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Abstract: Light detection and ranging (LiDAR) can quickly and accurately obtain 3D point clouds
on the surface of rock masses, and on the basis of this, discontinuity information can be extracted
automatically. This paper proposes a new method to automatically extract discontinuity information
from 3D point clouds on the surface of rock masses. This method first applies the improved K-means
algorithm based on the clustering algorithm by fast search and find of density peaks (DPCA) and the
silhouette coefficient in the cluster validity index to identify the discontinuity sets of rock masses, and
then uses the hierarchical density-based spatial clustering of applications with noise (HDBSCAN)
algorithm to segment the discontinuity sets and to extract each discontinuity from a discontinuity set.
Finally, the random sampling consistency (RANSAC) method is used to fit the discontinuities and to
calculate their parameters. The 3D point clouds of the typical rock slope in the Rockbench repository
is used to extract the discontinuity orientations using the new method, and these are compared with
the results obtained from the classical approach and the previous automatic methods. The results
show that, compared to the results obtained by Riquelme et al. in 2014, the average deviation of the
dip direction and dip angle is reduced by 26% and 8%, respectively; compared to the results obtained
by Chen et al. in 2016, the average deviation of the dip direction and dip angle is reduced by 39% and
40%, respectively. The method is also applied to an artificial quarry slope, and the average deviation
of the dip direction and dip angle is 5.3◦ and 4.8◦, respectively, as compared to the manual method.
Furthermore, the related parameters are analyzed. The study shows that the new method is reliable,
has a higher precision when identifying rock mass discontinuities, and can be applied to practical
engineering.
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1. Introduction

Rock mass discontinuities refer to planar geological interfaces with a certain direction,
large extension, and small thickness, and are mainly generated in rock mass under the
action of tectonic stress. The spatial distribution and existing orientation constitute the
rock mass structure. According to “the theory of structure-controlled rock mass” [1],
the discontinuity parameters (orientation, trace, spacing, gap width, roughness, filler,
etc.) of rock mass, especially the discontinuity orientation, are of great significance to the
study of rock mass geo-mechanics [2,3]. Artificial contact measurement methods for the
orientations of rock mass discontinuities include compass measurements and the scanning
line method [4]. Compass measurements are labor-intensive and have low efficiency. They
are also easily affected by weather and terrain characteristics (accessibility, instability,
etc.). Additionally, they are of limited utility for obtaining discontinuity orientations of
metal mine slopes due to the incorrect work of the compass. The scanning line method
needs to enter the exploration site to measure the parameters of the discontinuities, which
is very difficult and dangerous to work. This kind of manual contact measurement is
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often dangerous, labor-intensive, time-consuming, and has limited information acquisition.
Moreover, the precision of the results depends on the professional knowledge and relevant
experience of the surveyor.

In recent years, for orientation measurements of rock mass discontinuities, light
detection and ranging (LiDAR), photogrammetry, and other technologies have been applied
to rock mass engineering [5–9]. These technologies can directly collect 3D point clouds on
the surface of rock masses in real time and with high precision, without being affected by
subjective factors like manual contact measurement, thus making up for the shortcomings
of traditional surveying and mapping. There are some successful cases of discontinuity
orientations being extracted, as can be seen in the data obtained from LiDAR [10–16] and
photogrammetry [17–26].

With the rapid development in the applications of LiDAR technology in the field of
rock mass engineering, research on the extraction of discontinuity orientation based on
LiDAR data has gradually deepened. Initially, these researchers [27–30] manually selected
a series of point cloud subsets of rock mass discontinuities collected from LiDAR and
used the least squares method to fit and calculate its normal vector, which represents the
normal vector of the discontinuities. However, this method requires manual judgment in
order to select a suitable point cloud subset to represent the discontinuity, and this step
is time-consuming and cumbersome. Therefore, some researchers [31–33] proposed the
use of the neighborhood relationship between 3D point clouds in order to overcome the
limitations of the above method—that is, to form a plane with a sufficiently small radius,
and to calculate the normal plane vectors based on this relationship. For example, the
principal component analysis method [31] can be used to analyze the neighborhood of
each point and to calculate the normal vector; however, this method needs to perform
a neighborhood search for each point in the point clouds, and the radius is difficult to
determine under the uneven density. Later, some researchers proposed other algorithms,
such as the algorithm based on searching for volumetric pixels [12] and the region growing
algorithm [34]. It can be seen from the above research that there are two main ideas for
extracting the discontinuities on rock masses. The first is to directly extract them from the
original 3D point clouds on the rock mass surface. The steps are as follows: (a) firstly, find
the neighboring points from the original 3D point clouds in order to form an approximate
plane; (b) then project the normal vector of the plane into the 3D network, and use the
kernel density estimation (KDE) [35] to identify the main orientations of the discontinuity
set; and (c) finally use a clustering algorithm (MeanShift [36], density-based scan algorithm
with noise (DBSCAN) [27], etc.) to segment the discontinuity set. The second method is
to extract them from the digital surface model (DSM) of the rock mass. The steps are as
follows: (a) firstly, use the triangulated irregular network (TIN) for the 3D point clouds
in order to create the DSM of rock mass, calculate the normal vector of each triangle, and
determine the same discontinuity set by the triangles with similar normal vectors; (b)
then use the region growing algorithm to grow the triangles of the same discontinuity
set and identify a single discontinuity in each discontinuity set; and finally (c) calculate
the orientation of each discontinuity [9,37]. However, in the first method, the radius (or
numbers) of the neighboring points is related to the structure and surface roughness of the
rock mass. The radius value is difficult to determine, and the number of discontinuity sets
also needs to be manually determined. Considering the limitations of the first method, this
paper first creates a DSM using TIN, based on the 3D point clouds of the rock surface, and
then the discontinuities are extracted.

