The Role of Sea Surface Temperature Forcing in the Life-Cycle of Mediterranean Cyclones
<p>Model communication scheme.</p> "> Figure 2
<p>Model domains.</p> "> Figure 3
<p>(<b>a</b>) Moderate Resolution Imaging Spectroradiometer (MODIS)/Aqua reflectance for 29 October 2016 and (<b>b</b>) Visible Infrared Imaging Radiometer Suite / National Polar-orbiting Partnership (VIIRS/NPP) Suomi reflectance for 30 October 2016.</p> "> Figure 4
<p>(<b>a</b>) MODIS/Aqua reflectance for 17 October 2017 and (<b>b</b>) VIIRS/NPP Suomi reflectance for 18 October 2017.</p> "> Figure 5
<p>(<b>a</b>) MODIS/Aqua reflectance for 28 September 2018 and (<b>b</b>) VIIRS/NPP Suomi reflectance for 29 September 2018.</p> "> Figure 6
<p>RTG, NEMO, OSTIA and recorded SST evolution at a selected location of the 61277 buoy during (<b>a</b>) cyclone Trixi (2016), (<b>b</b>) cyclone Numa (2017), and (<b>c</b>) cyclone Zorbas (2018).</p> "> Figure 7
<p>Differences in SST (in °C) spatial distribution between the 24 h, 48 h, and 72 h ahead and the initial field at 27 September 2019 at 00:00 UTC given in contour lines during cyclone Zorbas for (<b>a1</b>–<b>3</b>) RTG-sst, (<b>b1</b>–<b>3</b>) OSTIA-sst, and (<b>c1</b>–<b>3</b>) NEMO-sst. Lines indicate storm tracks and mark the position of the lower mean sea level pressure (MSLP) 24 h, 48 h, and 72 h ahead from 27 September 2019 at 00:00 UTC.</p> "> Figure 8
<p>Storm tracks from RTG-sst, NEMO-sst, and OSTIA-sst simulations represented by the MSLP in six-hour intervals and MSLP evolution for (<b>a1</b>–<b>2</b>) cyclone Trixi, (<b>b1</b>–<b>2</b>) cyclone Numa, and (<b>c1</b>–<b>2</b>) cyclone Zorbas.</p> "> Figure 9
<p>Phase space diagrams of (<b>a</b>) <math display="inline"><semantics> <mrow> <mo>−</mo> <msubsup> <mi>V</mi> <mi>T</mi> <mi>L</mi> </msubsup> </mrow> </semantics></math> vs. <math display="inline"><semantics> <mi>B</mi> </semantics></math> for 900–600 hPa evolution and (<b>b</b>)<math display="inline"><semantics> <mrow> <mo> </mo> <mo>−</mo> <msubsup> <mi>V</mi> <mi>T</mi> <mi>L</mi> </msubsup> </mrow> </semantics></math> (900–600 hPa) vs.<math display="inline"><semantics> <mrow> <mo> </mo> <mo>−</mo> <msubsup> <mi>V</mi> <mi>T</mi> <mi>U</mi> </msubsup> </mrow> </semantics></math> (600–300 hPa) evolution from RTG-sst, NEMO-sst, and OSTIA-sst simulations during cyclone Trixi. Markers are shown every 12:00 UTC.</p> "> Figure 10
<p>Phase space diagrams of (<b>a</b>) <math display="inline"><semantics> <mrow> <mo>−</mo> <msubsup> <mi>V</mi> <mi>T</mi> <mi>L</mi> </msubsup> </mrow> </semantics></math> vs. <math display="inline"><semantics> <mi>B</mi> </semantics></math> for 900–600 hPa evolution and (<b>b</b>)<math display="inline"><semantics> <mrow> <mo> </mo> <mo>−</mo> <msubsup> <mi>V</mi> <mi>T</mi> <mi>L</mi> </msubsup> </mrow> </semantics></math> (900–600 hPa) vs.<math display="inline"><semantics> <mrow> <mo> </mo> <mo>−</mo> <msubsup> <mi>V</mi> <mi>T</mi> <mi>U</mi> </msubsup> </mrow> </semantics></math> (600–300 hPa) evolution from RTG-sst, NEMO-sst, and OSTIA-sst simulations during cyclone Numa. Markers are shown every 12:00 UTC.</p> "> Figure 11
