Raindrop Size Distributions of North Indian Ocean Tropical Cyclones Observed at the Coastal and Inland Stations in South India
"> Figure 1
<p>Tracks of selected NIO TCs. The disdrometers’ sites are denoted with red square boxes. Along the tracks, the date and time of each TC is denoted in the form of MonthDay (hours).</p> "> Figure 2
<p>Variations in mean raindrop concentration, <span class="html-italic">N(D)</span> (mm<sup>−1</sup> m<sup>−3</sup>) of the NIO TCs measured at the coastal and inland stations.</p> "> Figure 3
<p>The PDF of (<b>a</b>) log<sub>10</sub><span class="html-italic">R</span>, (<b>b</b>) log<sub>10</sub><span class="html-italic">W</span>, (<b>c</b>) <span class="html-italic">D<sub>m</sub></span> (mm), and (<b>d</b>) log<sub>10</sub><span class="html-italic">N<sub>w</sub></span> for the NIO TCs measured at the coastal and inland stations.</p> "> Figure 4
<p>Contribution of drop diameter classes to (<b>a</b>) number concentration, <span class="html-italic">N<sub>t</sub></span> (m<sup>−3</sup>) and (<b>b</b>) rainfall rate, <span class="html-italic">R</span> (mm h<sup>−1</sup>) for the NIO TCs measured at the coastal and inland stations.</p> "> Figure 5
<p>(<b>a</b>) Variations in mean raindrop concentration for stratiform (S) and convective (C) rainfall, and (<b>b</b>) variations of mean log<sub>10</sub><span class="html-italic">N<sub>w</sub></span> with <span class="html-italic">D<sub>m</sub></span> values for convective and stratiform rainfall measured at the coastal and inland stations.</p> "> Figure 6
<p>Scatter plot between DFR and <span class="html-italic">D<sub>m</sub></span> (mm) for the NIO TCs measured at the coastal and inland stations.</p> "> Figure 7
<p><span class="html-italic">D<sub>m</sub></span>-<span class="html-italic">Z<sub>ku</sub></span>, <span class="html-italic">D<sub>m</sub></span>-<span class="html-italic">Z<sub>ka</sub></span>, and log<sub>10</sub><span class="html-italic">N<sub>w</sub></span>-<span class="html-italic">D<sub>m</sub></span> relations for the NIO TCs measured at the coastal and inland stations.</p> "> Figure 8
<p>Scatter plots of rainfall kinetic energy (<span class="html-italic">KE<sub>time</sub></span> and <span class="html-italic">KE<sub>mm</sub></span>) with rainfall rate (<span class="html-italic">R</span>, mm h<sup>−1</sup>) for the NIO TCs measured at the coastal and inland stations.</p> "> Figure 9
<p>Scatter plots of <span class="html-italic">KE<sub>mm</sub></span> and <span class="html-italic">D<sub>m</sub></span> for the NIO TCs measured at the coastal and inland stations.</p> "> Figure 10
<p>Scatter plots of rainfall kinetic energy with <span class="html-italic">Z<sub>ku</sub></span> and <span class="html-italic">Z<sub>ka</sub></span> for the NIO TCs measured at the coastal and inland stations.</p> "> Figure 11
<p>(<b>a</b>) CAPE and (<b>b</b>) vertical integral of water vapor values for the coastal and inland stations.</p> "> Figure 12
<p>(<b>a</b>) Air temperature (°C) and (<b>b</b>) relative humidity (RH%) profiles for the NIO TCs at the coastal and inland stations.</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. Tropical Cyclones
2.2. Parsivel Disdrometer
2.3. Reanalysis Data
3. Results
3.1. Contribution of Raindrop Diameters to Nt and R