In this paper, a new method for automatically extracting discontinuity information
from the TIN of the rock mass is proposed. Compared to previous studies, the main
contributions are as follows: (1) the optimal triangle mesh size for creating the TIN is
determined in order to provide high-quality basic data for subsequent identification and
segmentation of the discontinuity set; (2) the improved K-means algorithm based on
DPCA and silhouette coefficient in the cluster validity index can automatically identify
discontinuity sets and determine the optimum number of clusters, thus avoiding manual
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determination of the number, as in previous studies, and has a high degree of automation;
(3) it is proposed the use of the hierarchical density-based spatial clustering of applications
with noise (HDBSCAN) [38] algorithm to extract a single discontinuity, which combines the
hierarchical clustering algorithm with the DBSCAN algorithm. The parameter adjustment
of this algorithm is relatively simple and robust. For the point clouds with large variations
in density, the reliability of the HDBSCAN algorithm can also be guaranteed.

2. Data and Methodology

The method mainly includes the following four steps (Figure 1):

(1) Data preprocessing. First, remove noise points and outliers from the point clouds of
the rock mass, then resample the point clouds and use the Delaunay algorithm to
generate a TIN of the rock mass surface. Compared to the regular grid model, TIN
has the advantages of reducing data redundancy, better performance of variation
characteristics, and easy calculation [9,37].

(2) Discontinuity set recognition. Firstly, calculate the normal vector and centroid of each
triangle of the TIN. Secondly, use the DPCA to identify the main potential directions
of the discontinuity set. Next, use the K-means algorithm to cluster the discontinuity
set. Finally, combine the silhouette coefficient to determine the optimum clustering
result. The clustering results can be expressed as Group 1, Group 2, . . . Group k.

(3) Discontinuity set segmentation. Use the HDBSCAN algorithm to segment the discon-
tinuity set after clustering and identify each discontinuity. Suppose each discontinuity
set has m, n, . . . , p discontinuities, respectively.

(4) Discontinuities fitting. Use the RANSAC method to fit the discontinuities and to
obtain its parameters.
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2.1. Test Data Set Description

This paper uses the rock slope case dataset in the Rockbench repository [39] in order to
test the new method proposed. The Rockbench repository is an open database established
by Lato et al. in 2009 to realize the sharing of rock mass data in earth sciences. The database
is updated with the point clouds of typical cases, such as regular geometries and rock
slopes collected by LiDAR and photogrammetry from time-to-time to provide public point
clouds of rock mass for all researchers. The public point clouds of rock mass can be used to
extract rock mass discontinuities in subsequent innovative algorithms, which is convenient
to compare and analyze the improvement with previous methods, and to promote progress
in the field of automatic extraction of rock mass discontinuities. The dataset is available at
www.3D-landslide.com/projects/discontinuity/ accessed on 20 June 2020 [40]. It is located
in Ouray, CO, USA (Figure 2), and the LiDAR data is publicly available. The dataset is the
point clouds collected by an Optech ILRIS-3D laser scanner at four scan positions in 2004.
The scanning time was about 15 min, the resolution was about 2 cm, and there was a total
of 1,515,722 points. In this paper, the area in the red box (Figure 2) is selected as the test
data set in order to illustrate the applicability of the new method.
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2.2. Data Preprocessing

According to the new method, the point clouds of the rock slope need to be prepro-
cessed. Firstly, use the moving least squares method [41] to denoise point clouds in order
to reduce noise data generated by inevitable factors, such as instruments and dust [42].
Then, to save time and money, the point clouds can be resampled using the space method
without affecting the rock mass structure. Considering that 0.5 m is often used as the
lower limit of the discontinuity extraction in general engineering, this paper selected 5 cm
as the resampling parameter [43]. Finally, the Delaunay algorithm was used to create a
TIN from the point clouds. The preprocessing steps in this paper reference the method
proposed by Chen et al. [37]. Figure 3a shows the original point clouds of the rock slope.
After preprocessing, the rock slope was composed of 219,709 faces (Figure 3b) from 110,839
vertices (Figure 3a).

www.3D-landslide.com/projects/discontinuity/
www.3D-landslide.com/projects/discontinuity/
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2.3. Discontinuity Set Recognition
2.3.1. Normal Vector and Centroid Computation

When the Delaunay algorithm is used to create a TIN from the point clouds, the
calculation process of the normal vector and centroid of each triangle in the TIN is as
follows: assume that the vertices of the triangle f i are P1 (X1, Y1, Z1), P2 (X2, Y2, Z2), and
P3 (X3, Y3, Z3), arranged counterclockwise. n = (A, B, C) is the normal vector and Ck is the
centroid of the triangle f i. Calculate the vector between P1 and P2, and P1 and P3, which are
expressed as P1P2 = (X2 − X1, Y2 − Y1, Z2 − Z1) and P1P3 = (X3 − X1, Y3 −Y1, Z3 − Z1).
The normal vector n = (A, B, C) can be expressed as a cross product of P1P2 and P1P3, then
A, B, and C can be calculated by Formula (1):

A = (Y2 − Y1)(Z3 − Z1) − (Z2 − Z1)(Y3 − Y1)

B = (Z2 − Z1)(X3 − X1) − (X2 − X1)(Z3 − Z1)

C = (X2 − X1)(Y3 − Y1) − (Y2 − Y1)(X3 − X1)

(1)

The centroid Ck can be calculated by Formula (2):

Ck = (
X1 + X2 + X3

3
,

Y1 + Y2 + Y3

3
,

Z1 + Z2 + Z3

3
) (2)

2.3.2. Determination of the Main Direction of Discontinuity Set

This research used the clustering algorithm by fast search and find of density peaks,
named DPCA in this paper, to determine the main potential directions of the discontinuity
set [44]. DPCA is based on the local density of sample points to detect the arbitrary shape
of the clustering center. Compared to the traditional MeanShift algorithm, which selects a
density threshold in spatial clustering and takes the points lower than the density threshold
as noise and distributes them to different high-density areas to detect the clustering center,
the DPCA directly converges all sample points to the density distribution function and
takes the local maximum points of each region as the clustering center. This method
can identify clusters of arbitrary shapes and has a low time cost. Since the DPCA is
faster and more reliable than the traditional clustering algorithm at identifying the main
directions of a discontinuity set, this paper applied the DPCA to identify the main potential
directions of the discontinuity set based on the local density and the minimum distance
between the sample point and any other sample points with a higher local density [45].
According to previous studies [46,47], the orientations belonging to one discontinuity set
basically conform to the Fisher’s distribution. The density of the sample point near the
main orientation is very large and decreases when the distance to the main orientation
increases. The principle is as follows:
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The distance between the normal vectors di and dj corresponding to the sample point i
and j is defined as Formula (3):

dij = arccos
(∣∣di · dj

∣∣) (3)

Calculate the local density ldi of the normal vector of the sample point i by Formulas
(4) and (5):

ldi = ∑
j

χ
(

dij − dc f

)
(4)

χ(d) =
{

1, d < 0
0, d ≥ 0

(5)

where dij is the distance between the normal vectors of the sample point i and j, and dcf is
the cutoff distance. ldi represents the number of sample points with distances to the sample
point i less than dcf. d refers to the difference between dij and dcf; if it is less than 0, the
local density of the sample point is increased by 1, whereas if it is greater than 0, the local
density of the sample point remains unchanged.

Calculate the minimum distance mdi between sample point i and the other sample
points with a local density greater than ldi using Formula (6):

mdi = min
j:ldj>ldi

(
dij

)
(6)

According to the ld and md of each sample point, the DPCA can automatically detect
the main potential directions. The specific process is as follows: Firstly, the normal vectors
of all the sample points are projected into the isometric 3D network, and as seen in Figure 4a,
the rock slope could have five main directions, respectively. Secondly, the DPCA is used to
calculate the ld and md of each sample point. ld is calculated by the criteria that the distance
between the normal vector of the sample point and the normal vectors of other sample
points is less than dcf. If dcf is too large, it will lead to the same ld between the dense sample
points. If it is too small, it will lead to the same ld between the sparse sample points. Thus,
dcf is set to 0.05. Figure 4b shows the ld and md corresponding to all the sample points in
the rock slope. The main potential directions are located in the discrete area in the decision
graph, and the points in the red circle indicate the potential main directions that can be
selected.
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The selection process is as follows: (a) select the first n of the obvious outlier sample
points with the largest product of ld and md successively and put them into set C, which is a
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set of potential clustering centers detected by DPCA. The point in set C with the maximum
product value of ld and md is taken as the initial center and is deleted from set C to avoid
repeated selections in subsequent steps; (b) select the next cluster center in set C—the
requirements are as follows: (1) the angle between the next cluster center and the selected
cluster center is greater than the threshold α. According to Formula (3), the maximum angle
between the normal vectors projected into the 3D network is 90◦, and generally, the rock
mass discontinuities can be divided into a maximum of six clusters [43], so the threshold α
is set to 15◦; (2) select the sample point with the largest production of ld and md that meet
condition (1) in set C, and delete it from set C. Repeat the above steps until k centers are
selected.

2.3.3. Determination of the Optimum Number of Discontinuity Set

The optimum clustering of the rock mass discontinuities is the basis of the rock
mass mechanical analysis and stability evaluation. This paper introduces the silhouette
coefficient [48] in the cluster validity index in order to determine the optimal number of
discontinuity sets; this is an index that combines the cohesion and separation of clustering
in order to evaluate the effectiveness of clustering. Suppose the point clouds of the rock
slope can be divided into k clusters. xi is a sample in one of the clusters. Define a(xi) as
the average distance between xi and all the other samples in the same cluster, and b(xi) as
the minimum average distance between xi and samples in other clusters. The silhouette
coefficient of xi is defined by Formula (7):

S(xi) =
b(xi)− a(xi)

max(a(xi), b(xi))
(7)

Among them, if the value of S(xi) is close to 1, it means that xi is correctly assigned to
the appropriate cluster; if the value of S(xi) is close to 0, it means that xi can be assigned
to this cluster or other clusters, because the average distance from xi to the other clusters
is equal; if the value of S(xi) is close to −1, it means that xi is misclassified. Calculate the
silhouette coefficients of all the sample points and their average value, which is called the
average silhouette coefficient, to represent the effectiveness of the current clustering result.
In this paper, k is set from 2 to 6. Calculate the average silhouette coefficient corresponding
to each k value and use the k value with the larger average silhouette coefficient as the final
clustering number of the discontinuity set. It can be seen from Figure 5, the number of
clusters corresponding to the maximum average silhouette coefficient for the rock slope is
5, which means that the optimal number of clusters for the rock slope is 5.
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2.4. Discontinuity Set Segmentation

DBSCAN is a common method used to automatically extract each discontinuity in
a discontinuity set. In previous studies [9,49], DBSCAN has successfully extracted a
single discontinuity from the discontinuity set. However, an obvious disadvantage of the
DBSCAN is that many parameters need to be adjusted. For data sets with large changes
in density, it is difficult to adjust the parameters [9,27,30,50]. Focusing on the difficulty
of parameter adjustment using the DBSCAN to process the data with uneven variations
in density, this paper proposes the use of the HDBSCAN to segment discontinuity sets.
HDBSCAN was proposed by Campello et al. [38], and was originally used to classify
various data sets. Its basic principle is to introduce the idea of hierarchical clustering on
the basis of the DBSCAN in order to generate a hierarchy based on density clustering, from
which the discontinuity can be extracted more effectively. A detailed introduction of the
HDBSCAN can be found in [50,51].