<p>Phase space diagrams of (<b>a</b>) <math display="inline"><semantics> <mrow> <mo>−</mo> <msubsup> <mi>V</mi> <mi>T</mi> <mi>L</mi> </msubsup> </mrow> </semantics></math> vs. <math display="inline"><semantics> <mi>B</mi> </semantics></math> for 900–600 hPa evolution and (<b>b</b>)<math display="inline"><semantics> <mrow> <mo> </mo> <mo>−</mo> <msubsup> <mi>V</mi> <mi>T</mi> <mi>L</mi> </msubsup> </mrow> </semantics></math> (900–600 hPa) vs.<math display="inline"><semantics> <mrow> <mo> </mo> <mo>−</mo> <msubsup> <mi>V</mi> <mi>T</mi> <mi>U</mi> </msubsup> </mrow> </semantics></math> (600–300 hPa) evolution from RTG-sst, NEMO-sst, and OSTIA-sst simulations during cyclone Zorbas. Markers are shown every 12:00 UTC.</p> "> Figure 12
<p>Maximum sensible heat and latent heat fluxes from RTG-sst, NEMO-sst, and OSTIA-sst simulation and MERRA-2 reanalysis in six-hour intervals during (<b>a1</b>–<b>2</b>) cyclone Trixi, (<b>b1</b>–<b>2</b>) cyclone Numa, and (<b>c1</b>–<b>2</b>) cyclone Zorbas.</p> "> Figure 13
<p>Maximum surface wind speed evolution from RTG-sst, NEMO-sst, and OSTIA-sst simulations and Blended Sea Winds during (<b>a</b>) cyclone Trixi, (<b>b</b>) cyclone Numa, and (<b>c</b>) cyclone Zorbas.</p> "> Figure 14
<p>Density scatter plots between modeled and JASON (satellite) significant wave heights for (<b>a1</b>) RTG-sst, (<b>a2</b>) NEMO-sst and (<b>a3</b>) OSTIA-sst simulations, gathering all experimental cases.</p> "> Figure 15
<p>(<b>a1</b>) Accumulated precipitation field in millimeters from IMERG satellite data, (<b>a2</b>) accumulated precipitation field in millimeters from MERRA-2 reanalysis (<b>a3</b>) accumulated precipitation in millimeters field from RTG-sst run (<b>a4</b>) differences in accumulated precipitation fields between NEMO-sst and RTG-sst, and (<b>a5</b>) differences in accumulated precipitation fields between OSTIA-sst and RTG-sst, for cyclone Trixi.</p> "> Figure 16
<p>(<b>a1</b>) Accumulated precipitation fields in millimeters from IMERG satellite data, (<b>a2</b>) accumulated precipitation field in millimeters from MERRA-2 reanalysis, (<b>a3</b>) accumulated precipitation field in millimeters from RTG-sst run (<b>a4</b>) differences in accumulated precipitation fields between NEMO-sst and RTG-sst, and (<b>a5</b>) differences in accumulated precipitation fields between OSTIA-sst and RTG-sst, for cyclone Numa.</p> "> Figure 17
<p>(<b>a1</b>) Accumulated precipitation fields in millimeter from IMERG satellite data, (<b>a2</b>) accumulated precipitation field in millimeters from MERRA-2 reanalysis, (<b>a3</b>) accumulated precipitation field in millimeters from RTG-sst run (<b>a4</b>) differences in accumulated precipitation fields between NEMO-sst and RTG-sst, and (<b>a5</b>) differences in accumulated precipitation fields between OSTIA-sst and RTG-sst, for cyclone Zorbas.</p> ">
Abstract
:1. Introduction
2. Model Description, Methodology, and Data Used
2.1. Atmospheric, Wave, and Ocean Components
2.1.1. Atmospheric Component
2.1.2. Wave Component
2.1.3. Ocean Component
2.1.4. Coupled Modeling System
2.2. Methodology and Data Used
2.2.1. Models Setup and Configuration
RTG-SST
OSTIA-SST
NEMO–SST
2.2.2. Case Studies
2.2.3. Data Used
3. Results and Discussion
4. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Pytharoulis, I.; Craig, G.C.; Ballard, S.P. Study of the Hurricane-like Mediterranean cyclone of January 1995. Phys. Chem. Earth Part B Hydrol. Ocean. Atmos. 1999, 24, 627–632. [Google Scholar] [CrossRef]
- Emanuel, K. Genesis and maintenance of “Mediterranean hurricanes”. Adv. Geosci. 2005, 2, 217–220. [Google Scholar] [CrossRef] [Green Version]
- Miglietta, M.M.; Mastrangelo, D.; Conte, D. Influence of physics parameterization schemes on the simulation of a tropical-like cyclone in the Mediterranean Sea. Atmos. Res. 2015, 153, 360–375. [Google Scholar] [CrossRef]
