Evolution of Near-Shore Outwash Fans and Permafrost Spreading Under Their Surface: A Case Study from Svalbard
"> Figure 1
<p>A simplified investigation scheme presented in a block diagram.</p> "> Figure 2
<p>Study area: (<b>a</b>) oblique view; glacier terminus after Ciężkowski et al. [<a href="#B67-remotesensing-12-00482" class="html-bibr">67</a>], modified; (<b>b</b>) geological sketch based on Czerny et al. [<a href="#B71-remotesensing-12-00482" class="html-bibr">71</a>], simplified: Quaternary; 1—moraines, 2—fluvial deposits, ground moraine deposits and marine shore deposits; Upper Proterozoic, Elveflya Formation; 3—marble-quarzite and granite-quarzite metaconglomerates, 4—gray calcite marbles, 5—yellow quarzites and quartzitic schists, 6—mica-carbonate-quartz schists (including dropstones), 7—black chloritoid-bearing quartz-paragonite-muscovite schists; Slyngfjellet Formation; 8—Yellowish muscovite-carbonate-quartz schists; Gashamna Formation; 9—black phyllites; Hoferpynten Formation; 10—gray dolostones and black calcite marbles; Jens Erikfjellet Formation; 11—laminated greenstones with epidotite lenses, 12—black greenstones, 13—greenstones with metachert intercalations, 14—greenstones, 15—pink calcite marbles, 16—greenschists and carbonate-chlorite-quartz schists; Middle Proterozoic, Eimfjellet Group, 17—chlorite and muscovite-chlorite diaphthoritic schists; Bratteggdalen Formation; 18—mica schists with intercalations of amfibolites, metarhyolites, quartzites and laminated quartz-feldspar felses, 19—amphibolites interbedded with chlorite and biotite schists, 20—black coarse-grained amphibolites; Skalfjellet Formation; 21—amphibolites with anorthositic metagabbro enclaves; Gulliksenfjellet Formation; 22—white and green quartzites; 23—rivers, 24—abandoned river channels, 25—thrust faults, 26—faults, 27—geological boundaries, 28—glacier ice, 29—Stanisław Baranowski Polar Station; G—gorges, S1–S5—electromagnetic induction (EMI) sections.</p> "> Figure 3
<p>Landforms in the research area: (<b>a</b>) panoramic (distorted) view from the Mt. Jens Erik, (<b>b</b>) the biggest push moraine in the front of the Werenskiold Glacier end moraine, (<b>c</b>) cross-section of the push moraine with a raised and deformed layer of fossil tundra, (<b>d</b>) fossil tundra in examples of <span class="html-italic">Saxifraga</span> and <span class="html-italic">Salix polaris</span> collected from deformed layer visible in the photo c, (<b>e</b>) the upper part of the Elveflya fan and abandoned channel of the Kvisla river, (<b>f</b>) linear cracks on the Elveflya surface, and (<b>g</b>) view from the South to the North.</p> "> Figure 4
<p>Results of the Elveflya outwash fan photointerpretation.</p> "> Figure 5
<p>Normalized Difference Vegetation Index (NVDI) analysis of the Elveflya outwash fan.</p> "> Figure 6
<p>Microfans of the Elveflya surface (A–F): 1—driftwood, 2—the Elveflya surface, 3—microfans range, 4—linear cracks, 5—last braided channel of the Kvisla, 6—previous shoreline.</p> "> Figure 7
<p>Evolution of the Nottingham outwash fan averaged over periods: (1) range in 1985–2000, (2) range in 2000–2010, (3) range in 2010–2017, (4) low tides (0.4–0.4 m), and (5) high tides (1.2–1.3 m).</p> "> Figure 8
<p>Landforms evolution in the light of fossil organic deposits dating.</p> "> Figure 9
<p>Electrical resistivity of the ground in <a href="#sec1-remotesensing-12-00482" class="html-sec">Section 1</a>, <a href="#sec2-remotesensing-12-00482" class="html-sec">Section 2</a>, <a href="#sec3-remotesensing-12-00482" class="html-sec">Section 3</a>, <a href="#sec4-remotesensing-12-00482" class="html-sec">Section 4</a> and <a href="#sec5-remotesensing-12-00482" class="html-sec">Section 5</a> (see <a href="#remotesensing-12-00482-f002" class="html-fig">Figure 2</a>), the vertical exaggeration in the inverse models is 5.</p> "> Figure 10
<p>Vertical displacements of terrain surface indicated in Line of Sight Small Baseline Subset (LOS SBAS) analysis.</p> "> Figure 11
<p>Comparison of the ground electrical resistivity and vertical displacements of the terrain surface (LOS SBAS). The May 24 is the reference point for LOS SBAS analysis.</p> "> Figure A1
<p>Extent of the processed area of Sentinel 1A/1B Tracks 14 (ascending) and 154 (descending). Only the SAR range used to calculate the LOS displacements is shown in the figure. In background Digital Elevation Model (DEM) from ArcticDEM <a href="https://www.pgc.umn.edu/data/arcticdem/" target="_blank">https://www.pgc.umn.edu/data/arcticdem/</a>.</p> "> Figure A2
<p>Baseline for tracks (<b>a</b>) 14 and (<b>b</b>) 154. Baselines used to calculate Line of Sight (LOS) displacements in each time period.</p> "> Figure A2 Cont.
<p>Baseline for tracks (<b>a</b>) 14 and (<b>b</b>) 154. Baselines used to calculate Line of Sight (LOS) displacements in each time period.</p> "> Figure A3
<p>Time series for track 14 for the Elveflya outwash fan. All LOS displacements in each of the time periods. The reference time period is 24 May.</p> "> Figure A4
<p>Time series for track 154. All LOS displacements in each of the time periods. The reference time period is 22 May.</p> "> