A New Drought Index for Soil Moisture Monitoring Based on MPDI-NDVI Trapezoid Space Using MODIS Data
"> Figure 1
<p>Distribution of crop and pasture sites over the local stations and the geographic location of the study area.</p> "> Figure 2
<p>Land cover map of the study area.</p> "> Figure 3
<p>MPDI-NDVI feature space and definition of the condition vegetation drought index (CVDI) (reproduced from Sandholt et al. [<a href="#B19-remotesensing-13-00122" class="html-bibr">19</a>]).</p> "> Figure 4
<p>Flowchart of constructing CVDI and soil moisture (SM) monitoring in this study.</p> "> Figure 5
<p>Scatterplots of dry and wet edges in the MPDI-NDVI and land surface temperature (LST)-NDVI feature spaces for 18 images.</p> "> Figure 6
<p>Spatial distribution of the three drought indices on DOY004 and 242.</p> "> Figure 7
<p>Scatterplots between the three drought indices obtained at the crop sites on DOY004 (<b>a</b>), 242 (<b>b</b>).</p> "> Figure 8
<p>Time series of the AWRA-L SM data, ground measurements, and the CVDI at 1 and 5 km resolutions with the monthly cumulative precipitation for 8 sites including (<b>a</b>) Lawloit, (<b>b</b>) Greta, (<b>c</b>) Baynton Basalt, (<b>d</b>) Baynton granite, (<b>e</b>) Bairnsdale, (<b>f</b>) Longwarry, (<b>g</b>) Jancourt and (<b>h</b>) Yarram.</p> "> Figure 9
<p>Scatterplots established between the three drought indices and SM, monthly precipitation in the four main land cover types including (<b>a</b>) Cropland, (<b>b</b>) Forest, (<b>c</b>) Grassland and (<b>d</b>) Shrubs.</p> ">
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Remote Sensing Data
2.3. In Situ Measurements and Meteorological Data
3. Methodology
3.1. Modified Perpendicular Drought Index (MPDI)
3.2. MPDI-NDVI Triangle Method
4. Results
4.1. Estimation of the Dry and Wet Edges for TVDI and CVDI
4.2. Spatial Comparison of SM Estimation between MPDI, TVDI and CVDI
4.3. Temporal Comparison between MPDI, TVDI and CVDI Based on AWRA-L SM Data
5. Discussion
5.1. The Effect of Land Cover Types on Three Drought Indices
5.2. The Effect of Field Measurements and Remote Sensing Data
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patel, N.R.; Anapashsha, R.; Kumar, S.; Saha, S.K.; Dadhwal, V.K. Assessing potential of MODIS derived temperature/vegetation condition index (TVDI) to infer soil moisture status. Int. J. Remote Sens. 2008, 30, 23–39. [Google Scholar] [CrossRef]
- Ray, R.L.; Jacobs, J.M.; Cosh, M.H. Landslide susceptibility mapping using downscaled AMSR-E soil moisture: A case study from Cleveland Corral, California, US. Remote Sens. Environ. 2010, 114, 2624–2636. [Google Scholar] [CrossRef]
- Han, E.; Merwade, V.; Heathman, G.C. Implementation of surface soil moisture data assimilation with watershed scale distributed hydrological model. J. Hydrol. 2012, 416, 98–117. [Google Scholar] [CrossRef]
- Tan, K.; Rhodes, B. Implications of the 1997–2006 drought on water resources planning for Melbourne. In Proceedings 31s Hydrology and Water Resources Symp.: Water Down Under 2008; Causal Productions; Engineers Australia: Adelaide, Australia, 2008; pp. 2016–2027. [Google Scholar]
