Characterizing the Relationship between the Sediment Grain Size and the Shoreline Variability Defined from Sentinel-2 Derived Shorelines
"> Figure 1
<p>Regional setting covering the beaches along the Gulf of Valencia (W Mediterranean), between the Ebro Delta and the mouth of the Girona river. The white point indicates the SIMAR point for which the historical wave data has been acquired.</p> "> Figure 2
<p>In black color, significant wave height (m) for the coastal segment around the Valencia Port (Spanish Port Authority, SIMAR point 2081114) along the study period (2015–2019). In orange, Sentinel-2 is considered for SDS extraction. The presence of clouds over the shore is the cause of data gaps, forcing use of a slightly smaller quantity of images at certain segments.</p> "> Figure 3
<p>Sampling locations along the Gulf of Valencia, which appears divided from north to south in three sectors (<b>A</b>–<b>C</b>). Grain sizes of the beaches (as D<sub>50</sub>) are represented by different colors and the morphological classification by symbols (circles and crosses for open and enclosed beaches respectively). The black arrow identifies the site used in Figure 6 for describing the definition of SDS variability.</p> "> Figure 4
<p>SHOREX workflow and its three main phases: downloading (<b>left</b>), preprocessing (<b>middle</b>), and processing (<b>right</b>).</p> "> Figure 5
<p>Comparison of the median grain size of the samples composing the original and the most recent datasets, following the linear fit y = 0.986x + 0.018. Five packages of samples compose the most recent dataset: A was acquired in 2015 by Cabezas-Rabadán [<a href="#B71-remotesensing-13-02829" class="html-bibr">71</a>]; B in 2015 by Soriano-González [<a href="#B72-remotesensing-13-02829" class="html-bibr">72</a>]; C in 2015 by Pardo-Pascual et al. [<a href="#B73-remotesensing-13-02829" class="html-bibr">73</a>]; while D and E in 2018 and 2020 for the elaboration of different technical reports by the DGSCM (Directorate-General for the Sustainability of the Coast and Sea) for supporting nourishment and emergency actions carried out in coordination with the Spanish Ministry of Environment.</p> "> Figure 6
<p>This figure represents, at one sampling location (see <a href="#remotesensing-13-02829-f003" class="html-fig">Figure 3</a>, C section), the distances between the baseline and the points that compose each SDS (points in light orange, considering a 100 m buffer), as well as their average blue point). The proxy standard deviation (9.8 m, dashed line in blue) was derived considering all SDS average distances while the range (45.1 m, solid line in red) was defined as the difference between the furthest SDS (107.7 m) and the closest one (63.7 m).</p> "> Figure 7
<p>For the different grain size grading categories (according to Wentworth [<a href="#B70-remotesensing-13-02829" class="html-bibr">70</a>]): number of samples, average beach width (m), and average range (grey boxes) and standard deviation (black dots) of the SDS as variability proxies when considering 100 m buffers.</p> "> Figure 8
<p>Grain size of the sediment sample expressed as D<sub>50</sub> versus the variability of the shoreline position expressed as the range between the most landward and seaward SDS included in a 100 m buffer. Samples appear classified as open beaches (blue) and enclosed beaches (red).</p> "> Figure 9
<p>Shoreline variability as a function of sediment grain size. On the left, the relationship is defined for 100 m buffers by the equation: range = 1/(0.0675 + 0.0234*ln(D<sub>50</sub>)). On the right, for 200 m buffers, σ = 1/(0.3522 + 0.1143*ln(D<sub>50</sub>)).</p> "> Figure 10
<p>Average SDS variability on beaches with different sediment grain sizes (grouped in categories shown in different colors) during different years. The variability is shown as the range of SDS on coastal segments defined by 100 m buffers.</p> "> Figure 11
<p>Plots of the annual goodness of the fit grain size–variability as σ (Y-axis) versus (X-axis): (<b>a</b>) amount of SDS considered, (<b>b</b>) average range of shoreline change, and (<b>c</b>) range of the sea level change coinciding with the instant of SDS acquisition. All variability values were defined for 200 m buffers.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
- -
- Open beaches (137 sites): those in which sediment moves freely, without significant elements that could influence wave conditions. They are exposed to waves from NE, E, and SE.
