005" class="html-fig">Figure 5</a>d,e), respectively. The thick brown dotted and solid lines are those in 2018 and 2019. The difference was calculated by subtracting the Chl-a anomaly of 2018 from that of 2019.</p> "> Figure 6
<p>Annual variation of spatially mean summertime Chl-a anomaly (north of 64° N).</p> "> Figure 7
<p>The distribution of SST anomaly (color shading) during March to June in (<b>a</b>–<b>d</b>) 2018 and (<b>e</b>–<b>h</b>) 2019, including the net shortwave heat flux anomaly (blue contour with 10 W m<sup>−</sup><sup>2</sup> interval) and SIC anomaly (green contours with 10% interval). The solid (dashed) contours denote positive (negative) values. The vertical heat fluxes are positive downwards. The thick black line denotes the marginal ice edge.</p> "> Figure 8
<p>Basin-scale distribution of monthly SST anomaly (color shading) during January–June 2019, including monthly sea ice motion (vector). The box indicates our study area. The green lines denote the marginal ice edge (SIC = 15%).</p> "> Figure 9
<p>Hovmöller diagrams showing 15-day low-passed zonal mean SST anomaly during March–July in (<b>a</b>) 2018 and (<b>b</b>) 2019, averaged in the zonal direction between 160–170° W. (<b>c</b>) Box plots of net shortwave heat flux in both years during June, with the highest seasonal heat flux. The red line in each box plot refers to the mean value for each year, and the red cross represents the outlier.</p> "> Figure 10
<p>(<b>a</b>) Time-series showing the change in MLD from May to August in 2018 (blue) and 2019 (red) in the Chukchi Sea (160–170° W, 66–72° N). The thin line and the thick lines show the daily and the 31-day running mean change, respectively. (<b>b</b>) The difference in MLD (ΔMLD) was calculated by subtracting 2018 from 2019.</p> ">
Abstract
:1. Introduction
2. Data
3. Methodology
3.1. Chl-a Estimation
3.2. Filling Gaps on Chl-a Data
4. Results
4.1. Monthly Variations in Satellite-Derived Chl-a
4.2. Annual Variation in Chl-a Linked with Sea Ice Change
4.3. Response of Chl-a to Episodic Climatic Patterns: 2018–2019
4.4. Factor Impeding SST Increase in the Chukchi Sea in 2019
5. Discussion
5.1. Chl-a Distributional Features during Extreme Atmospheric Events
5.2. Impact of Winter Bering Sea Ice on Seawater Temperature in the Chukchi Sea
5.3. Role of Seawater Temperature Regulating Phytoplankton Biomass
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Frey, K.E.; Moore, G.W.K.; Cooper, L.W.; Grebmeier, J.M. Divergent patterns of recent sea ice cover across the Bering, Chukchi, and Beaufort seas of the Pacific Arctic Region. Prog. Oceanogr. 2015, 136, 32–49. [Google Scholar] [CrossRef]
- Yang, X.-Y.; Wang, G.; Keenlyside, N. The Arctic sea ice extent change connected to Pacific decadal variability. Cryosphere 2020, 14, 693–708. [Google Scholar] [CrossRef] [Green Version]
- Springer, A.M.; McRoy, C.P. The paradox of pelagic food webs in the northern Bering Sea—III. Patterns of primary production. Cont. Shelf Res. 1993, 13, 575–599. [Google Scholar] [CrossRef]
- Lee, S.H.; Ryu, J.; Park, J.-W.; Lee, D.; Kwon, J.-I.; Zhao, J.; Son, S. Improved Chlorophyll-a Algorithm for the Satellite Ocean Color Data in the Northern Bering Sea and Southern Chukchi Sea. Ocean Sci. J. 2018, 53, 475–485. [Google Scholar] [CrossRef]
- Grebmeier, J.M. Shifting patterns of life in the Pacific Arctic and sub-Arctic seas. Ann. Rev. Mar. Sci. 2012, 4, 63–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodgate, R.A.; Aagaard, K.; Weingartner, T.J. Monthly temperature, salinity, and transport variability of the Bering Strait through flow. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- Springer, A.M.; McRoy, C.P.; Flint, M.V. The Bering Sea Green Belt: Shelf-edge processes and ecosystem production. Fish. Oceanogr 1996, 5, 205–223. [Google Scholar] [CrossRef]