- Miglietta, M.M.; Moscatello, A.; Conte, D.; Mannarini, G.; Lacorata, G.; Rotunno, R. Numerical analysis of a Mediterranean ‘hurricane’ over south-eastern Italy: Sensitivity experiments to sea surface temperature. Atmos. Res. 2011, 101, 412–426. [Google Scholar] [CrossRef]
- Emanuel, K.A. An Air-Sea Interaction Theory for Tropical Cyclones. Part I: Steady-State Maintenance. J. Atmos. Sci. 1986, 43, 585–605. [Google Scholar] [CrossRef]
- Miglietta, M.M.; Rotunno, R. Development mechanisms for Mediterranean tropical-like cyclones (medicanes). Q. J. R. Meteorol. Soc. 2019, 145, 1444–1460. [Google Scholar] [CrossRef] [Green Version]
- Shi, Q.; Bourassa, M.A. Coupling Ocean Currents and Waves with Wind Stress over the Gulf Stream. Remote Sens. 2019, 11, 1476. [Google Scholar] [CrossRef] [Green Version]
- Pytharoulis, I. Analysis of a Mediterranean tropical-like cyclone and its sensitivity to the sea surface temperatures. Atmos. Res. 2018, 208, 167–179. [Google Scholar] [CrossRef]
- Lellouche, J.M.; Greiner, E.; Le Galloudec, O.; Garric, G.; Regnier, C.; Drevillon, M.; Benkiran, M.; Testut, C.E.; Bourdalle-Badie, R.; Gasparin, F.; et al. Recent updates to the Copernicus Marine Service global ocean monitoring and forecasting real-time 1/12° high-resolution system. Ocean Sci. 2018, 14, 1093–1126. [Google Scholar] [CrossRef] [Green Version]
- Donlon, C.J.; Martin, M.; Stark, J.; Roberts-Jones, J.; Fiedler, E.; Wimmer, W. The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sens. Environ. 2012, 116, 140–158. [Google Scholar] [CrossRef]
- Warner, J.C.; Armstrong, B.; He, R.; Zambon, J.B. Development of a Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) Modeling System. Ocean Model. 2010, 35, 230–244. [Google Scholar] [CrossRef] [Green Version]
- Georg, L. Newsletter No. 154—Winter 2017/18. 2018.
- Doyle, J.D.; Hodur, R.M.; Chen, S.U.E.; Jin, Y.I.; Moskaitis, J.R.; Wang, S.; Hendricks, E.A.; Jin, H.A.O.; Smith, T.A. Tropical Cyclone Prediction Using COAMPS-TC. Oceanography 2014, 27, 104–115. [Google Scholar] [CrossRef] [Green Version]
- Cotton, W.R.; Pielke, R.A., Sr.; Walko, R.L.; Liston, G.E.; Tremback, C.J.; Jiang, H.; McAnelly, R.L.; Harrington, J.Y.; Nicholls, M.E.; Carrio, G.G.; et al. RAMS 2001: Current status and future directions. Meteorol. Atmos. Phys. 2003, 82, 5–29. [Google Scholar] [CrossRef]
- Kallos, G.; Solomos, S.; Kushta, J.; Mitsakou, C.; Spyrou, C.; Bartsotas, N.; Kalogeri, C. Natural and anthropogenic aerosols in the Eastern Mediterranean and Middle East: Possible impacts. Sci. Total Environ. 2014, 488–489, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Solomos, S.; Kallos, G.; Kushta, J.; Astitha, M.; Tremback, C.; Nenes, A.; Levin, Z. An integrated modeling study on the effects of mineral dust and sea salt particles on clouds and precipitation. Atmos. Chem. Phys. 2011, 11, 873–892. [Google Scholar] [CrossRef] [Green Version]
- Patlakas, P.; Stathopoulos, C.; Flocas, H.; Kalogeri, C.; Kallos, G. Regional Climatic Features of the Arabian Peninsula. Atmosphere 2019, 10, 220. [Google Scholar] [CrossRef] [Green Version]
- Gong, S.L. A parameterization of sea-salt aerosol source function for sub- and super-micron particles. Glob. Biogeochem. Cycles 2003, 17. [Google Scholar] [CrossRef]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Fountoukis, C.; Nenes, A. Continued development of a cloud droplet formation parameterization for global climate models. J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Group, T.W. The WAM Model—A Third Generation Ocean Wave Prediction Model. J. Phys. Oceanogr. 1988, 18, 1775–1810. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Bidlot, J.; Janssen, P. Unresolved Bathymetry, Neutral Winds and New Stress Tables in WAM; ECMWF: Reading, UK, 2003. [Google Scholar]