3.2. RSDs in Precipitation Types
3.3. Dm−ZKu/ZKa and Dm−Nw Relations
3.4. Rainfall Kinetic Energy Relations
4. Discussion
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Liao, L.; Meneghini, R.; Tokay, A. Uncertainties of GPM DPR Rain Estimates Caused by DSD Parameterizations. J. Appl. Meteorol. Clim. 2014, 53, 2524–2537. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Zhang, Y.; Zhang, L.; Hao, X.; Lei, H.; Zheng, H. Validation of GPM Precipitation Products by Comparison with Ground-Based Parsivel Disdrometers over Jianghuai Region. Water 2019, 11, 1260. [Google Scholar] [CrossRef] [Green Version]
- Janapati, J.; Seela, B.K.; Lin, P.-L.; Wang, P.K.; Kumar, U. An assessment of tropical cyclones rainfall erosivity for Taiwan. Sci. Rep. 2019, 9, 15862–15864. [Google Scholar] [CrossRef] [Green Version]
- Steiner, M.; Smith, J.A. Reflectivity, Rain Rate, and Kinetic Energy Flux Relationships Based on Raindrop Spectra. J. Appl. Meteorol. 2000, 39, 1923–1940. [Google Scholar] [CrossRef]
- Jayalakshmi, J.; Reddy, K.K. Raindrop size distributions of southwest and northeast monsoon heavy precipitation observed over Kadapa (14°4′ N, 78°82′ E), a semi-arid region of India. Curr. Sci. 2014, 107, 1312–1320. [Google Scholar]
- Krishna, U.V.M.; Reddy, K.K.; Seela, B.K.; Shirooka, R.; Lin, P.-L.; Pan, C.-J. Raindrop size distribution of easterly and westerly monsoon precipitation observed over Palau islands in the Western Pacific Ocean. Atmospheric Res. 2016, 174, 41–51. [Google Scholar] [CrossRef]
- Seela, B.K.; Janapati, J.; Lin, P.-L.; Wang, P.K.; Lee, M.-T. Raindrop Size Distribution Characteristics of Summer and Winter Season Rainfall Over North Taiwan. J. Geophys. Res. Atmos. 2018, 123, 11–602. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.B.; Reddy, K.K. Rain drop size distribution characteristics of cyclonic and north east monsoon thunderstorm precipitating clouds observed over Kadapa (14.47° N, 78.82° E), tropical semi-arid region of India. Mausam 2013, 64, 35–48. [Google Scholar]
- Janapati, J.; Reddy, M.V.; Reddy, K.K.; Lin, P.-L.; Liu, C.-Y. A study on raindrop size distribution variability in before and after landfall precipitations of tropical cyclones observed over southern India. J. Atmospheric Solar-Terrestrial Phys. 2017, 159, 23–40. [Google Scholar] [CrossRef]
- Chen, Y.; Duan, J.; An, J.; Liu, H. Raindrop Size Distribution Characteristics for Tropical Cyclones and Meiyu-Baiu Fronts Impacting Tokyo, Japan. Atmosphere 2019, 10, 391. [Google Scholar] [CrossRef] [Green Version]
- Seela, B.K.; Janapati, J.; Lin, P.-L.; Reddy, K.K.; Shirooka, R.; Wang, P.K. A Comparison Study of Summer Season Raindrop Size Distribution Between Palau and Taiwan, Two Islands in Western Pacific. J. Geophys. Res. Atmos. 2017, 122, 11–787. [Google Scholar] [CrossRef]
- Le Loh, J.; Lee, D.-I.; You, C.-H. Inter-comparison of DSDs between Jincheon and Miryang at South Korea. Atmospheric Res. 2019, 227, 52–65. [Google Scholar] [CrossRef]
- Seela, B.K.; Reddy, K.K.; Jayalakshmi, J.; Rao, T.N.; Lin, P.-L.; Liu, C.-Y.; Kumar, U. Precipitation and cloud microstructure variations between two southern Indian stations. In Remote Sensing of the Atmosphere, Clouds, and Precipitation VI, Proceedings of SPIE Asia-Pacific Remote Sensing; SPIE: New Delhi, India, 2016; Volume 9876, p. 98761. [Google Scholar] [CrossRef]
- Tokay, A.; Short, D.A.; Williams, C.R.; Ecklund, W.L.; Gage, K.S. Tropical Rainfall Associated with Convective and Stratiform Clouds: Intercomparison of Disdrometer and Profiler Measurements. J. Appl. Meteorol. 1999, 38, 302–320. [Google Scholar] [CrossRef]
- Sumesh, R.; Resmi, E.; Unnikrishnan, C.; Jash, D.; Sreekanth, T.; Resmi, M.M.; Rajeevan, K.; Nita, S.; Ramachandran, K. Microphysical aspects of tropical rainfall during Bright Band events at mid and high-altitude regions over Southern Western Ghats, India. Atmospheric Res. 2019, 227, 178–197. [Google Scholar] [CrossRef]
- McFarquhar, G.M.; Hsieh, T.-L.; Freer, M.; Mascio, J.; Jewett, B.F. The characterization of ice hydrometeor gamma size distributions as volumes in N 0–λ–μ phase space: Implications for microphysical process modeling. J. Atmos. Sci. 2015, 72, 892–909. [Google Scholar] [CrossRef]
- Tokay, A.; Bashor, P.G.; Habib, E.; Kasparis, T. Raindrop Size Distribution Measurements in Tropical Cyclones. Mon. Weather. Rev. 2008, 136, 1669–1685. [Google Scholar] [CrossRef] [Green Version]
- Janapati, J.; Seela, B.K.; Lin, P.-L.; Wang, P.K.; Tseng, C.-H.; Reddy, K.K.; Hashiguchi, H.; Feng, L.; Das, S.K.; Unnikrishnan, C.K. Raindrop Size Distribution Characteristics of Indian and Pacific Ocean Tropical Cyclones Observed at India and Taiwan Sites. J. Meteorol. Soc. Jpn. 2020, 98, 299–317. [Google Scholar] [CrossRef] [Green Version]
- Bao, X.; Wu, L.; Tang, B.; Ma, L.; Wu, D.; Tang, J.; Chen, H.; Wu, L. Variable Raindrop Size Distributions in Different Rainbands Associated with Typhoon Fitow (2013). J. Geophys. Res. Atmos. 2019, 124, 12262–12281. [Google Scholar] [CrossRef]
- Chang, W.-Y.; Wang, T.-C.C.; Lin, P.-L. Characteristics of the Raindrop Size Distribution and Drop Shape Relation in Typhoon Systems in the Western Pacific from the 2D Video Disdrometer and NCU C-Band Polarimetric Radar. J. Atmospheric Ocean. Technol. 2009, 26, 1973–1993. [Google Scholar] [CrossRef]
- Janapati, J.; Seela, B.K.; Lin, P.-L.; Lee, M.-T.; Joseph, E. Microphysical features of typhoon and non-typhoon rainfall observed in Taiwan, an island in the northwestern Pacific. Hydrol. Earth Syst. Sci. 2021, 25, 4025–4040. [Google Scholar] [CrossRef]
- Deo, A.; Walsh, K.J.E. Contrasting tropical cyclone and non-tropical cyclone related rainfall drop size distribution at Darwin, Australia. Atmospheric Res. 2016, 181, 81–94. [Google Scholar] [CrossRef]
- Chen, B.-j.; Wang, Y.; Ming, J. Microphysical characteristics of the raindrop size distribution in Typhoon Morakot (2009). J. Trop. Meteorol. 2012, 18, 162–171. [Google Scholar]
- Radhakrishna, B.; Rao, T.N. Differences in cyclonic raindrop size distribution from southwest to northeast monsoon season and from that of noncyclonic rain. J. Geophys. Res. Space Phys. 2010, 115, 115. [Google Scholar] [CrossRef]
- Kumari, N.P.A.; Kumar, S.B.; Jayalakshmi, J.; Reddy, K.K. Raindrop size distribution variations in JAL and NILAM cyclones induced precipitation observed over Kadapa (14.47 o N, 78.82 o E), a tropical semi-arid region of India. Indian J. Radio Space Phys. 2014, 43, 57–66. [Google Scholar]
- Ramanujam, S.; Radhakrishnan, C.; Subramani, D.; Chakravarthy, B. On the Effect of Non-Raining Parameters in Retrieval of Surface Rain Rate Using TRMM PR and TMI Measurements. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 735–743. [Google Scholar] [CrossRef]
- Balaji, C.; Krishnamoorthy, C.; Chandrasekar, R. On the possibility of retrieving near-surface rain rate from the microwave sounder SAPHIR of the Megha-Tropiques mission. Curr. Sci. 2014, 106, 587–593. [Google Scholar]
- Suh, S.-H.; Kim, H.-J.; Lee, D.-I.; Kim, T.-H. Geographical Characteristics of Raindrop Size Distribution in the Southern Parts of South Korea. J. Appl. Meteorol. Clim. 2021, 60, 157–169. [Google Scholar] [CrossRef]
- Harikumar, R. Orographic effect on tropical rain physics in the Asian monsoon region. Atmospheric Sci. Lett. 2016, 17, 556–563. [Google Scholar] [CrossRef] [Green Version]
- Sumesh, R.K.; Resmi, E.A.; Unnikrishnan, C.K.; Jash, D.; Ramachandran, K.K. Signatures of Shallow and Deep Clouds Inferred from Precipitation Microphysics Over Windward Side of Western Ghats. J. Geophys. Res. Atmos. 2021, 126. [Google Scholar] [CrossRef]
- Radhakrishna, B.; Rao, T.N.; Rao, D.N.; Rao, N.P.; Nakamura, K.; Sharma, A.K. Spatial and seasonal variability of raindrop size distributions in southeast India. J. Geophys. Res. Space Phys. 2009, 114, 114. [Google Scholar] [CrossRef]
- Yuter, S.E.; Kingsmill, D.; Nance, L.B.; Löffler-Mang, M. Observations of Precipitation Size and Fall Speed Characteristics within Coexisting Rain and Wet Snow. J. Appl. Meteorol. Clim. 2006, 45, 1450–1464. [Google Scholar] [CrossRef] [Green Version]
- Löffler-Mang, M.; Joss, J. An Optical Disdrometer for Measuring Size and Velocity of Hydrometeors. J. Atmospheric Ocean. Technol. 2000, 17, 130–139. [Google Scholar] [CrossRef]
- Battaglia, A.; Rustemeier, E.; Tokay, A.; Blahak, U.; Simmer, C. PARSIVEL Snow Observations: A Critical Assessment. J. Atmospheric Ocean. Technol. 2010, 27, 333–344. [Google Scholar] [CrossRef]
- Jaffrain, J.; Berne, A. Experimental Quantification of the Sampling Uncertainty Associated with Measurements from PARSIVEL Disdrometers. J. Hydrometeorol. 2011, 12, 352–370. [Google Scholar] [CrossRef]
- Friedrich, K.; Higgins, S.; Masters, F.J.; Lopez, C.R. Articulating and Stationary PARSIVEL Disdrometer Measurements in Conditions with Strong Winds and Heavy Rainfall. J. Atmospheric Ocean. Technol. 2013, 30, 2063–2080. [Google Scholar] [CrossRef]
- Tokay, A.; Wolff, D.B.; Petersen, W.A. Evaluation of the New Version of the Laser-Optical Disdrometer, OTT Parsivel2. J. Atmospheric Ocean. Technol. 2014, 31, 1276–1288. [Google Scholar] [CrossRef]
- Tokay, A.; Petersen, W.A.; Gatlin, P.; Wingo, M. Comparison of Raindrop Size Distribution Measurements by Collocated Disdrometers. J. Atmospheric Ocean. Technol. 2013, 30, 1672–1690. [Google Scholar] [CrossRef]
- Atlas, D.; Srivastava, R.C.; Sekhon, R.S. Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys. 1973, 11, 1–35. [Google Scholar] [CrossRef]
- Ulbrich, C.W. Natural Variations in the Analytical Form of the Raindrop Size Distribution. J. Clim. Appl. Meteorol. 1983, 22, 1764–1775. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Kozu, T.; Nakamura, K. Rainfall Parameter Estimation from Dual-Radar Measurements Combining Reflectivity Profile and Path-integrated Attenuation. J. Atmospheric Ocean. Technol. 1991, 8, 259–270. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Tokay, A.; Short, D.A. Evidence from Tropical Raindrop Spectra of the Origin of Rain from Stratiform versus Convective Clouds. J. Appl. Meteorol. 1996, 35, 355–371. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Bringi, V.N.; Chandrasekar, V.; Hubbert, J.; Gorgucci, E.; Randeu, W.L.; Schoenhuber, M. Raindrop Size Distribution in Different Climatic Regimes from Disdrometer and Dual-Polarized Radar Analysis. J. Atmospheric Sci. 2003, 60, 354–365. [Google Scholar] [CrossRef]
- Fornis, R.L.; Vermeulen, H.R.; Nieuwenhuis, J.D. Kinetic energy–rainfall intensity relationship for Central Cebu, Philippines for soil erosion studies. J. Hydrol. 2005, 300, 20–32. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, K.; Xue, M.; Zhang, G.; Liu, S.; Wen, L.; Chen, G. Precipitation microphysics characteristics of a Typhoon Matmo (2014) rainband after landfall over eastern China based on polarimetric radar observations. J. Geophys. Res. Atmos. 2016, 121, 12–415. [Google Scholar] [CrossRef]
- Wen, L.; Zhao, K.; Chen, G.; Wang, M.; Zhou, B.; Huang, H.; Hu, D.; Lee, W.-C.; Hu, H. Drop Size Distribution Characteristics of Seven Typhoons in China. J. Geophys. Res. Atmos. 2018, 123, 6529–6548. [Google Scholar] [CrossRef]
- Chen, B.; Yang, J.; Pu, J. Statistical Characteristics of Raindrop Size Distribution in the Meiyu Season Observed in Eastern China. J. Meteorol. Soc. Jpn. 2013, 91, 215–227. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Srivastava, R.C. Evolution of Raindrop Size Distribution by Coalescence, Breakup, and Evaporation: Theory and Observations. J. Atmospheric Sci. 1995, 52, 1761–1783. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Liao, L.; Meneghini, R. A study of air/space-borne dual-wavelength radar for estimation of rain profiles. Adv. Atmospheric Sci. 2005, 22, 841–851. [Google Scholar] [CrossRef]
- Mishchenko, M.; Travis, L.D.; Mackowski, D.W. T-matrix computations of light scattering by nonspherical particles: A review. J. Quant. Spectrosc. Radiat. Transf. 1996, 55, 535–575. [Google Scholar] [CrossRef]
- Brandes, E.A.; Zhang, G.; Vivekanandan, J. Experiments in Rainfall Estimation with a Polarimetric Radar in a Subtropical Environment. J. Appl. Meteorol. 2002, 41, 674–685. [Google Scholar] [CrossRef] [Green Version]
- Liao, L.; Meneghini, R.; Iguchi, T.; Tokay, A. Characteristics of DSD Bulk Parameters: Implication for Radar Rain Retrieval. Atmosphere 2020, 11, 670. [Google Scholar] [CrossRef]
- Zeng, Q.; Zhang, Y.; Lei, H.; Xie, Y.; Gao, T.; Zhang, L.; Wang, C.; Huang, Y. Microphysical Characteristics of Precipitation during Pre-monsoon, Monsoon, and Post-monsoon Periods over the South China Sea. Adv. Atmospheric Sci. 2019, 36, 1103–1120. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, Y.; Zhang, L.; Lei, H.; Xie, Y.; Wen, L.; Yang, J. Characteristics of Summer Season Raindrop Size Distribution in Three Typical Regions of Western Pacific. J. Geophys. Res. Atmos. 2019, 124, 4054–4073. [Google Scholar] [CrossRef] [Green Version]
- Wischmeier, W.H.; Smith, D.D. Rainfall energy and its relationship to soil loss. Trans. Am. Geophys. Union 1958, 39, 285–291. [Google Scholar] [CrossRef]
- Kinnell, P.I.A. Rainfall Intensity-Kinetic Energy Relationships for Soil Loss Prediction1. Soil Sci. Soc. Am. J. 1981, 45, 153. [Google Scholar] [CrossRef]
- Jayawardena, A.W.; Rezaur, R.B. Measuring drop size distribution and kinetic energy of rainfall using a force transducer. Hydrol. Process. 2000, 14, 37–49. [Google Scholar] [CrossRef]
- Verstraeten, G.; Poesen, J.; Demarée, G.; Salles, C. Long-term (105 years) variability in rain erosivity as derived from 10-min rainfall depth data for Ukkel (Brussels, Belgium): Implications for assessing soil erosion rates. J. Geophys. Res. Space Phys. 2006, 111, 111. [Google Scholar] [CrossRef]
- Nanko, K.; Moskalski, S.M.; Torres, R. Rainfall erosivity–intensity relationships for normal rainfall events and a tropical cyclone on the US southeast coast. J. Hydrol. 2016, 534, 440–450. [Google Scholar] [CrossRef] [Green Version]
- Van Dijk, A.I.J.M.; Meesters, A.G.C.A.; Schellekens, J.; Bruijnzeel, L. A two-parameter exponential rainfall depth-intensity distribution applied to runoff and erosion modelling. J. Hydrol. 2005, 300, 155–171. [Google Scholar] [CrossRef]
- Mondal, A.; Khare, D.; Kundu, S. Change in rainfall erosivity in the past and future due to climate change in the central part of India. Int. Soil Water Conserv. Res. 2016, 4, 186–194. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Moreno, J.F.; Mannaerts, C.M.; Jetten, V.; Löffler-Mang, M. Rainfall kinetic energy–intensity and rainfall momentum–intensity relationships for Cape Verde. J. Hydrol. 2012, 454–455, 131–140. [Google Scholar] [CrossRef]
- Lim, Y.S.; Kim, J.K.; Kim, J.W.; Park, B.I.; Kim, M.S. Analysis of the relationship between the kinetic energy and intensity of rainfall in Daejeon, Korea. Quat. Int. 2015, 384, 107–117. [Google Scholar] [CrossRef]
- Iguchi, T.; Seto, S.; Meneghini, R.; Yoshida, N.; Awaka, J.; Kubota, T. GPM/DPR Level-2 Algorithm Theoretical Basis Document; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2010. [Google Scholar]
- Skofronick-Jackson, G.; Petersen, W.A.; Berg, W.; Kidd, C.; Stocker, E.F.; Kirschbaum, D.B.; Kakar, R.; Braun, S.A.; Huffman, G.J.; Iguchi, T.; et al. The Global Precipitation Measurement (GPM) Mission for Science and Society. Bull. Am. Meteorol. Soc. 2017, 98, 1679–1695. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, D.; Ulbrich, C.W. Cloud Microphysical Properties, Processes, and Rainfall Estimation Opportunities. Meteorol. Monogr. 2003, 52, 237–258. [Google Scholar] [CrossRef]
- Atlas, D.; Ulbrich, C.W.; Marks, F.D., Jr.; Black, R.A.; Amitai, E.; Willis, P.T.; Samsury, C.E. Partitioning tropical oceanic convective and stratiform rains by draft strength. J. Geophys. Res. Space Phys. 2000, 105, 2259–2267. [Google Scholar] [CrossRef]
Ocean | Studies | Observational Location | Instrument | TCs Number | Dm (mm) | log10Nw (mm−1 m−3) |
---|---|---|---|---|---|---|
NIO | Present study | Coast | Parsivel | Four | 1.21 ± 0.36 | 3.66 ± 0.51 |
NIO | Present study | Inland | Parsivel | Four | 0.99 ± 0.34 | 3.88 ± 0.57 |
SIO | Deo and Walsh [22] | Darwin, Australia | JWD | Seven | 1.75 | - |
NWP | Chang et al. [20] | Zhongli, north Taiwan | 2DVD | Fourteen | 2 | 3.8 |
Janapati et al. [18] | Kaohsiung, south Taiwan | Parsivel | Six | 1.33 ± 0.39 | 3.42 ± 0.47 | |