- -
- Enclosed beaches (56 sites): those in which incident waves clearly differ from those recorded along the study area. This group includes beaches enclosed due to nearby coastal engineering structures as jetties, groins, and exempt dikes, as well as small natural pocket beaches.
2.2. Satellite Derived Shorelines
2.3. Sediment Grain size
2.4. Quantifying Shoreline Variability and Its Relation with Grain Size
- (i)
- Shoreline segment’s length. Two different shoreline lengths were employed at each study site for defining the variability in order to compare the effect of relatively small morphological formations (e.g., beach megacusps). Thus, the segments of SDS employed in the analysis were selected using 100 and 200 m buffers around the sediment samples.
- (ii)
- Variability proxy. In order to quantify the shoreline variability, the standard deviation (hereafter σ) and the maximum range were defined considering the average SDS position on different dates (Figure 6). The standard deviation has been stated by previous works as representative of beach variability (e.g., [43,44,48,74]), while the range is directly related to the maximum changes that the total water level (TWL) and beach-face morphology experience.
- (iii)
- Period and quantity of SDS. The intra-annual variability was defined considering the corresponding SDS and using the previously described proxies and segments of analysis. This allowed analysis of the influence of the number of SDS considered as well as the associated oceanographic conditions.
3. Results
3.1. Grain Size and Shoreline Variability Data Pattern
3.2. Numerical Description of the Relationship
3.3. Annual Variability, Amount of SDS and Oceanographic Conditions
4. Discussion
4.1. Considerations with Regard to the Sediment
4.2. Causes and Meaning of Shoreline Variability
4.3. The Relationship between Sediment Size and Shoreline Variability
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
’Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bascom, W.N. The relationship between sand size and beach-face slope. Trans. Am. Geophys. Union 1951, 32, 866–874. [Google Scholar] [CrossRef]
- Carter, R.W.G. Coastal Environments: An Introduction to the Physical, Ecological, and Cultural Systems of Coastlines; Academic Press: London, UK, 1988. [Google Scholar]
- Wright, L.; Short, A. Morphodynamic variability of surf zones and beaches: A synthesis. Mar. Geol. 1984, 56, 93–118. [Google Scholar] [CrossRef]
- Lastra, M.; de la Huz, R.; Sánchez-Mata, A.; Rodil, I.; Aerts, K.; Beloso, S.; López, J. Ecology of exposed sandy beaches in northern Spain: Environmental factors controlling macrofauna communities. J. Sea Res. 2006, 55, 128–140. [Google Scholar] [CrossRef]
- Cabezas-Rabadán, C.; Rodilla, M.; Pardo-Pascual, J.; Herrera-Racionero, P. Assessing users’ expectations and perceptions on different beach types and the need for diverse management frameworks along the Western Mediterranean. Land Use Policy 2019, 81, 219–231. [Google Scholar] [CrossRef]
- Benedet, L.; Finkl, C.W.; Klein, A.H.F. Morphodynamic classification of beaches on the Atlantic coast of Florida: Geographical variability of beach types, beach safety and coastal hazards. J. Coast. Res. 2006, 1, 360–365. [Google Scholar]
- Pardo-Pascual, J.E.; Almonacid-Caballer, J.; Ruiz, L.A.; Palomar-Vázquez, J.; Rodrigo-Alemany, R. Evaluation of storm impact on sandy beaches of the Gulf of Valencia using Landsat imagery series. Geomorphology 2014, 214, 388–401. [Google Scholar] [CrossRef] [Green Version]