- Valcke, S. The OASIS3 coupler: A European climate modelling community software. Geosci. Model. Dev. 2013, 6, 373–388. [Google Scholar] [CrossRef] [Green Version]
- Taylor, P.K.; Yelland, M.J. The Dependence of Sea Surface Roughness on the Height and Steepness of the Waves. J. Phys. Oceanogr. 2001, 31, 572–590. [Google Scholar] [CrossRef] [Green Version]
- Drennan, W.M.; Taylor, P.K.; Yelland, M.J. Parameterizing the Sea Surface Roughness. J. Phys. Oceanogr. 2005, 35, 835–848. [Google Scholar] [CrossRef]
- Olabarrieta, M.; Warner, J.C.; Armstrong, B.N.; Zambon, J.B.; He, R. Ocean-atmosphere dynamics during Hurricane Ida and Nor’Ida: An application of the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system. Ocean Model. 2012, 43–44, 112–137. [Google Scholar] [CrossRef] [Green Version]
- Ricchi, A.; Miglietta, M.M.; Barbariol, F.; Benetazzo, A.; Bergamasco, A.; Bonaldo, D.; Cassardo, C.; Falcieri, F.M.; Modugno, G.; Russo, A.; et al. Sensitivity of a Mediterranean Tropical-Like Cyclone to Different Model Configurations and Coupling Strategies. Atmosphere 2017, 8, 92. [Google Scholar] [CrossRef] [Green Version]
- Hart, R.E. A Cyclone Phase Space Derived from Thermal Wind and Thermal Asymmetry. Mont. Weather Rev. 2003, 131, 585–616. [Google Scholar] [CrossRef]
- Astitha, M.; Kallos, G. Gas-phase and aerosol chemistry interactions in South Europe and the Mediterranean region. Environ. Fluid Mech. 2009, 9, 3–22. [Google Scholar] [CrossRef]
- Thiébaux, J.; Rogers, E.; Wang, W.; Katz, B. A New High-Resolution Blended Real-Time Global Sea Surface Temperature Analysis. Bull. Am. Meteorol. Soc. 2003, 84, 645–656. [Google Scholar] [CrossRef] [Green Version]
- Borde, R.; Carranza, M.; Hautecoeur, O.; Barbieux, K. Winds of Change for Future Operational AMV at EUMETSAT. Remote Sens. 2019, 11, 2111. [Google Scholar] [CrossRef] [Green Version]
- Madec, G. NEMO Ocean Engine. Note du Pôle de Modélisation. In ISSN; Institut Pierre-Simon Laplace (IPSL): Paris, France, 2008; Volume 27, pp. 1288–1619. [Google Scholar]
- Becker, J.J.; Sandwell, D.T.; Smith, W.H.F.; Braud, J.; Binder, B.; Depner, J.; Fabre, D.; Factor, J.; Ingalls, S.; Kim, S.H.; et al. Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution: SRTM30_PLUS. Mar. Geod. 2009, 32, 355–371. [Google Scholar] [CrossRef]
- Amante, C.; Eakins, B.W. ETOPO1 Global Relief Model Converted to PanMap Layer Format; PANGAEA: Boulder, CO, USA, 2009. [Google Scholar] [CrossRef]
- Gasparin, F.; Greiner, E.; Lellouche, J.-M.; Legalloudec, O.; Garric, G.; Drillet, Y.; Bourdallé-Badie, R.; Traon, P.-Y.L.; Rémy, E.; Drévillon, M. A large-scale view of oceanic variability from 2007 to 2015 in the global high resolution monitoring and forecasting system at Mercator Océan. J. Mar. Syst. 2018, 187, 260–276. [Google Scholar] [CrossRef]
- Nastos, P.T.; Karavana Papadimou, K.; Matsangouras, I.T. Mediterranean tropical-like cyclones: Impacts and composite daily means and anomalies of synoptic patterns. Atmos. Res. 2018, 208, 156–166. [Google Scholar] [CrossRef]