- Hennessy, K.; Fawcett, R.; Kirono, D.; Mpelasoka, F.; Jones, D.; Bathols, J.; Whetton, P.; Stafford Smith, M.; Howden, M.; Mitchell, C. An Assessment of the Impact of Climate Change on the Nature and Frequency of Exceptional Climatic Events; CSIRO and Bureau of Meteorology: Canberra, Australia, 2008. [Google Scholar]
- Moran, M.S.; Peters-Lidard, C.D.; Watts, J.M.; McElroy, S. Estimating soil moisture at the watershed scale with satellite-based radar and land surface models. Can. J. Remote Sens. 2004, 30, 805–826. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Jia, S.; Lv, A. A time domain solution of the Modified Temperature Vegetation Dryness Index (MTVDI) for continuous soil moisture monitoring. Remote Sens. Environ. 2017, 200, 1–17. [Google Scholar] [CrossRef]
- Zribi, M.; Andre, C.; Decharme, B. A Method for Soil Moisture Estimation in Western Africa Based on the ERS Scatterometer. IEEE Tract. Geosci. Remote Sens. 2008, 46, 438–448. [Google Scholar] [CrossRef]
- Qi, G.; Mehrez, Z.; Maria, E.; Nicolas, B. Synergetic use of Sentinel-1 and Sentinel-2 data for soil moisture mapping at 100 m resolution. Sensors 2017, 17, 1966. [Google Scholar]
- Petropoulos, G.P.; Ireland, G.; Barrett, B. Surface soil moisture retrievals from remote sensing: Current status, products & future trends. Phys. Chem. Earth Parts A B C 2015, 83–84, 36–56. [Google Scholar] [CrossRef]
- Gu, Y.; Hunt, E.; Wardlow, B.; Basara, J.B.; Brown, J.F.; Verdin, J.P. Evaluation of MODIS NDVI and NDWI for vegetation drought monitoring using Oklahoma Mesonet soil moisture data. Geophys. Res. Lett. 2008, 35(22), 1–5. [Google Scholar] [CrossRef] [Green Version]
- Peters, A.J.; Walter-Shea, E.A.; Ji, L.; Vina, A.; Hayes, M.; Svoboda, M.D. Drought monitoring with NDVI-based standardized vegetation index. Photogramm. Eng. Remote Sens. 2002, 68, 71–75. [Google Scholar]
- Liu, W.; Kogan, F. Monitoring regional drought using the vegetation condition index. Int. J. Remote Sens. 1996, 17, 2761–2782. [Google Scholar] [CrossRef]
- Le Page, M.; Zribi, M. Analysis and predictability of drought in Northwest Africa using optical and microwave satellite remote sensing products. Sci. Rep. 2019, 9, 1466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiying, C.; Qianguang, X.; Yongwei, S. Application of the anomaly vegetation index to monitoring heavy drought in 1992. Remote Sens. Environ. 1994, 9, 106–112. [Google Scholar]
- Price, J.C. Using spatial context in satellite data to infer regional scale evapotranspiration. IEEE Tract. Geosci. Remote Sens. 1990, 28, 940–948. [Google Scholar] [CrossRef] [Green Version]
- Moran, M.; Clarke, T.; Inoue, Y.; Vidal, A. Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sens. Environ. 1994, 49, 246–263. [Google Scholar] [CrossRef]
- Goward, S.N.; Hope, A. Evapotranspiration from combined reflected solar and emitted terrestrial radiation: Preliminary FIFE results from AVHRR data. Adv. Space Res. 1989, 9, 239–249. [Google Scholar] [CrossRef]
- Sandholt, I.; Rasmussen, K.; Andersen, J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens. Environ. 2002, 79, 213–224. [Google Scholar] [CrossRef]
- Qi, S.-H.; Wang, C.-Y.; Niu, Z. Evaluating soil moisture status in China using the temperature/vegetation dryness index (TVDI). J. Remote Sens. 2003, 7, 420–427. [Google Scholar]
- Han, Y.; Wang, Y.Q.; Zhao, Y.S. Estimating Soil Moisture Conditions of the Greater Changbai Mountains by Land Surface Temperature and NDVI. IEEE Tract. Geosci. Remote Sens. 2010, 48, 2509–2515. [Google Scholar] [CrossRef]
- Son, N.T.; Chen, C.F.; Chen, C.R.; Chang, L.Y.; Minh, V.Q. Monitoring agricultural drought in the Lower Mekong Basin using MODIS NDVI and land surface temperature data. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 417–427. [Google Scholar] [CrossRef]
- Holzman, M.E.; Rivas, R.; Piccolo, M.C. Estimating soil moisture and the relationship with crop yield using surface temperature and vegetation index. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 181–192. [Google Scholar] [CrossRef]
- Chen, S.L.; Wen, Z.M.; Jiang, H.; Zhao, Q.J.; Zhang, X.Y.; Chen, Y. Temperature Vegetation Dryness Index Estimation of Soil Moisture under Different Tree Species. Sustainability 2015, 7, 11401–11417. [Google Scholar] [CrossRef] [Green Version]
- Shi, S.; Yao, F.; Zhang, J.; Yang, S. Evaluation of Temperature Vegetation Dryness Index on Drought Monitoring Over Eurasia. IEEE Access 2020, 8, 30050–30059. [Google Scholar] [CrossRef]
- Yan, H.; Zhou, G.; Yang, F.; Lu, X. DEM correction to the TVDI method on drought monitoring in karst areas. Int. J. Remote Sens. 2018, 40, 2166–2189. [Google Scholar] [CrossRef]
- Rahimzadeh-Bajgiran, P.; Omasa, K.; Shimizu, Y. Comparative evaluation of the Vegetation Dryness Index (VDI), the Temperature Vegetation Dryness Index (TVDI) and the improved TVDI (iTVDI) for water stress detection in semi-arid regions of Iran. ISPRS J. Photogramm. Remote Sens. 2012, 68, 1–12. [Google Scholar] [CrossRef]
- Liu, Z.F.; Yao, Z.J.; Wang, R. Evaluating the surface temperature and vegetation index (Ts/VI) method for estimating surface soil moisture in heterogeneous regions. Hydrol. Res. 2018, 49, 689–699. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, A.; Jiang, T.; Lv, H.; Liu, X.; Wang, H. The Spatiotemporal Variation of Drought in the Beijing-Tianjin-Hebei Metropolitan Region (BTHMR) Based on the Modified TVDI. Sustainability 2016, 8, 1327. [Google Scholar] [CrossRef] [Green Version]
- Du, L.; Song, N.; Liu, K.; Hou, J.; Hu, Y.; Zhu, Y.; Wang, X.; Wang, L.; Guo, Y. Comparison of Two Simulation Methods of the Temperature Vegetation Dryness Index (TVDI) for Drought Monitoring in Semi-Arid Regions of China. Remote Sens. 2017, 9, 177. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Cong, D.; He, K.; Yang, H.; Qin, Z. Spatial-temporal variation of drought in China from 1982 to 2010 based on a modified temperature vegetation drought index (mTVDI). Sci. Rep. 2017, 7, 17473. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, L.X.; Yue, H. Biparabolic NDVI-T-S Space and Soil Moisture Remote Sensing in an Arid and Semi arid Area. Can. J. Remote Sens. 2015, 41, 159–169. [Google Scholar] [CrossRef]
- Liu, Y.; Yue, H. The Temperature Vegetation Dryness Index (TVDI) Based on Bi-Parabolic NDVI-T-s Space and Gradient-Based Structural Similarity (GSSIM) for Long-Term Drought Assessment Across Shaanxi Province, China (2000–2016). Remote Sens. 2018, 10, 959. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.B.; Lv, A.F.; Jia, S.F.; Sun, L. Development and evaluation of the MTVDI for soil moisture monitoring. J. Geophys. Res. Atmos. 2017, 122, 5533–5555. [Google Scholar] [CrossRef] [Green Version]