- Reyes, J.L.; Martins, J.T.; Benavente, J.; Ferreira, O.; Gracia, F.J.; Alveirinho-Dias, J.M.; López-Aguayo, F. Gulf of Cadiz beaches: A comparative response to storm events. Boletín-Inst. Español Oceanogr. 1999, 15, 221–228. [Google Scholar]
- Qi, H.; Cai, F.; Lei, G.; Cao, H.; Shi, F. The response of three main beach types to tropical storms in South China. Mar. Geol. 2010, 275, 244–254. [Google Scholar] [CrossRef]
- Buscombe, D.; Rubin, D.M.; Lacy, J.R.; Storlazzi, C.D.; Hatcher, G.; Chezar, H.; Wyland, R.; Sherwood, C.R. Autonomous bed-sediment imaging-systems for revealing temporal variability of grain size. Limnol. Oceanogr. Methods 2014, 12, 390–406. [Google Scholar] [CrossRef] [Green Version]
- Baptista, P.R.E.B.; Cunha, T.; Gama, C.; Bernardes, C. A new and practical method to obtain grain size measurements in sandy shores based on digital image acquisition and processing. Sediment. Geol. 2012, 282, 294–306. [Google Scholar] [CrossRef]
- Barnard, P.L.; Rubin, D.; Harney, J.; Mustain, N. Field test comparison of an autocorrelation technique for determining grain size using a digital ‘beachball’ camera versus traditional methods. Sediment. Geol. 2007, 201, 180–195. [Google Scholar] [CrossRef]
- Buscombe, D.; Masselink, G. Grain-size information from the statistical properties of digital images of sediment. Sedimentology 2009, 56, 421–438. [Google Scholar] [CrossRef]
- Rubin, D.M. A Simple Autocorrelation Algorithm for Determining Grain Size from Digital Images of Sediment. J. Sediment. Res. 2004, 74, 160–165. [Google Scholar] [CrossRef] [Green Version]
- Warrick, J.A.; Rubin, D.M.; Ruggiero, P.; Harney, J.N.; Draut, A.E.; Buscombe, D. Cobble cam: Grain-size measurements of sand to boulder from digital photographs and autocorrelation analyses. Earth Surf. Process. Landf. 2009, 34, 1811–1821. [Google Scholar] [CrossRef]
- Brasington, J.; Vericat, D.; Rychkov, I. Modeling river bed morphology, roughness, and surface sedimentology using high resolution terrestrial laser scanning. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef] [Green Version]
- Heritage, G.; Milan, D.J. Terrestrial Laser Scanning of grain roughness in a gravel-bed river. Geomorphology 2009, 113, 4–11. [Google Scholar] [CrossRef]
- Bae, S.; Yu, J.; Wang, L.; Jeong, Y.; Kim, J.; Yang, D.-Y. Experimental analysis of sand grain size mapping using UAV remote sensing. Remote Sens. Lett. 2019, 10, 893–902. [Google Scholar] [CrossRef]
- Dugdale, S.J.; Carbonneau, P.E.; Campbell, D. Aerial photosieving of exposed gravel bars for the rapid calibration of airborne grain size maps. Earth Surf. Process. Landf. 2010, 35, 627–639. [Google Scholar] [CrossRef]
- Kim, K.-L.; Kim, B.-J.; Lee, Y.-K.; Ryu, J.-H. Generation of a Large-Scale Surface Sediment Classification Map using Unmanned Aerial Vehicle (UAV) Data: A Case Study at the Hwang-do Tidal Flat, Korea. Remote Sens. 2019, 11, 229. [Google Scholar] [CrossRef] [Green Version]
- Tamminga, A.D.; Hugenholtz, C.H.; Eaton, B.C.; Lapointe, M. Hyperspatial Remote Sensing of Channel Reach Morphology and Hydraulic Fish Habitat Using an Unmanned Aerial Vehicle (UAV): A First Assessment in the Context of River Research and Management. River Res. Appl. 2015, 31, 379–391. [Google Scholar] [CrossRef]
- Vázquez-Tarrío, D.; Borgniet, L.; Liébault, F.; Recking, A. Using UAS optical imagery and SfM photogrammetry to characterize the surface grain size of gravel bars in a braided river (Vénéon River, French Alps). Geomorphology 2017, 285, 94–105. [Google Scholar] [CrossRef]