The HDBSCAN is based on the mutual reachability graph of a certain Min-pts to reflect
the reachable distance between any sample points. Min-pts is the minimum number of
neighbors of point q that regards q as a core point. The reachable distance between any two
points p and q of a certain Min-pts can be expressed by Formula (8):

dmreach(p, q) = max{core(p), core(q), d(p, q)} (8)

where d(p,q) represents the distance between p and q and core(p) represents the distance
between the core point p and the Min-pts point. Similarly, the representation of core(q) is
the same. Therefore, when Min-pts becomes larger, the core(p) will accordingly become
larger. The steps to segment a single discontinuity from the discontinuity set based on
HDBSCAN are as follows: (a) calculate the core distance of the sample point, that is, the
Euclidean distance between each sample point and the Min-pts sample point; (b) calculate
the reachable distance between sample points using Formula (8) and define it as the distance
of the two sample points. The advantage of this process is that the distance of the sample
points in the dense area is not affected, while the distance between the sample points in
the sparse area and other sample points is enlarged; (c) construct a mutual reachability
graph based on the reachable distance between every two sample points, where the sample
points are vertices, and the edge between any two points is their reachable distance and (d)
delete the long edge in the mutual reachability graph, and output the best segmentation
result, that is, divide each discontinuity set into a single discontinuity (Figure 6).
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Figure 6. HDBSCAN algorithm segmentation flowchart.

For the only parameter, Min-pts, that needs to be set at HDBSCAN, Campello et al. [38]
suggested starting to search from the least neighboring points without prior knowledge.
Therefore, this paper starts from 2 and gradually increases the value of Min-pts. In addition,
a large number of small discontinuities may be detected in the rock slope. In practical
applications, we may only need to extract large discontinuities. Therefore, a threshold
Min-size, which is the minimum number of triangles to extract discontinuity, needs to be
set to delete these small discontinuities. Combined with the actual situation of this paper,
set the Min-size to 50. Figure 7 shows the segmentation results of the rock slope using the
HDBSCAN, with blue, cyan, yellow, red, and orange representing five discontinuity sets.
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Table 1 shows the results of the new method proposed alongside those of Riquelme
et al. [40]. From Table 1, it can be seen that the new method proposed has a similar effect
on the discontinuity direction of the rock slope to that found by Riquelme et al. [40]. The
results of both are consistent. The maximum dip direction deviation ∆|DD| is 2.95◦, the
minimum is 0.02◦, the maximum dip angle deviation ∆|DA| is 3.72◦, and the minimum is
0.94◦.

Table 1. Results of clustering discontinuity sets of the rock slope.

Set Dip Direction/Dip Angle
(◦) by New Method

Number of
Clusters

Dip Direction/Dip Angle
(◦) by Riquelme et al. [40]

Number of
Clusters

∆|DD|
(◦)

∆|DA|
(◦)

J1 248.17/34.74 50 249.04/36.66 59 0.87 1.92
J2 172.27/82.22 14 172.29/83.16 14 0.02 0.94
J3 134.38/81.59 66 137.33/77.87 56 2.95 3.72
J4 93.67/50.82 45 092.96/48.74 34 0.71 2.08
J5 286.22/65.56 55 288.45/68.22 57 2.23 2.66

2.5. Discontinuities Fitting

After segmenting the discontinuity set into single discontinuities based on the HDB-
SCAN algorithm, we only obtained an approximate plane, which was usually rough and
wavy. It was necessary to fit the discontinuity in order to obtain its orientation. Riquelme
et al. [40] mostly selected representative point clouds in a discontinuity or manually ad-
justed the area with large fluctuations in order to fit the plane, which is time-consuming and
subjective. Therefore, Fischler and Bolles [52] proposed the use of the Random Sampling
Consistency (RANSAC) method to fit rough and undulating planes. The fitting process
is as follows: (1) randomly select three points on the plane subset and define the plane
equation; and (2) set a threshold d, calculate the distance from other points in the plane
subset to the plane. If the distance is less than d, then take the point as the interior point
of the plane and count the number of interior points. (3) Repeat steps (1) and (2), and the
plane with the largest number of interior points will be the best fitted. A detailed RANSAC
method is described in [52,53].
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2.6. Clustering Results for the Rock Slope

The clustering results of the rock slope using the new method are shown in Figure 8a.
After segmentation, the discontinuities in the same discontinuity set are represented by
the same color. To facilitate a comparison with the research results, Riquelme et al. [40]
selected 19 discontinuities of the rock slope in 2014, of which the first discontinuity set took
seven discontinuities (Figure 8b), the second and fifth discontinuity sets took four and two
discontinuities, respectively (Figure 8c), and the third and fourth discontinuity sets took
three discontinuities, respectively (Figure 8d).
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Table 2 lists the precision comparison between the two different automatic methods
and the classical approach with best-fit planes using PolyWorks. The results show that the
deviations in the dip direction and dip angle of 89.5% discontinuities were between 0–8◦,
but there were also discontinuities marked as 13 and 41 that had larger deviations.
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Table 2. Comparison of orientation results using different methods.