- Amani, M.; Parsian, S.; MirMazloumi, S.M.; Aieneh, O. Two new soil moisture indices based on the NIR-red triangle space of Landsat-8 data. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 176–186. [Google Scholar] [CrossRef]
- Sun, L.; Sun, R.; Li, X.; Liang, S.; Zhang, R. Monitoring surface soil moisture status based on remotely sensed surface temperature and vegetation index information. Agric. For. Meteorol. 2012, 166–167, 175–187. [Google Scholar] [CrossRef]
- Qin, Z.; Karnieli, A.; Berliner, P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. Int. J. Remote Sens. 2001, 22, 3719–3746. [Google Scholar] [CrossRef]
- Ghulam, A.; Li, Z.; Qin, Q.; Tong, Q. Exploration of the spectral space based on vegetation index and albedo for surface drought estimation. J. Appl. Remote Sens. 2007, 1, 013529. [Google Scholar]
- Lu, L.; Luo, G.-P.; Wang, J.-Y. Development of an ATI-NDVI method for estimation of soil moisture from MODIS data. Int. J. Remote Sens. 2014, 35, 3797–3815. [Google Scholar] [CrossRef]
- Wang, L.; Guo, N.; Wang, X.; Wang, W. Effects of Spatial Resolution for Evapotranspiration Estimation by Using the Triangular Method Over Heterogeneous Underling Surface. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2518–2527. [Google Scholar] [CrossRef]
- Ghulam, A.; Qin, Q.; Teyip, T.; Li, Z.-L. Modified perpendicular drought index (MPDI): A real-time drought monitoring method. ISPRS J. Photogramm. Remote Sens. 2007, 62, 150–164. [Google Scholar] [CrossRef]
- Van Dijk, A.; Warren, G. The Australian Water Resources Assessment System, Technical Report 3, Landscape Model (version 0.5) Technical Description; CSIRO Water for a Healthy Country National Research Flagship: Canberra, Australia, 2010. [Google Scholar]
- Richardson, A.J.; Wiegand, C. Distinguishing vegetation from soil background information. Photogramm. Eng. Remote Sens. 1977, 43, 1541–1552. [Google Scholar]
- Zhan, Z.; Qin, Q.; Ghulan, A.; Wang, D. NIR-red spectral space based new method for soil moisture monitoring. Sci. China Ser. D Earth Sci. 2007, 50, 283–289. [Google Scholar] [CrossRef]
- Ghulam, A.; Qin, Q.; Zhan, Z. Designing of the perpendicular drought index. Environ. Geol. 2007, 52, 1045–1052. [Google Scholar] [CrossRef]
- Baret, F.; Clevers, J.; Steven, M. The robustness of canopy gap fraction estimates from red and near-infrared reflectances: A comparison of approaches. Remote Sens. Environ. 1995, 54, 141–151. [Google Scholar] [CrossRef]
- Li, Z.; Tan, D. The Second Modified Perpendicular Drought Index (MPDI1): A Combined Drought Monitoring Method with Soil Moisture and Vegetation Index. J. Indian Soc. Remote Sens. 2013, 41, 873–881. [Google Scholar] [CrossRef]
- Chen, N.; Li, J.; Zhang, X. Quantitative evaluation of observation capability of GF-1 wide field of view sensors for soil moisture inversion. J. Appl. Remote Sens. 2015, 9, 097097. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Lu, Y.; Yue, H. Comparison and Application of MPDI and MSMMI for Drought Monitoring in Desert Mining Area. IOP Conf. Ser. Earth Environ. Sci. 2018, 146, 012001. [Google Scholar] [CrossRef]
- Tang, R.; Li, Z.-L.; Tang, B. An application of the Ts–VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semi-arid regions: Implementation and validation. Remote Sens. Environ. 2010, 114, 540–551. [Google Scholar] [CrossRef]