- Manzo, C.; Valentini, E.; Taramelli, A.; Filipponi, F.; Disperati, L. Spectral characterization of coastal sediments using Field Spectral Libraries, Airborne Hyperspectral Images and Topographic LiDAR Data (FHyL). Int. J. Appl. Earth Obs. Geoinf. 2015, 36, 54–68. [Google Scholar] [CrossRef]
- Rainey, M.; Tyler, A.; Gilvear, D.; Bryant, R.; McDonald, P. Mapping intertidal estuarine sediment grain size distributions through airborne remote sensing. Remote Sens. Environ. 2003, 86, 480–490. [Google Scholar] [CrossRef]
- Yates, M.G.; Jones, A.R.; McGrorty, S.; Goss-Custard, J.D. The use of satellite imagery to determine the distribution of intertidal surface sediments of the Wash, England. Estuar. Coast. and Shelf Sci. 1993, 36, 333–344. [Google Scholar] [CrossRef]
- Melsheimer, C.; Tanck, G.; Gade, M.; Alpers, W. Imaging of tidal flats by the SIR-C/X-SAR mul-ti-frequency/multi-polarisation synthetic aperture radar. In Operational Remote Sensing for Sustainable Development; Nieuwenhuis, G.J.A., Vaughan, R.A., Molenaar, M., Eds.; Balkema: Rotterdam, The Netherlands, 1999; pp. 189–192. [Google Scholar]
- Ullmann, T.; Stauch, G. Surface Roughness Estimation in the Orog Nuur Basin (Southern Mongolia) using Sentinel-1 SAR Time Series and Ground-Based Photogrammetry. Remote Sens. 2020, 12, 3200. [Google Scholar] [CrossRef]
- Van der Wal, D.; Herman, P.M.; Dool, A.W.-V.D. Characterisation of surface roughness and sediment texture of intertidal flats using ERS SAR imagery. Remote Sens. Environ. 2005, 98, 96–109. [Google Scholar] [CrossRef]
- Park, N.-W. Geostatistical Integration of Field Measurements and Multi-Sensor Remote Sensing Images for Spatial Prediction of Grain Size of Intertidal Surface Sediments. J. Coast. Res. 2019, 90, 190–196. [Google Scholar] [CrossRef]
- Van Der Wal, D.; Herman, P.M. Regression-based synergy of optical, shortwave infrared and microwave remote sensing for monitoring the grain-size of intertidal sediments. Remote Sens. Environ. 2007, 111, 89–106. [Google Scholar] [CrossRef]
- Dean, R.G. Heuristic Models of Sand Transport in The Surf Zone. In First Australian Conference on Coastal Engineering, 1973: Engineering Dynamics of the Coastal Zone; Institution of Engineers Australia: Barton, Australia, 1973; p. 215. [Google Scholar]
- McLean, R.F.; Kirk, R.M. Relationships between grain size, size-sorting, and foreshore slope on mixed sand—Shingle beaches. N. Z. J. Geol. Geophys. 1969, 12, 138–155. [Google Scholar] [CrossRef]
- Masselink, G.; Short, A.D. The effect of tide range on beach morphodynamics and morphology: A conceptual beach model. J. Coast. Res. 1993, 9, 785–800. [Google Scholar]
- Scott, T.; Masselink, G.; Russell, P. Morphodynamic characteristics and classification of beaches in England and Wales. Mar. Geol. 2011, 286, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Vellinga, P. A tentative description of a universal erosion profile for sandy beaches and rock beaches. Coast. Eng. 1984, 8, 177–188. [Google Scholar] [CrossRef]
- Davidson-Arnott, R.G.D. Introduction to Coastal Processes and Geomorphology; United States of America by Cambridge University Press: New York, NY, USA, 2010. [Google Scholar]
- Reis, A.H.; Gama, C. Sand size versus beachface slope—An explanation based on the Constructal Law. Geomorphology 2010, 114, 276–283. [Google Scholar] [CrossRef]
- Flemming, B. Geology, Morphology, and Sedimentology of Estuaries and Coasts. In Treatise on Estuarine and Coastal Science; Elsevier: Amsterdam, The Netherlands, 2011; pp. 7–38. [Google Scholar]
- Soares, A.G. Sandy Beach Morphodynamics and Macrobenthic Communities in Temperate, Subtropical and Tropical Regions: A Macroecological Approach. Ph.D. Thesis, University of Port Elizabeth, Port Elizabeth, South Africa, 2003. [Google Scholar]
- Sunamura, T. Quantitative predictions of beach-face slopes. GSA Bull. 1984, 95, 242. [Google Scholar] [CrossRef]
- Bujan, N.; Cox, R.; Masselink, G. From fine sand to boulders: Examining the relationship between beach-face slope and sediment size. Mar. Geol. 2019, 417, 106012. [Google Scholar] [CrossRef]
- Boak, E.H.; Turner, I. Shoreline Definition and Detection: A Review. J. Coast. Res. 2005, 214, 688–703. [Google Scholar] [CrossRef] [Green Version]
- Dolan, R.; Hayden, B.; Heywood, J. Analysis of coastal erosion and storm surge hazards. Coast. Eng. 1978, 2, 41–53. [Google Scholar] [CrossRef]
- Short, A.; Hesp, P. Wave, beach and dune interactions in southeastern Australia. Mar. Geol. 1982, 48, 259–284. [Google Scholar] [CrossRef]
- Hansen, J.E.; Barnard, P.L. Sub-weekly to interannual variability of a high-energy shoreline. Coast. Eng. 2010, 57, 959–972. [Google Scholar] [CrossRef]
- Mole, M.A.; Goodwin, I.D.; Davidson, M.A.; Turner, I.L.; Splinter, K.D.; Short, A.D. Modelling Multi-Decadal Shoreline Variability and Evolution. Coast. Eng. Proc. 2012, 1. [Google Scholar] [CrossRef]
- Miller, J.K.; Dean, R.G. Shoreline variability via empirical orthogonal function analysis: Part II relationship to nearshore conditions. Coast. Eng. 2007, 54, 133–150. [Google Scholar] [CrossRef]
- Stive, M.J.; Aarninkhof, S.G.; Hamm, L.; Hanson, H.; Larson, M.; Wijnberg, K.M.; Nicholls, R.J.; Capobianco, M. Variability of shore and shoreline evolution. Coastal Eng. 2002, 47, 211–235. [Google Scholar] [CrossRef]
- Turki, I.; Medina, R.; Gonzalez, M.; Coco, G.L. Natural variability of shoreline position: Observations at three pocket beaches. Mar. Geol. 2013, 338, 76–89. [Google Scholar] [CrossRef]
- Bishop-Taylor, R.; Sagar, S.; Lymburner, L.; Alam, I.; Sixsmith, J. Sub-Pixel Waterline Extraction: Characterising Accuracy and Sensitivity to Indices and Spectra. Remote Sens. 2019, 11, 2984. [Google Scholar] [CrossRef] [Green Version]
- Pardo-Pascual, J.E.; Sánchez-García, E.; Almonacid-Caballer, J.; Palomar-Vázquez, J.M.; Santos, E.P.D.L.; Fernández-Sarría, A.; Balaguer-Beser, Á. Assessing the Accuracy of Automatically Extracted Shorelines on Microtidal Beaches from Landsat 7, Landsat 8 and Sentinel-2 Imagery. Remote Sens. 2018, 10, 326. [Google Scholar] [CrossRef] [Green Version]
- Vos, K.; Splinter, K.D.; Harley, M.; Simmons, J.A.; Turner, I.L. CoastSat: A Google Earth Engine-enabled Python toolkit to extract shorelines from publicly available satellite imagery. Environ. Model. Softw. 2019, 122, 104528. [Google Scholar] [CrossRef]
- Palomar-Vázquez, J.; Almonacid-Caballer, J.; Pardo-Pascual, J.E.; Cabezas-Rabadán, C.; Fernández-Sarría, A. Sistema para la extracción masiva de líneas de costa a partir de imágenes de satélite de resolución media para la monitorización costera: SHOREX. In Proceedings of the XVIII Congreso Nacional de TIG, València, Spain, 20–22 June 2018; Available online: http://tig.age-geografia.es//2018_Valencia/actasXVIIICongresoTIG.pdf (accessed on 8 June 2021).