Discontinuity
Discontinuity Orientations by Riquelme et al. in 2014 (◦) Chen et al. in 2016 (◦) New Method (◦)

Classical Approach
(◦)

Riquelme et al. in
2014 (◦)

Chen et al. in 2016
(◦) New Method (◦) ∆|DD| ∆|DA| ∆|DD| ∆|DA| ∆|DD| ∆|DA|

11 249.18/40.23 246.24/39.02 244.62/38.38 246.22/38.99 2.94 1.21 4.56 1.85 2.96 1.24
12 264.23/57.02 256.86/52.3 256.18/52.16 266.09/54.72 7.37 4.72 8.05 4.86 1.86 2.30
13 263.97/41.91 70.26/35.8 251.04/36.17 250.86/36.09 13.71 6.11 12.93 5.74 13.11 5.82
14 252.58/36.53 252.68/35.48 251.44/33.85 252.24/37.00 0.10 1.05 1.14 2.68 0.34 0.44
15 248.71/36.98 249.74/35.91 250.82/36.83 250.43/35.85 1.03 1.07 2.11 0.15 1.73 1.13
16 254.77/29.86 70.47/35.91 250.46/35.86 250.43/35.85 4.30 6.05 4.31 6.00 4.34 5.99
17 249.85/35.94 255.12/32.82 253.19/33.46 254.90/32.60 5.27 3.12 3.34 2.48 5.05 3.34
21 338.68/82.35 339.47/83.25 157.55/83.81 338.63/82.20 0.79 0.90 1.13 1.46 0.05 0.15
22 347.47/79.01 166.33/76.58 166.31/78.73 348.76/80.77 1.14 2.43 1.16 0.28 1.29 1.76
23 341.04/89.5 160.2/89.86 157.52/86.88 159.98/88.48 0.84 0.36 3.52 2.62 1.06 1.02
24 353.5/76.4 173.55/76.85 353.07/77.82 172.64/77.88 0.05 0.45 0.43 1.42 0.86 1.48
31 314.1/77.18 136.59/82.58 314.73/80.04 136.43/86.25 2.49 5.40 0.63 2.86 2.24 9.07
32 302.36/75.92 131.225/82.67 136.52/89.85 124.76/79.25 8.87 6.75 14.16 13.93 2.40 3.33
33 330.19/83.01 143.91/89.7 145.62/89.85 326.47/89.77 6.28 6.69 4.57 6.85 3.72 6.76
41 286.12/58.91 97.55/63.22 285.98/59.84 98.10/62.34 8.57 4.31 0.14 0.93 8.02 3.43
42 274.18/51.09 91.07/50.19 272.57/47.64 91.09/50.54 3.11 0.90 1.61 3.45 3.09 0.55
43 277.22/46.42 96.64/47.97 277.31/49.31 97.24/47.27 0.58 1.55 0.09 2.89 0.02 0.85
51 305.04/77.62 123.42/76.15 305.04/77.62 304.07/79.79 1.62 1.47 16.25 4.41 0.97 2.17
52 290.16/66.99 105.75/69.94 109.29/76.61 284.94/69.56 4.41 2.95 0.87 9.62 5.22 2.57

Maximum deviation 13.71 6.75 16.25 13.93 13.11 9.07
Average deviation 3.87 3.03 4.26 3.92 3.07 2.81
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Figure 9a shows the two discontinuities with the largest deviation, and Figure 9b,c
are the enlarged discontinuities marked as 13 and 41, respectively. The areas of these
discontinuities are small, and the surface undulations are large, resulting in large deviations
between the orientation of the discontinuities using the new method and the classical
approach.
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3. Workflow Application to an Artificial Quarry Slope

The point clouds of the artificial quarry slope acquired with an ILRIS-3D laser scan-
ner are used to verify whether the proposed new method can be applied to actual rock
engineering. The artificial quarry slope is located in Nanshanzui, Hengqin Island, Zhuhai
City, Guangdong Province, China. The slope is about 750 m long, 100 m wide, and 100 m
high. The exposed section is about 40–70 m high. The ILRIS-3D laser scanner from Optech
of Canada with a 10 kHz laser emission frequency and a ranging capability greater than
3 km was used to collect the artificial quarry slope with a resolution of less than 2 cm.
The experimental area is part of the artificial quarry slope, as shown in Figure 10. The
experimental area is about 30 m long and 35 m high. After preprocessing, the created
experimental area TIN consisted of 235,950 surfaces from 120,222 points (Figure 11).
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3.1. Clustering Results of the Artificial Quarry Slope

Based on the new method proposed, the average silhouette coefficients under different
cluster numbers were calculated, and the relationship between the average silhouette
coefficient and the number of clusters was drawn, as shown in Figure 12. The results show
that, when k was equal to 3, the average silhouette coefficient was the largest, so the artificial
quarry slope could be divided into three discontinuity sets. Then, the HDBSCAN algorithm
was used to segment the three discontinuity sets and to extract each discontinuity from the
three discontinuity sets, respectively. The clustering results are shown in Figure 13, with
three discontinuity sets represented by green, cyan, and red, respectively.
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Table 3 shows the clustering results of the discontinuities of the artificial quarry
slope using the new method and the manual measurement method with fitting the plane
by manually selecting the point cloud subset of the plane in CloudCompare. It can be
seen from Table 3 that the maximum deviation between the measurement results of the
discontinuities orientation of the artificial quarry slope using the new method and the
manual measurement results is 8.72◦, the average deviation of the dip direction is 5.32◦,
and the maximum deviation of the dip angle is 9.98◦, the average deviation of the dip angle
is 4.81◦. Since the discontinuities in the data are mostly curved and undulating, the manual
measurement method cannot be accurate because the results are affected by the surface
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roughness. The RANSAC method has strong robustness and can find the largest subset of
data related to the plane in order to represent the plane.