- Marra, C.A.; Federico, S.; Montopoli, M.; Avolio, E.; Baldini, L.; Casella, D.; D’Adderio, P.L.; Dietrich, S.; Sanò, P.; Torcasio, C.R.; et al. The Precipitation Structure of the Mediterranean Tropical-Like Cyclone Numa: Analysis of GPM Observations and Numerical Weather Prediction Model Simulations. Remote Sens. 2019, 11, 1690. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.-M.; Bates, J.J.; Reynolds, R.W. Assessment of composite global sampling: Sea surface wind speed. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Peng, G.; Zhang, H.-M.; Frank, H.P.; Bidlot, J.-R.; Higaki, M.; Stevens, S.; Hankins, W.R. Evaluation of Various Surface Wind Products with OceanSITES Buoy Measurements. Weather Forecast. 2013, 28, 1281–1303. [Google Scholar] [CrossRef]
- Schmidt, K.M.; Swart, S.; Reason, C.; Nicholson, S.-A. Evaluation of Satellite and Reanalysis Wind Products with In Situ Wave Glider Wind Observations in the Southern Ocean. J. Atmos. Ocean. Technol. 2017, 34, 2551–2568. [Google Scholar] [CrossRef]
- Zecchetto, S.; De Biasio, F.; Music, S.; Nickovic, S.; Pierdicca, N. Intercomparison of satellite observations and atmospheric model simulations of a meso-scale cyclone in the Mediterranean Sea. Can. J. Remote Sens. 2002, 28, 413–423. [Google Scholar] [CrossRef]
- Hong, Y.; Hsu, K.-L.; Sorooshian, S.; Gao, X. Precipitation Estimation from Remotely Sensed Imagery Using an Artificial Neural Network Cloud Classification System. J. Appl. Meteorol. 2004, 43, 1834–1853. [Google Scholar] [CrossRef] [Green Version]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Tan, J.; Petersen, W.A.; Kirstetter, P.-E.; Tian, Y. Performance of IMERG as a Function of Spatiotemporal Scale. J. Hydrometeorol. 2017, 18, 307–319. [Google Scholar] [CrossRef]
- Derin, Y.; Anagnostou, E.; Berne, A.; Borga, M.; Boudevillain, B.; Buytaert, W.; Chang, C.-H.; Chen, H.; Delrieu, G.; Hsu, Y.C.; et al. Evaluation of GPM-era Global Satellite Precipitation Products over Multiple Complex Terrain Regions. Remote Sens. 2019, 11, 2936. [Google Scholar] [CrossRef] [Green Version]
- Collow, A.B.M.; Bosilovich, M.G.; Koster, R.D. Large-Scale Influences on Summertime Extreme Precipitation in the Northeastern United States. J. Hydrometeorol. 2016, 17, 3045–3061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, F.; Guo, B.; Ye, B.; Ye, Q.; Chen, H.; Ju, X.; Guo, J.; Wang, Z. Systematical Evaluation of GPM IMERG and TRMM 3B42V7 Precipitation Products in the Huang-Huai-Hai Plain, China. Remote Sens. 2019, 11, 697. [Google Scholar] [CrossRef] [Green Version]
- Ramsauer, T.; Weiß, T.; Marzahn, P. Comparison of the GPM IMERG Final Precipitation Product to RADOLAN Weather Radar Data over the Topographically and Climatically Diverse Germany. Remote Sens. 2018, 10, 2029. [Google Scholar] [CrossRef] [Green Version]
- Kirstetter, P.-E. Evaluation of diurnal variation of GPM IMERG-derived summer precipitation over the contiguous US using MRMS data. Q. J. R. Meteorol. Soc. 2018, 144, 270–281. [Google Scholar] [CrossRef] [Green Version]
- Abdalla, S.; Janssen, P.A.E.M.; Bidlot, J.-R. Jason-2 OGDR Wind and Wave Products: Monitoring, Validation and Assimilation. Mar. Geod. 2010, 33, 239–255. [Google Scholar] [CrossRef]
- Bhowmick, S.A.; Sharma, R.; Babu, K.N.; Shukla, A.K.; Kumar, R.; Venkatesan, R.; Gairola, R.M.; Bonnefond, P.; Picot, N. Validation of SWH and SSHA from SARAL/AltiKa Using Jason-2 and In-Situ Observations. Mar. Geod. 2015, 38, 193–205. [Google Scholar] [CrossRef] [Green Version]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Reichle, R.H.; Liu, Q.; Koster, R.D.; Draper, C.S.; Mahanama, S.P.P.; Partyka, G.S. Land Surface Precipitation in MERRA-2. J. Clim. 2017, 30, 1643–1664. [Google Scholar] [CrossRef]