- Sánchez-García, E.; Palomar-Vázquez, J.; Pardo-Pascual, J.; Almonacid-Caballer, J.; Cabezas-Rabadán, C.; Gómez-Pujol, L. An efficient protocol for accurate and massive shoreline definition from mid-resolution satellite imagery. Coast. Eng. 2020, 160, 103732. [Google Scholar] [CrossRef]
- Cabezas-Rabadán, C.; Pardo-Pascual, J.E.; Palomar-Vázquez, J.; Ferreira, Ó.; Costas, S. Satellite Derived Shorelines at an Exposed Meso-tidal Beach. J. Coast. Res. 2020, 95, 1027–1031. [Google Scholar] [CrossRef]
- Cabezas-Rabadán, C.; Pardo-Pascual, J.; Almonacid-Caballer, J.; Rodilla, M. Detecting problematic beach widths for the recreational function along the Gulf of Valencia (Spain) from Landsat 8 subpixel shorelines. Appl. Geogr. 2019, 110. [Google Scholar] [CrossRef]
- Cabezas-Rabadán, C.; Pardo-Pascual, J.E.; Palomar-Vázquez, J.; Fernández-Sarría, A. Characterizing beach changes using high-frequency Sentinel-2 derived shorelines on the Valencian coast (Spanish Mediterranean). Sci. Total Environ. 2019, 691, 216–231. [Google Scholar] [CrossRef] [PubMed]
- Cabezas-Rabadán, C.; Pardo-Pascual, J.E.; Almonacid-Caballer, J.; Palomar-Vázquez, J.; Fernández-Sarría, A. Monitorizando La Respuesta De Playas Mediterráneas A Temporales Y Actuaciones Antrópicas Mediante Imágenes Landsat. GeoFocus Rev. Int. Cienc. Tecnol. Inf. Geográfica 2019, 23, 119–139. [Google Scholar] [CrossRef]
- Vos, K.; Harley, M.D.; Splinter, K.D.; Walker, A.; Turner, I.L. Beach Slopes from Satellite-Derived Shorelines. Coast. Eng. Proc. 2020, 47, e2020GL088365. [Google Scholar] [CrossRef]
- Pardo-Pascual, J.E.; Sanjaume, E. Beaches in Valencian Coast. In The Spanish Coastal Systems; Springer: Berlin/Heidelberg, Germany, 2018; pp. 209–236. [Google Scholar]
- Sanjaume, E. Las Costas Valencianas. Sedimentología y Morfología; Universitat de València: Valencia, Spain, 1985; p. 505. [Google Scholar]
- Hanson, H.; Brampton, A.; Capobianco, M.; Dette, H.; Hamm, L.; Laustrup, C.; Lechuga, A.; Spanhoff, R. Beach Nourishment projects, practices, and objectives—A European overview. Coast. Eng. 2002, 47, 81–111. [Google Scholar] [CrossRef]
- Obiol-Menero, E.M. La regeneración de playas como factor clave del avance del turismo valenciano. Cuad. Geogr. 2003, 73, 121–146. [Google Scholar]
- Pardo-Pascual, J.E.; Almonacid-Caballer, J.; Ruiz, L.A.; Palomar-Vazquez, J. Automatic extraction of shorelines from Landsat TM and ETM+ multi-temporal images with subpixel precision. Remote Sens. Environ. 2012, 123, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Almonacid-Caballer, J. Obtención de líneas de costa con precisión sub-píxel a partir de imágenes Landsat (TM, ETM+y OLI). Ph.D. Thesis, Universitat Politècnica de València, Valencia, 2014; 365p. [Google Scholar]
- Guizar-Sicairos, M.; Thurman, S.T.; Fienup, J.R. Efficient subpixel image registration algorithms. Opt. Lett. 2008, 33, 156–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almonacid-Caballer, J.; Pardo-Pascual, J.E.; Ruiz, L.A. Evaluating fourier cross-correlation sub-pixel registration in landsat images. Remote Sens. 2017, 9, 1051. [Google Scholar] [CrossRef] [Green Version]
- ECOLEVANTE. Estudio Ecocartográfico del Litoral de las Provincias de Alicante y Valencia. Dirección General de Costas (España). 2010. Available online: https://www.miteco.gob.es/ (accessed on 8 June 2021).