Table 3. Results of the clustering discontinuity sets of the artificial quarry slope.

Set Dip Direction/Dip Angle
(◦) by New Method

Number of
Clusters

Dip Direction/Dip Angle
(◦) by Manual Method

Number of
Clusters

∆|DD|
(◦)

∆|DA|
(◦)

J1 163.64/61.77 150 160.22/64.58 60 3.42 2.81
J2 198.56/54.61 188 189.84/44.63 81 8.72 9.98
J3 225.73/66.11 172 221.93/67.76 64 3.83 1.65

Average deviation 5.32 4.81

3.2. The Influence of the Triangle Mesh Size

To analyze the influence of the triangle mesh size on the extraction of discontinuities,
the point cloud of the artificial quarry slope was resampled from 2 cm to 15 cm. By
analyzing a number of discontinuities under different triangle mesh sizes, the optimal
triangle size of the artificial quarry slope could be obtained. Figure 14 shows the number
of discontinuities identified under different triangle mesh sizes. According to previous
research [54], the optimal triangle mesh size will appear at the “knee” position in the trend
line (red area of Figure 14). This is because, when the triangle mesh size is too small, the
density of the TIN will be too large and will generate noisy data, which will cause a number
of discontinuities to change sharply and become unstable (green area of Figure 14); when
the triangle mesh size is too large, the discontinuities with too small area may merge with
the adjacent surface, resulting in the loss of structural surface data, and the real structure
of discontinuities cannot be presented well (blue area of Figure 14).
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Therefore, it can be seen from Figure 14 that, according to the optimal triangle mesh
size appearing at the “knee” position of the trend line, the optimal triangle mesh size for
the artificial quarry slope is between 4 and 6 cm.

3.3. The Impact of HDBSCAN Algorithm Parameter Min-pts

In this paper, the parameter, Min-pts, in the HDBSCAN algorithm was set to 2, 4, 6,
8, 10, 12, 16, and 20, respectively, in order to analyze the influence of different values of
Min-pts on the discontinuity segmentation. Figure 15 shows the automatic segmenting
results of the artificial quarry slope under different values of Min-pts. It can be seen from
Figure 15 that the value of Min-pts has little effect on the automatic segmenting results of
the artificial quarry slope.



Remote Sens. 2021, 13, 2894 16 of 23

Remote Sens. 2021, 13, x FOR PEER REVIEW 15 of 22 
 

 

Figure 15 that the value of Min-pts has little effect on the automatic segmenting results of 
the artificial quarry slope. 

 
Figure 15. Segmenting result of Min-pts = (a) 2; (b) 4; (c) 6; (d) 8; (e) 10; (f) 12; (g) 16; (h) 20; and (i) artificial quarry slope 
image. 

Figure 16 shows the number of discontinuities of the artificial quarry slope under 
different values of the parameter Min-pts in the HDBSCAN algorithm. As can be seen 
from Figure 16, when Min-pts is set to 10, the maximum number of discontinuities is 528; 
when Min-pts is set to 6, the minimum number of discontinuities is 499. Under different 
Min-pts, the maximum deviation in the number of discontinuities is about 5.6%. 

Figure 15. Segmenting result of Min-pts = (a) 2; (b) 4; (c) 6; (d) 8; (e) 10; (f) 12; (g) 16; (h) 20; and (i) artificial quarry slope
image.

Figure 16 shows the number of discontinuities of the artificial quarry slope under
different values of the parameter Min-pts in the HDBSCAN algorithm. As can be seen from
Figure 16, when Min-pts is set to 10, the maximum number of discontinuities is 528; when
Min-pts is set to 6, the minimum number of discontinuities is 499. Under different Min-pts,
the maximum deviation in the number of discontinuities is about 5.6%.
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It can be concluded that the parameter Min-pts has little influence on the number of
discontinuities of the artificial quarry slope. It was verified that the HDBSCAN algorithm
can segment discontinuities in data with uneven density without the constant adjustment
of parameters with the DBSCAN algorithm. Therefore, in this paper, Min-pts is set to 4.

4. Discussion
4.1. Comparison of the Extracting Results of the Rock Slope

Illustrated by the case of the typical rock slope, we clarified in detail how to identify the
main potential directions of DPCA, determine the number of discontinuity sets by the sil-
houette coefficient (Section 2.3), segment the discontinuity sets by HDBSCAN (Section 2.4),
fit the discontinuities by the RANSAC method (Section 2.5), and compare the extracted
results with those obtained by Riquelme et al. [40] and Chen et al. [37] (Section 2.6). The re-
sults show that (1) the new method has higher extraction precision. The average deviations
of the dip direction and dip angle are 3.07◦ and 2.81◦, respectively, which are smaller than
those found by Riquelme et al. [40] (3.87◦ and 3.03◦) and Chen et al. [37] (4.26◦ and 3.92◦);
the average deviations have been reduced (26% and 8%) and (39% and 40%), respectively.
(2) The new method has high computational efficiency. Based on the workstation and intel
cores with i7-6700 CPU and 16GB RAM, the automatic extraction of discontinuities takes
about 1.4 h, as compared to the work of Riquelme et al. [40] (1.5 h in a workstation with
the Intel Core i3-350M and 8GB DDR3 RAM) and Chen et al. [37] (2.5 h in a workstation
with the Intel Core i7-2600 CPU and 16 GB RAM).