Chen et al. [23] | Fujian, east China | Parsivel | One | 1.30 | - | |
Wang et al. [46] | Jiangning, eastern China | 2DVD | One | 1.41 | 4.67 | |
Wen et al. [47] | East and south China. | 2-DVD | Seven | 1.13 ± 0.24 | - | |
Chen et al. [10] | Tokyo, Japan | JWD | Four | 1.25 ± 0.36 | 3.74 ± 0.47 | |
Le Loh et al. [12] | Miryang, South Korea | Parsivel | Two | 1.19 | 3.44 | |
AO | Tokay et al. [17] | USA | JWD | Eight | 1.67 ± 0.30 | - |
Region | Fitting | a | b | c | R2 | RMSE | NRMSE | |
---|---|---|---|---|---|---|---|---|
Coast | KEtime−R | linear | 23.408 | -29.057 | - | 0.979 | 53.831 | 0.296 |
power | 8.838 | 1.244 | - | 0.993 | 30.771 | 0.169 | ||
KEmm−R | power | 10.648 | 0.175 | - | 0.694 | 3.535 | 0.019 | |
logarithmic | 11.028 | 4.898 | - | 0.678 | 3.609 | 0.02 | ||
exponential | 23.225 | 0.591 | 0.056 | 0.678 | 12.225 | 0.067 | ||
KEmm−Dm | power | 9.263 | 1.296 | - | 0.986 | 0.845 | 0.268 | |
polynomial | −1.656 | 18.326 | −7.571 | 0.992 | 11.745 | 3.729 | ||
KEtime−Zku | power | 1.346 × 10−9 | 7.039 | - | 0.979 | 53.719 | 0.997 | |
KEtime−Zka | power | 1.541 × 10−11 | 8.370 | - | 0.942 | 89.286 | 1.999 | |
Inland | KEtime−R | linear | 18.336 | -12.372 | - | 0.973 | 20.088 | 0.347 |
power | 7.724 | 1.266 | - | 0.987 | 13.904 | 0.24 | ||
KEmm−R | power | 8.588 | 0.209 | - | 0.52 | 4.027 | 0.07 | |
logarithmic | 8.925 | 4.244 | - | 0.5 | 4.081 | 0.07 | ||
exponential | 18.561 | 0.636 | 0.115 | 0.5 | 10.685 | 0.185 | ||
KEmm−Dm | power | 8.746 | 1.418 | - | 0.988 | 0.766 | 0.258 | |
polynomial | −0.905 | 16.063 | −6.105 | 0.995 | 9.023 | 3.046 | ||
KEtime−Zku | power | 1.031 × 10−9 | 7.118 | - | 0.961 | 24.197 | 0.544 | |
KEtime−Zka | power | 9.733 × 10−11 | 7.810 | - | 0.988 | 24.197 | 0.591 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seela, B.K.; Janapati, J.; Kalath Unnikrishnan, C.; Lin, P.-L.; Le Loh, J.; Chang, W.-Y.; Kumar, U.; Reddy, K.K.; Lee, D.-I.; Venkatrami Reddy, M. Raindrop Size Distributions of North Indian Ocean Tropical Cyclones Observed at the Coastal and Inland Stations in South India. Remote Sens. 2021, 13, 3178. https://doi.org/10.3390/rs13163178
Seela BK, Janapati J, Kalath Unnikrishnan C, Lin P-L, Le Loh J, Chang W-Y, Kumar U, Reddy KK, Lee D-I, Venkatrami Reddy M. Raindrop Size Distributions of North Indian Ocean Tropical Cyclones Observed at the Coastal and Inland Stations in South India. Remote Sensing. 2021; 13(16):3178. https://doi.org/10.3390/rs13163178
Chicago/Turabian StyleSeela, Balaji Kumar, Jayalakshmi Janapati, Chirikandath Kalath Unnikrishnan, Pay-Liam Lin, Jui Le Loh, Wei-Yu Chang, Utpal Kumar, K. Krishna Reddy, Dong-In Lee, and Mannem Venkatrami Reddy. 2021. "Raindrop Size Distributions of North Indian Ocean Tropical Cyclones Observed at the Coastal and Inland Stations in South India" Remote Sensing 13, no. 16: 3178. https://doi.org/10.3390/rs13163178
APA StyleSeela, B. K., Janapati, J., Kalath Unnikrishnan, C., Lin, P. -L., Le Loh, J., Chang, W. -Y., Kumar, U., Reddy, K. K., Lee, D. -I., & Venkatrami Reddy, M. (2021). Raindrop Size Distributions of North Indian Ocean Tropical Cyclones Observed at the Coastal and Inland Stations in South India. Remote Sensing, 13(16), 3178. https://doi.org/10.3390/rs13163178