- Folk, R.L.; Ward, W.C. Brazos River bar [Texas]; a study in the significance of grain size parameters. J. Sediment. Res. 1957, 27, 3–26. [Google Scholar] [CrossRef]
- Wentworth, C.K. A Scale of Grade and Class Terms for Clastic Sediments. J. Geol. 1922, 30, 377–392. [Google Scholar] [CrossRef]
- Cabezas-Rabadán, C. Análisis de La Línea de Costa Y Su Relación Con Los Parámetros Morfológicos En Playas de La Safor. Master’s Thesis, Universitat de València, València, Spain, 2015; p. 105. Available online: https://gvacartografic.wordpress.com/2016/12/15/analisis-de-la-linea-de-costa-y-su-relacion-con-los-parametros-morfologicos/ (accessed on 8 June 2021).
- Soriano-González, J. Análisis de la Evolución de la Línea de Costa y su Relación con los Parámetros Geomorfológicos en Playas de la Comunidad Valenciana (1984–2014). Master’s Thesis, Universitat de València, Valencia, Spain, 2015; p. 113. Available online: https://gvacartografic.wordpress.com/2016/12/20/analisis-de-la-evolucion-de-la-linea-de-costa-en-playas-de-la-comunitat-valenciana/ (accessed on 8 June 2021).
- Pardo-Pascual, J.E.; Almonacid-Caballer, J.; Cabezas-Rabadán, C.; Soriano-González, J. Caracterización de la textura de los sedimentos y evolución de la línea de costa desde Pinedo hasta la Gola del Perelló mediante imágenes Landsat (1984–2014), Ajuntament de València (Valencia Council). 2016; Unpublished document. [Google Scholar]
- Guillén, J.; Stive, M.J.F.; Capobianco, M. Shoreline evolution of the Holland coast on a decadal scale. Earth Surface Processes and Landforms. J. Br. Geomorphol. Res. Group 1999, 24, 517–536. [Google Scholar] [CrossRef]
- Gallagher, E.L.; MacMahan, J.; Reniers, A.; Brown, J.; Thornton, E.B. Grain size variability on a rip-channeled beach. Mar. Geol. 2011, 287, 43–53. [Google Scholar] [CrossRef]
- Huisman, B.; de Schipper, M.; Ruessink, B. Sediment sorting at the Sand Motor at storm and annual time scales. Mar. Geol. 2016, 381, 209–226. [Google Scholar] [CrossRef]
- Prodger, S.; Russell, P.; Davidson, M.; Miles, J.; Scott, T. Understanding and predicting the temporal variability of sediment grain size characteristics on high-energy beaches. Mar. Geol. 2016, 376, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Holland, K.; Elmore, P. A review of heterogeneous sediments in coastal environments. Earth-Sci. Rev. 2008, 89, 116–134. [Google Scholar] [CrossRef]
- Medina, R.; Losada, M.Á.; Losada, I.; Vidal, C. Temporal and spatial relationship between sediment grain size and beach profile. Mar. Geol. 1994, 118, 195–206. [Google Scholar] [CrossRef]