- Mallick, K.; Bhattacharya, B.K.; Patel, N.K. Estimating volumetric surface moisture content for cropped soils using a soil wetness index based on surface temperature and NDVI. Agric. For. Meteorol. 2009, 149, 1327–1342. [Google Scholar] [CrossRef]
- Liang, L.; Zhao, S.-H.; Qin, Z.-H.; He, K.-X.; Chen, C.; Luo, Y.-X.; Zhou, X.-D. Drought Change Trend Using MODIS TVDI and Its Relationship with Climate Factors in China from 2001 to 2010. J. Integr. Agric. 2014, 13, 1501–1508. [Google Scholar] [CrossRef]
DOY | Date | Overpass Time (UTC) | LST (K) |
---|---|---|---|
004 | 4 January | 00:42 | [295.4, 333.3] 1 |
023 | 23 January | 01:14 | [287.6, 331.8] |
055 | 24 February | 01:17 | [290.6, 322.2] |
061 | 2 March | 00:42 | [291.9, 330.9] |
075 | 16 March | 00:55 | [277.8, 317.6] |
102 | 12 April | 01:18 | [280.8, 307.4] |
137 | 17 May | 01:55 | [276.7, 297.7] |
162 | 11 June | 01:50 | [276.2, 294.7] |
176 | 25 June | 00:22 | [267.4, 294.0] |
178 | 27 June | 01:52 | [273.9, 292.2] |
203 | 22 July | 01:47 | [272.3, 291.7] |
242 | 30 August | 00:15 | [274.1, 298.7] |
254 | 11 September | 00:41 | [278.0, 306.9] |
274 | 1 October | 00:17 | [279.9, 311.6] |
295 | 22 October | 01:37 | [285.1, 324.5] |
297 | 24 October | 01:25 | [280.5, 326.6] |
322 | 18 November | 01:20 | [276.3, 323.2] |
354 | 20 December | 01:22 | [289.7, 332.8] |
Station ID | Station Name | Latitude | Longitude | Elevation (m) | Land Cover |
---|---|---|---|---|---|
S1 | Kaniva | −36.3721°S | 141.2422°E | 142 | Croplands |
S2 | Warracknabeal (Earlstan) | −36.2705°S | 142.2162°E | 118 | Croplands |
S3 | Natimuk | −36.7416°S | 141.9429°E | 122 | Croplands |
S4 | Drung Drung | −36.7768°S | 142.3937°E | 146 | Croplands |
S5 | Warranooke (Glenorchy) | −36.7259°S | 142.7294°E | 150 | Croplands |
S6 | Boigbeat | −35.5504°S | 142.9207°E | 60 | Grasslands |
S7 | Birchip (Woodlands) | −35.9244°S | 142.851°E | 100 | Grasslands |
S8 | Quambatook South | −35.9296°S | 143.4992°E | 95 | Grasslands |
S9 | Linga | −35.1683°S | 141.6922°E | 70 | Grasslands |
S10 | Glenalbyn (Brenanah) | −36.5486°S | 143.6958°E | 213 | Grasslands |
S11 | Grampians (Mount William) | −37.295°S | 142.6039°E | 1150 | Forests |
S12 | Mount Richmond | −38.1968°S | 141.3577°E | 133 | Forests |
S13 | Benwerrin | −38.4831°S | 143.9142°E | 385 | Forests |
S14 | Beech Forest | −38.6219°S | 143.5622°E | 443 | Forests |
S15 | Blackwood | −37.4677°S | 144.3075°E | 547 | Forests |
S16 | Mount Buller | −37.145°S | 146.4394°E | 1707 | Forests |
S17 | Mount Tamboritha | −37.4667°S | 146.6883°E | 1446 | Forests |
S18 | Mount Hotham | −36.9772°S | 147.1342°E | 1849 | Forests |
S19 | Mount Moornapa | −37.7481°S | 147.1428°E | 480 | Forests |
S20 | Mount Buffalo Chalet | −36.722°S | 146.8189°E | 1350 | Forests |
DOY | CVDI | TVDI | MPDI | |||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | RMSE | |
004 | 0.48 | 0.05 | 0.31 | 0.09 | 0.21 | 0.10 |
023 | 0.67 * | 0.04 | 0.42 | 0.10 | 0.57 * | 0.09 |
055 | 0.54 * | 0.05 | 0.57 * | 0.05 | 0.48 | 0.06 |
061 | 0.45 | 0.07 | 0.48 | 0.06 | 0.41 | 0.07 |
075 | 0.33 | 0.06 | 0.11 | 0.06 | 0.29 | 0.09 |
102 | 0.47 | 0.04 | 0.14 | 0.14 | 0.47 | 0.06 |
137 | 0.67 * | 0.06 | 0.51 | 0.10 | 0.64* | 0.09 |
162 | 0.26 | 0.08 | 0.38 | 0.10 | 0.37 | 0.12 |
176 | 0.12 | 0.08 | 0.15 | 0.10 | 0.10 | 0.22 |