- Lee, S.H.; Joo, H.M.; Yun, M.S.; Whitledge, T.E. Recent phytoplankton productivity of the northern Bering Sea during early summer in 2007. Polar Biol. 2012, 35, 83–98. [Google Scholar] [CrossRef]
- Kikuchi, G.; Abe, H.; Hirawake, T.; Sampei, M. Distinctive spring phytoplankton bloom in the Bering Strait in 2018: A year of historically minimum sea ice extent. Deep Sea Res. Part II Top. Stud. Oceanogr. 2020, 181–182, 104905. [Google Scholar] [CrossRef]
- Chen, L.Q.; Gao, Z.Y. Spatial variability in the partial pressures of CO2 in the northern Bering and Chukchi seas. Deep-Sea Res. Part II 2007, 54, 2619–2629. [Google Scholar] [CrossRef]
- Arrigo, K.R.; van Dijken, G.; Pabi, S. Impact of a shrinking Arctic ice cover on marine primary production. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Hill, V.; Ardyna, M.; Lee, S.H.; Varela, D.E. Decadal trends in phytoplankton production in the Pacific Arctic Region from 1950 to 2012. Deep Sea Res. Part II Top. Stud. Oceanogr. 2018, 152, 82–94. [Google Scholar] [CrossRef]
- Kodaira, T.; Waseda, T.; Nose, T.; Inoue, J. Record high Pacific Arctic seawater temperatures and delayed sea ice advance in response to episodic atmospheric blocking. Sci. Rep. 2020, 10, 20830. [Google Scholar] [CrossRef] [PubMed]
- Cavalieri, D.; Parkinson, C.; Gloersen, P.; Zwally, H.J. Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 1; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 1996. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Smith, T.M.; Liu, C.; Chelton, D.B.; Casey, K.S.; Schlax, M.G. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 2007, 20, 5473–5496. [Google Scholar] [CrossRef]
- Lea, D.J.; Mirouze, I.; Martin, M.J.; King, R.R.; Hines, A.; Walters, D.; Thurlow, M. Assessing a New Coupled Data Assimilation System Based on the Met Office Coupled Atmosphere-Land-Ocean-Sea Ice Model. Mon. Weather Rev. 2015, 143, 4678–4694. [Google Scholar] [CrossRef]
- Behrenfeld, M.J.; O’Malley, R.T.; Siegel, D.A.; McClain, C.R.; Sarmiento, J.L.; Feldman, G.C.; Milligan, A.J.; Falkowski, P.G.; Letelier, R.M.; Boss, E.S. Climate-driven trends in contemporary ocean productivity. Nature 2006, 444, 752–755. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Yu, X.; Lee, Z.; Wang, M.; Jiang, L. Improving low-quality satellite remote sensing reflectance at blue bands over coastal and inland waters. Remote Sens. Environ. 2020, 250, 112029. [Google Scholar] [CrossRef]
- Wei, J.; Lee, Z.; Shang, S. A system to measure the data quality of spectral remote sensing reflectance of aquatic environments. J. Geophys. Res. Ocean. 2016, 121, 8189–8207. [Google Scholar] [CrossRef]
- Lewis, K.M.; Arrigo, K.R. Ocean Color Algorithms for Estimating Chlorophyll a, CDOM Absorption, and Particle Backscattering in the Arctic Ocean. J. Geophys. Res. Ocean. 2020, 125. [Google Scholar] [CrossRef]
- Park, J.; Kim, H.C.; Bae, D.; Jo, Y.H. Data Reconstruction for Remotely Sensed Chlorophyll-a Concentration in the Ross Sea Using Ensemble-Based Machine Learning. Remote Sens. 2020, 12, 1898. [Google Scholar] [CrossRef]
- Cole, H.; Henson, S.; Martin, A.; Yool, A. Mind the gap: The impact of missing data on the calculation of phytoplankton phenology metrics. J. Geophys. Res. Ocean. 2012, 117. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Kim, J.H.; Kim, H.C.; Kim, B.K.; Bae, D.; Jo, Y.H.; Jo, N.; Lee, S.H. Reconstruction of Ocean Color Data Using Machine Learning Techniques in Polar Regions: Focusing on Off Cape Hallett, Ross Sea. Remote Sens. 2019, 11, 1366. [Google Scholar] [CrossRef] [Green Version]
- Sverdrup, H.U. On Conditions for the Vernal Blooming of Phytoplankton. ICES J. Mar. Sci. 1953, 18, 287–295. [Google Scholar] [CrossRef]