- Lin, I.-I.; Liu, W.T.; Wu, C.-C.; Chiang, J.C.H.; Sui, C.-H. Satellite observations of modulation of surface winds by typhoon-induced upper ocean cooling. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Bender, M.A.; Ginis, I. Real-Case Simulations of Hurricane–Ocean Interaction Using A High-Resolution Coupled Model: Effects on Hurricane Intensity. Mon. Weather Rev. 2000, 128, 917–946. [Google Scholar] [CrossRef]
- Schade, L.R.; Emanuel, K.A. The Ocean’s Effect on the Intensity of Tropical Cyclones: Results from a Simple Coupled Atmosphere–Ocean Model. J. Atmos. Sci. 1999, 56, 642–651. [Google Scholar] [CrossRef] [Green Version]
- Perrie, W.; Ren, X.; Zhang, W.; Long, Z. Simulation of extratropical Hurricane Gustav using a coupled atmosphere-ocean-sea spray model. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Wilks, D.S. (Ed.) Chapter 8—Forecast Verification. In International Geophysics; Academic Press: Cambridge, MA, USA, 2011; Volume 100, pp. 301–394. [Google Scholar]
- Noyelle, R.; Ulbrich, U.; Becker, N.; Meredith, E.P. Assessing the impact of sea surface temperatures on a simulated medicane using ensemble simulations. Nat. Hazards Earth Syst. Sci. 2019, 19, 941–955. [Google Scholar] [CrossRef] [Green Version]
RAMS/ICLAMS Model | |
Nests | 2 |
Resolution | 18 km/6 km |
Time step | 15 sec/5 sec |
Vertical Levels | 42 |
Initial and lateral boundary conditions | National Centers for Environmental Prediction (NCEP) Final (FNL) Operational Global Analysis |
Sea Surface Temperature (SST) gridded data | RTG daily (with a resolution of 0.083°) |
OSTIA hourly (with a resolution of 0.25°) | |
NEMO hourly (with a resolution of 0.083°) | |
Soil texture and properties | Food and Agriculture Organization of the United Nations (FAO) |
Elevation data | Shuttle Radar Topography Mission (SRTM)(3 arc-second resolution) |
Vegetation and land cover | Olson Global Ecosystem categorization (30 arc-second resolution) |
WAM Model | |
Nests | 1 |
Resolution | 0.05° |
Time step | 30 sec |
Number of frequencies | 30 |
Number of wave directions | 24 |
Bathymetry | ETOPO1 (1 minute resolution) from the National Centers for Environmental Information (NCEI) of the National Oceanic and Atmospheric Administration (NOAA). |
Cyclone Name | Experimental Period |
---|---|
Trixi | 26/10/2016 to 01/11/2016 |
Numa | 15/11/2017 to 20/11/2017 |
Zorbas | 27/09/2018 to 01/10/2018 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stathopoulos, C.; Patlakas, P.; Tsalis, C.; Kallos, G. The Role of Sea Surface Temperature Forcing in the Life-Cycle of Mediterranean Cyclones. Remote Sens. 2020, 12, 825. https://doi.org/10.3390/rs12050825
Stathopoulos C, Patlakas P, Tsalis C, Kallos G. The Role of Sea Surface Temperature Forcing in the Life-Cycle of Mediterranean Cyclones. Remote Sensing. 2020; 12(5):825. https://doi.org/10.3390/rs12050825
Chicago/Turabian StyleStathopoulos, Christos, Platon Patlakas, Christos Tsalis, and George Kallos. 2020. "The Role of Sea Surface Temperature Forcing in the Life-Cycle of Mediterranean Cyclones" Remote Sensing 12, no. 5: 825. https://doi.org/10.3390/rs12050825
APA StyleStathopoulos, C., Patlakas, P., Tsalis, C., & Kallos, G. (2020). The Role of Sea Surface Temperature Forcing in the Life-Cycle of Mediterranean Cyclones. Remote Sensing, 12(5), 825. https://doi.org/10.3390/rs12050825