In addition, in determining the number of discontinuities using the silhouette coeffi-
cient, the rock slope was divided into three discontinuity sets by Chen et al. [37] and five
discontinuity sets by the new method (Figure 7). As the work of Chen et al. [37] was done
according to the statistical density of all the samples, the sample point with the maximum
density was determined as the initial clustering center, and the sample point with the
maximum distance from it was selected as the next center point until the k centers were
selected. However, this paper first projects the normal vectors of all the sample points into
the stereo network, obtains the main potential direction by DPCA, and then determines the
k value by combining it with the silhouette coefficient. The advantage of this method is
that the main direction with small sample points can also be identified accurately.

4.2. Analysis of the Optimal Triangle Mesh Size

This paper introduces Lato et al.’s [54] idea of discussing the relationship between
the optimal triangle mesh size and the number of discontinuities. Based on the trend line
drawn with the triangle mesh size as the horizontal axis and the number of discontinuities
as the vertical axis, it was determined that the optimal triangle mesh size would appear
at the “knee” position of the trend line. When the triangle mesh size is too small, it will
cause noise data due to excessive density in the process of generating TIN, which makes
the number of discontinuities sharply increase; when the triangle mesh size is too large,
it will cause a discontinuity with too small an area to merge with the adjacent surfaces,
resulting in the loss of discontinuities, and the true structure of the rock mass cannot be
well presented. For the artificial quarry slope, the trend line reflecting the relationship
between the number of discontinuities and triangle mesh sizes is drawn. It can be seen
from Figure 14 that the optimal triangle mesh size of the artificial quarry slope is between
4 and 6 cm according to the “knee” position of the trend line. Therefore, 5 cm was selected
as the optimal triangle mesh size. In order to verify the reliability of this selection, the
experiments on the triangle mesh sizes of 3 cm and 7 cm were carried out; the results are
shown in Table 4 and are compared with 5 cm data.
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Table 4. Comparison of different triangle mesh sizes.

Triangle Mesh Size (cm) Number of Discontinuities Time (h)
Precision (◦)

∆|DD| ∆|DA|

3 736 3.25 4.97 4.53
5 510 1.39 5.32 4.81
7 356 0.36 6.04 5.73

It can be seen from Table 4 that compared to the triangle mesh size of 5 cm, when the
triangle mesh size is 3 cm, the number of discontinuities is larger, although the average
deviation of the dip direction and dip angle are smaller, which are 4.97◦ and 4.23◦, respec-
tively, the calculation time is longer at 3.25 h; when the triangle mesh size is 7 cm, the
number of discontinuities decreases, although the calculation time is 0.36 h, the average
deviation in the dip direction and dip angle are larger at 6.04◦ and 5.73◦, respectively.
Therefore, considering the number of discontinuities, extraction precision, and calculation
time, this paper determines that the optimal triangular mesh size of the artificial quarry
slope is 5 cm. The purpose is not to damage the rock mass structure of the artificial quarry
slope. While reducing the extraction precision slightly, the calculation time can be greatly
reduced, and it is reasonable that the optimal triangle mesh size is at the “knee” of the
trend line.

4.3. Relevant Parameters of Proposed New Method

The new method proposed in this paper involves the following parameters: the
cutoff distance dcf and the angle α between the main directions when identifying the
main potential directions by DPCA; the only parameter Min-pts when segmenting the
discontinuity sets by HDBSCAN; and the minimum number of triangles Min-size in a
discontinuity.

When identifying the main potential directions according to the DPCA, the cutoff
distance dcf and the angle α between the main directions need to be set. The cutoff distance
dcf will affect the local density of the sample point. If dcf is too large, it will reduce the
difference of local density and may not be able to effectively identify the main direction. If
the dcf is too small, it will cause the main directions with approach directions to increase.
Gao et al. [45] conducted a detailed sensitivity analysis of dcf and proposed that the lower
limit and upper limit of dcf be set to 0.005 and 0.12, respectively. Generally, if dcf is greater
than 0.12, it will cause the angle between two discontinuities normal vectors to be about
20◦. If dcf is less than 0.005, the angle between two discontinuities normal vectors is about
4◦. Therefore, based on the sensitivity analysis of dcf by Gao et al. [45], this paper sets dcf to
0.05. The angle α between the main directions will affect the number of discontinuity sets.
Due to the normal vector projected into the 3D network, the maximum angle between the
normal vectors is 90◦, and generally, the rock mass discontinuities can be divided into six
clusters at most. If α is greater than 15◦, the number of discontinuity sets will be less than
six, which is unreasonable for a rock mass with more discontinuity sets.

The influence of the unique parameter Min-pts in the HDBSCAN algorithm on the
segmentation results (Figure 15) and the number of discontinuities (Figure 16) is discussed.
It can be seen that when the Min-pts is at 2–20, the segmentation result of discontinuity
is almost unchanged, and the fluctuation range of discontinuity number is only 5.6%,
which proves that the HDBSCAN algorithm has good robustness for clustering results
with different Min-pts values, and it does not need to adjust multiple parameters manually
like other algorithms to get a better result (Section 3.3).

For an actual rock mass, we may only need large discontinuities, and small disconti-
nuities need to be deleted. Therefore, it is necessary to set Min-size, which is the minimum
number of triangles in the discontinuity. When the Min-size is small, many small disconti-
nuities will be identified, and when the Min-size is large, some real discontinuities may be
discarded. In this paper, the Min-size is set to 50, and the new method is used to extract the
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number of discontinuity and the main direction of the discontinuity set of the rock slope,
which is basically consistent with the results extracted by Riquelme et al. [40] (Table 1).
However, it is necessary to analyze the Min-size in the future, because the number of point
clouds in each discontinuity set of the rock mass may be different. As a result, a discontinu-
ity set with a larger number of point clouds will identify many small discontinuities, and a
small number of point clouds will discard some discontinuities. Therefore, it is necessary
to set different Min-sizes for the discontinuities in each discontinuity set in the future.