- Woodgate, R.; Stafford, K.; Prahl, F. A Synthesis of Year-Round Interdisciplinary Mooring Measurements in the Bering Strait (1990–2014) and the RUSALCA Years (2004–2011). Oceanography 2015, 28, 46–67. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, Y.; Jin, H.; Li, H.; Chen, J.; Lin, L.; Bai, Y.; Ji, Z.; Zhang, Y.; Gu, F. Pacific inflow control on phytoplankton community in the Eastern Chukchi Shelf during summer. Cont. Shelf Res. 2016, 129, 23–32. [Google Scholar] [CrossRef]
- Hu, H.; Wang, J.; Liu, H.; Goes, J. Simulation of phytoplankton distribution and variation in the Bering-Chukchi Sea using a 3-D physical-biological model. J. Geophys. Res. Ocean. 2016, 121, 4041–4055. [Google Scholar] [CrossRef]
- Tschudi, M.; Meier, W.N.; Stewart, J.S.; Fowler, C.; Maslanik, J. Polar Pathfinder Daily 25 km EASE-Grid Sea Ice Motion Vectors, Version 4; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2019. [Google Scholar] [CrossRef]
- Woodgate, R.A.; Weingartner, T.; Lindsay, R. The 2007 Bering Strait oceanic heat flux and anomalous Arctic sea-ice retreat. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef] [Green Version]
- Stabeno, P.J.; Bell, S.W. Extreme Conditions in the Bering Sea (2017–2018): Record-Breaking Low Sea-Ice Extent. Geophys. Res. Lett. 2019, 46, 8952–8959. [Google Scholar] [CrossRef]
- Cornwall, W. Vanishing Bering Sea ice poses climate puzzle. Science 2019, 364, 616–617. [Google Scholar] [CrossRef]
- Duffy-Anderson, J.T.; Stabeno, P.; Andrews, A.G.; Cieciel, K.; Deary, A.; Farley, E.; Fugate, C.; Harpold, C.; Heintz, R.; Kimmel, D.; et al. Responses of the Northern Bering Sea and Southeastern Bering Sea Pelagic Ecosystems Following Record-Breaking Low Winter Sea Ice. Geophys. Res. Lett. 2019, 46, 9833–9842. [Google Scholar] [CrossRef] [Green Version]
- Kuletz, K.; Cushing, D.; Labunski, E. Distributional shifts among seabird communities of the Northern Bering and Chukchi seas in response to ocean warming during 2017–2019. Deep Sea Res. Part II Top. Stud. Oceanogr. 2020, 181–182, 104913. [Google Scholar] [CrossRef]
- Stabeno, P.J.; Kachel, N.B.; Moore, S.E.; Napp, J.M.; Sigler, M.; Yamaguchi, A.; Zerbini, A.N. Comparison of warm and cold years on the southeastern Bering Sea shelf and some implications for the ecosystem. Deep Sea Res. Part II Top. Stud. Oceanogr. 2012, 65–70, 31–45. [Google Scholar] [CrossRef]
- Sugimoto, S.; Hanawa, K. Decadal and Interdecadal Variations of the Aleutian Low Activity and Their Relation to Upper Oceanic Variations over the North Pacific. J. Meteorol Soc. Jpn 2009, 87, 601–614. [Google Scholar] [CrossRef] [Green Version]
- Rodionov, S.N.; Overland, J.E.; Bond, N.A. The Aleutian low and winter climatic conditions in the Bering Sea. Part I: Classification. J. Clim. 2005, 18, 160–177. [Google Scholar] [CrossRef] [Green Version]
- Stabeno, P.J.; Bell, S.W.; Bond, N.A.; Kimmel, D.G.; Mordy, C.W.; Sullivan, M.E. Distributed Biological Observatory Region 1: Physics, chemistry and plankton in the northern Bering Sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 2019, 162, 8–21. [Google Scholar] [CrossRef]
- Danielson, S.L.; Eisner, L.; Ladd, C.; Mordy, C.; Sousa, L.; Weingartner, T.J. A comparison between late summer 2012 and 2013 water masses, macronutrients, and phytoplankton standing crops in the northern Bering and Chukchi Seas. Deep Sea Res. Part II Top. Stud. Oceanogr. 2017, 135, 7–26. [Google Scholar] [CrossRef] [Green Version]
- Iida, T.; Saitoh, S.-I. Temporal and spatial variability of chlorophyll concentrations in the Bering Sea using empirical orthogonal function (EOF) analysis of remote sensing data. Deep Sea Res. Part II Top. Stud. Oceanogr. 2007, 54, 2657–2671. [Google Scholar] [CrossRef]
- Hunt, G.L.; Stabeno, P.; Walters, G.; Sinclair, E.; Brodeur, R.D.; Napp, J.M.; Bond, N.A. Climate change and control of the southeastern Bering Sea pelagic ecosystem. Deep-Sea Res. Part II 2002, 49, 5821–5853. [Google Scholar] [CrossRef] [Green Version]