- Cabezas-Rabadán, C.; Almonacid-Caballer, J.; Pardo-Pascual, J.E.; Soriano-González, J. Ariabilidad de la Línea de Costa A Partir de Imágenes de Satélite Y Su Relación Con la Textura Del Sedimento. In Primer Congreso en Ingeniería Geomática. Libro de Actas; Editorial Universitat Politècnica de València: Valencia, Spain, 2017; pp. 153–161. [Google Scholar] [CrossRef] [Green Version]
- Almonacid-Caballer, J.; Sánchez-García, E.; Pardo-Pascual, J.E.; Balaguer-Beser, A.A.; Palomar-Vázquez, J. Evaluation of annual mean shoreline position deduced from Landsat imagery as a mid-term coastal evolution indicator. Mar. Geol. 2016, 372, 79–88. [Google Scholar] [CrossRef]
- Wiegel, R. Oceanographical Engineering, Englewood Cliffs; Prentice Hall: Hoboken, NJ, USA, 1964. [Google Scholar]
- Sánchez-García, E.; Briceño, I.; Palomar-Vázquez, J.; Pardo-Pascual, J.; Cabezas-Rabadán, C.; Balaguer-Beser, Á. Beach Monitoring Project on Central Chile. In Proceedings of the 5ª Conferência sobre Morfodinâmica Estuarina e Costeira, Lisboa, Portugal, 24–26 June 2019; ISSN: 978-989-20-9612-4. Available online: http://mec2019.lnec.pt/pdf/MEC2019_LivrosResumos.pdf (accessed on 16 July 2021).
Correlation (R2) | |||
---|---|---|---|
100 m | 200 m | ||
Range | σ | Range | σ |
0.6822 | 0.6707 | 0.6578 | 0.6927 |
Period | 2015 | 2016 | 2017 | 2018 | 2019 | 2015–2019 | 2015–2019 (Reduced No. Dates) | |
---|---|---|---|---|---|---|---|---|
no. SDS | 9 | 18 | 38 | 47 | 6 | 118 | 60 | |
Range | 100 m | 0.035 | 0.451 | 0.466 | 0.561 | 0.379 | 0.682 | 0.694 |
200 m | 0.167 | 0.493 | 0.422 | 0.630 | 0.352 | 0.658 | 0.698 | |
σ | 100 m | 0.035 | 0.500 | 0.506 | 0.595 | 0.369 | 0.671 | 0.694 |
200 m | 0.188 | 0.491 | 0.519 | 0.631 | 0.363 | 0.693 | 0.706 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabezas-Rabadán, C.; Pardo-Pascual, J.E.; Palomar-Vázquez, J. Characterizing the Relationship between the Sediment Grain Size and the Shoreline Variability Defined from Sentinel-2 Derived Shorelines. Remote Sens. 2021, 13, 2829. https://doi.org/10.3390/rs13142829
Cabezas-Rabadán C, Pardo-Pascual JE, Palomar-Vázquez J. Characterizing the Relationship between the Sediment Grain Size and the Shoreline Variability Defined from Sentinel-2 Derived Shorelines. Remote Sensing. 2021; 13(14):2829. https://doi.org/10.3390/rs13142829
Chicago/Turabian StyleCabezas-Rabadán, Carlos, Josep E. Pardo-Pascual, and Jesus Palomar-Vázquez. 2021. "Characterizing the Relationship between the Sediment Grain Size and the Shoreline Variability Defined from Sentinel-2 Derived Shorelines" Remote Sensing 13, no. 14: 2829. https://doi.org/10.3390/rs13142829
APA StyleCabezas-Rabadán, C., Pardo-Pascual, J. E., & Palomar-Vázquez, J. (2021). Characterizing the Relationship between the Sediment Grain Size and the Shoreline Variability Defined from Sentinel-2 Derived Shorelines. Remote Sensing, 13(14), 2829. https://doi.org/10.3390/rs13142829