4.4. Discussion on Fitting Plane by RANSAC

In fitting the discontinuities, the discontinuities are usually curved and undulating,
resulting in the manual measurement being affected by the surface roughness and the
results not being accurately obtained. For example, for rough exposed surfaces, manual
measurement with a compass only uses the accessible part of the joint surface without
considering the change of the entire surface. In this paper, the RANSAC method con-
sidering curve and undulate can produce more objective estimates. The direction of the
discontinuity is related to the best fit plane. The RANSAC method is used to select the
point clouds with the largest interior point in order to represent the whole plane, which
effectively avoids the influence of some point clouds with large deviations.

For the two representative rough discontinuities marked as 13 and 41 in Figure 9, the
fitting results are shown in Figure 17a,b, respectively. Compared with the directions of
discontinuities 13 and 41 measured by the classical approach with best-fit planes using
PolyWorks (Table 2), it can be seen that the fitting effect using the RANSAC method is
better than that using all the points in the plane, as the the deviations in dip direction and
dip angle are reduced by 1–2◦ (Table 5).
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Table 5. Comparison of calculation directions of different methods.

Discontinuity
Dip Direction/Dip Angle Measured by RANSAC (◦) The Whole Points (◦)

Classical Approach (◦) RANSAC (◦) The Whole Points (◦) ∆|DD|/∆|DA| ∆|DD|/∆|DA|

13 263.97/41.91 250.86/36.09 248.73/34.61 13.11/5.82 15.24/7.30
41 286.12/58.91 98.10/63.34 96.87/64.46 8.02/4.43 9.25/5.55

4.5. Discussion on the Applicability of the New Method

For the artificial quarry slope, we first discussed the influence of the triangle mesh size
and the unique parameter Min-pts in the HDBSCAN algorithm on the extraction results,
and then compared the extraction results with the traditional measurement methods
(Table 3). When the influence on the extraction results was small, increasing the triangle
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mesh size on the rock surface TIN was helpful in saving running time. Therefore, this
paper discussed the triangle mesh size (Figure 14) and concluded that the optimal triangle
mesh size of the artificial quarry slope was 4–6 cm (Section 3.2).

In addition, although the new method has more advantages than the methods pro-
posed by previous researchers [37,40] and can be used in practical engineering, there are
still some problems. It can be seen from Figure 12 that, when the average silhouette coeffi-
cient is three, the artificial quarry slope is best divided into three discontinuity sets, but in
Figure 13, there are still a few discontinuity extracting errors. This is because, when DPCA
is used to determine the main orientations of the slope, the angles between the normal
vectors of some discontinuities and the three main orientations are large, which leads to
a large extracting error of these discontinuities. Figure 18 shows the distribution of the
angles between the discontinuities in each discontinuity set and the main orientation at
0–15◦, 15–30◦, 30–45◦, and 45–90◦. The regions of 0–15◦, 15–30◦, 30–45◦, and 45–90◦ are
represented by green, yellow, red, and blue, respectively. As can be seen from Figure 18,
most of the discontinuities in each discontinuity set of the artificial quarry slope are con-
sistent with the main direction. The discontinuities with an angle less than 15◦ are about
40%, and the discontinuities in discontinuity set 1 and set 2 even reach 46% and 47.9%,
respectively. The discontinuities with an angle less than 30◦ are more than 85%. While
the discontinuities with an angle greater than 30◦ still exist, owing to their small area and
rough surface, they do not account for more than 16%.
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Influenced by vegetation and weathering on the surface of artificial quarry slope, the
point clouds with noise data will be removed in the preprocessing, which could result in
holes and gaps in generating the TIN, as shown in the blank area in Figure 13. In addition,
there is a phenomenon that some small discontinuities that coincides with a large one
(Figure 13), which is mainly because the region with a larger undulated surface was divided
into other discontinuity sets as compared to the whole discontinuity.

5. Conclusions

This paper proposes a new approach to automatically extracting the discontinuity
orientations from the 3D point clouds. The main innovative contributions are that the
new method can determine the discontinuity set automatically by the improved K-means
algorithm based on the DPCA algorithm and the silhouette coefficient in the cluster validity
index, and segment the discontinuity sets and extract each discontinuity from a discontinu-
ity set by the HDBSCAN algorithm. The advantage of the new method is that DPCA can
identify the main directions with fewer sample points, and the HDBSCAN algorithm can
handle data sets with large variations in density with fewer adjustment parameters and
stronger robustness.
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The new method can realize the automatic extraction of discontinuities and identify
the main orientations with high precision and good applicability for different data sets. The
precision of extracting the discontinuity orientations for the rock slope is within 3.5◦, which
is higher than that obtained by Riquelme et al. [40] and Chen et al. [37]. Compared to the
method of using the original point clouds, the new method greatly saves on operation time
because of the optimal triangular mesh size. In addition, it can also be used in practical
engineering. Through the comparison of the clustering results of the artificial quarry
slope, it is consistent with the traditional measurement method. It can provide reliable
discontinuity clustering data for the stability analysis of the artificial quarry slope.

The new method can be used to obtain the orientations of rock slope discontinuities in
inaccessible areas or dangerous outcrops. It is helpful for rock scientists and practitioners
to obtain accurate and repeatable data. Future research can focus on the following three
aspects: (1) filling holes and gaps in the TIN produced by the vegetation or the weathering;
(2) discussing the influence on the discontinuity number of different Min-size thresholds;
and (3) extracting more discontinuity parameters, such as trace, spacing, roughness, etc.
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