178 | 0.39 | 0.08 | 0.33 | 0.09 | 0.25 | 0.18 |
203 | 0.06 | 0.06 | 0.11 | 0.12 | 0.12 | 0.21 |
242 | 0.42 | 0.09 | 0.44 | 0.10 | 0.17 | 0.11 |
254 | 0.28 | 0.07 | 0.55 * | 0.12 | 0.13 | 0.09 |
274 | 0.67 * | 0.08 | 0.61 * | 0.13 | 0.49 | 0.18 |
295 | 0.45 | 0.09 | 0.31 | 0.17 | 0.40 | 0.19 |
297 | 0.35 | 0.07 | 0.14 | 0.16 | 0.30 | 0.20 |
322 | 0.71 ** | 0.07 | 0.04 | 0.12 | 0.16 | 0.23 |
354 | 0.24 | 0.07 | 0.24 | 0.07 | 0.01 | 0.16 |
DOY | R2 between CVDI1 km and CVDI5 km | RMSE between CVDI1 km and CVDI5 km | AWRA-L SM Data | |
---|---|---|---|---|
R2 | RMSE | |||
004 | 0.75 ** | 0.07 | 0.14 | 0.14 |
023 | 0.73 ** | 0.08 | 0.10 | 0.15 |
055 | 0.62 * | 0.12 | 0.20 | 0.17 |
061 | 0.49 | 0.10 | 0.24 | 0.12 |
075 | 0.58 * | 0.07 | 0.07 | 0.10 |
102 | 0.36 | 0.09 | 0.22 | 0.09 |
137 | 0.29 | 0.15 | 0.44 | 0.13 |
162 | 0.45 | 0.11 | 0.01 | 0.15 |
176 | 0.66 * | 0.10 | 0.79 ** | 0.08 |
178 | 0.26 | 0.12 | 0.28 | 0.11 |
203 | 0.28 | 0.13 | 0.53 * | 0.11 |
242 | 0.71 ** | 0.09 | 0.26 | 0.15 |
254 | 0.54 * | 0.10 | 0.09 | 0.14 |
274 | 0.63 * | 0.13 | 0.53 * | 0.15 |
295 | 0.61 * | 0.15 | 0.09 | 0.23 |
297 | 0.36 | 0.18 | 0.89 ** | 0.08 |
322 | 0.48 | 0.11 | 0.03 | 0.15 |
354 | 0.52* | 0.13 | 0.13 | 0.17 |
Station ID | CVDI | TVDI | MPDI | |||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | RMSE | |
S1 | 0.14 | 0.04 | 0.34 * | 0.10 | 0.39 ** | 0.09 |
S2 | 0.41 ** | 0.05 | 0.29 * | 0.11 | 0.35 * | 0.13 |
S3 | 0.55 *** | 0.06 | 0.20 | 0.11 | 0.40 * | 0.10 |
S4 | 0.69 *** | 0.05 | 0.21 | 0.10 | 0.51 *** | 0.11 |
S5 | 0.53 *** | 0.09 | 0.19 | 0.11 | 0.52 *** | 0.14 |
S6 | 0.67 *** | 0.06 | 0.16 | 0.09 | 0.49 *** | 0.11 |
S7 | 0.50 *** | 0.04 | 0.48 *** | 0.06 | 0.52 *** | 0.08 |
S8 | 0.56 *** | 0.05 | 0.18 | 0.09 | 0.55 *** | 0.08 |
S9 | 0.40 ** | 0.04 | 0.06 | 0.08 | 0.46 ** | 0.09 |
S10 | 0.11 | 0.07 | 0.18 | 0.11 | 0.09 | 0.12 |
S11 | 0.13 | 0.10 | 0.11 | 0.13 | 0.24 * | 0.35 |
S12 | 0.48 *** | 0.15 | 0.00 | 0.20 | 0.15 | 0.35 |
S13 | 0.21 | 0.14 | 0.04 | 0.18 | 0.20 | 0.17 |
S14 | 0.58 *** | 0.18 | 0.02 | 0.14 | 0.19 | 0.24 |
S15 | 0.30 * | 0.07 | 0.14 | 0.10 | 0.28 * | 0.10 |
S16 | 0.27 * | 0.15 | 0.00 | 0.13 | 0.11 | 0.20 |
S17 | 0.38 ** | 0.08 | 0.34 * | 0.11 | 0.46 ** | 0.11 |
S18 | 0.00 | 0.14 | 0.09 | 0.14 | 0.04 | 0.35 |
S19 | 0.28 * | 0.14 | 0.04 | 0.13 | 0.13 | 0.19 |
S20 | 0.27 * | 0.10 | 0.00 | 0.11 | 0.12 | 0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, L.; Ryu, D.; Western, A.; Boyd, D. A New Drought Index for Soil Moisture Monitoring Based on MPDI-NDVI Trapezoid Space Using MODIS Data. Remote Sens. 2021, 13, 122. https://doi.org/10.3390/rs13010122
Tao L, Ryu D, Western A, Boyd D. A New Drought Index for Soil Moisture Monitoring Based on MPDI-NDVI Trapezoid Space Using MODIS Data. Remote Sensing. 2021; 13(1):122. https://doi.org/10.3390/rs13010122
Chicago/Turabian StyleTao, Liangliang, Dongryeol Ryu, Andrew Western, and Dale Boyd. 2021. "A New Drought Index for Soil Moisture Monitoring Based on MPDI-NDVI Trapezoid Space Using MODIS Data" Remote Sensing 13, no. 1: 122. https://doi.org/10.3390/rs13010122
APA StyleTao, L., Ryu, D., Western, A., & Boyd, D. (2021). A New Drought Index for Soil Moisture Monitoring Based on MPDI-NDVI Trapezoid Space Using MODIS Data. Remote Sensing, 13(1), 122. https://doi.org/10.3390/rs13010122