- Lewis, K.M.; van Dijken, G.L.; Arrigo, K.R. Changes in phytoplankton concentration now drive increased Arctic Ocean primary production. Science 2020, 369, 198–202. [Google Scholar] [CrossRef]
- Tsukada, Y.; Ueno, H.; Ohta, N.; Itoh, M.; Watanabe, E.; Kikuchi, T.; Nishino, S.; Mizobata, K. Interannual variation in solar heating in the Chukchi Sea, Arctic Ocean. Polar Sci. 2018, 17, 33–39. [Google Scholar] [CrossRef]
- Arrigo, K.R.; van Dijken, G.L.; Strong, A.L. Environmental controls of marine productivity hot spots around Antarctica. J. Geophys. Res. Ocean. 2015, 120, 5545–5565. [Google Scholar] [CrossRef]
- Eppley, R.W. Temperature and phytoplankton growth in the sea. Fish. Bull. 1972, 70, 1063–1085. [Google Scholar]
- Tilzer, M.M.; Dubinsky, Z. Effects of Temperature and Day Length on the Mass Balance of Antarctic Phytoplankton. Polar Biol. 1987, 7, 35–42. [Google Scholar] [CrossRef]
- Peralta-Ferriz, C.; Woodgate, R.A. Seasonal and interannual variability of pan-Arctic surface mixed layer properties from 1979 to 2012 from hydrographic data, and the dominance of stratification for multiyear mixed layer depth shoaling. Prog. Oceanogr. 2015, 134, 19–53. [Google Scholar] [CrossRef]
- Codispoti, L.A.; Kelly, V.; Thessen, A.; Matrai, P.; Suttles, S.; Hill, V.; Steele, M.; Light, B. Synthesis of primary production in the Arctic Ocean: III. Nitrate and phosphate based estimates of net community production. Prog. Oceanogr. 2013, 110, 126–150. [Google Scholar] [CrossRef]
- Hermann, A.J.; Gibson, G.A.; Cheng, W.; Ortiz, I.; Aydin, K.; Wang, M.; Hollowed, A.B.; Holsman, K.K.; Sathyendranath, S. Projected biophysical conditions of the Bering Sea to 2100 under multiple emission scenarios. ICES J. Mar. Sci. 2019, 76, 1280–1304. [Google Scholar] [CrossRef] [Green Version]
Variable | Abbreviation | Unit | Source |
---|---|---|---|
Reflectance | Rrs | sr−1 | MODIS |
Photosynthetically active radiation | PAR | Einstein m−2 d−1 | |
Sea ice concentration | SIC | % | NSIDC |
Sea surface temperature | SST | °C | OISST |
10-m zonal wind | U10 | m s−1 | ERA5 |
10-m meridional wind | V10 | ||
2-m atmospheric temperature | T2M | °C | |
Bottom topography | m | GEBCO | |
Mixed layer depth | MLD | m | CMEMS |
Chukchi Sea SST | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | ||
Bering Sea SIC | Jan | −0.77 ** | 0.12 | 0.14 | −0.57 * | −0.54 * | −0.73 ** | −0.48 * | −0.39 | −0.30 | −0.65 ** | −0.60 ** | −0.32 |
Feb | N/A | −0.55 * | −0.21 | −0.61 ** | −0.53 * | −0.86 ** | −0.71 ** | −0.64 ** | −0.63 ** | −0.85 ** | −0.66 ** | −0.49 | |
Mar | N/A | N/A | −0.51 * | −0.53 * | −0.39 | −0.74 ** | −0.60 ** | −0.57 * | −0.63 ** | −0.83 ** | −0.58 * | −0.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Lee, S.; Jo, Y.-H.; Kim, H.-C. Phytoplankton Bloom Changes under Extreme Geophysical Conditions in the Northern Bering Sea and the Southern Chukchi Sea. Remote Sens. 2021, 13, 4035. https://doi.org/10.3390/rs13204035
Park J, Lee S, Jo Y-H, Kim H-C. Phytoplankton Bloom Changes under Extreme Geophysical Conditions in the Northern Bering Sea and the Southern Chukchi Sea. Remote Sensing. 2021; 13(20):4035. https://doi.org/10.3390/rs13204035
Chicago/Turabian StylePark, Jinku, Sungjae Lee, Young-Heon Jo, and Hyun-Cheol Kim. 2021. "Phytoplankton Bloom Changes under Extreme Geophysical Conditions in the Northern Bering Sea and the Southern Chukchi Sea" Remote Sensing 13, no. 20: 4035. https://doi.org/10.3390/rs13204035
APA StylePark, J., Lee, S., Jo, Y. -H., & Kim, H. -C. (2021). Phytoplankton Bloom Changes under Extreme Geophysical Conditions in the Northern Bering Sea and the Southern Chukchi Sea. Remote Sensing, 13(20), 4035. https://doi.org/10.3390/rs13204035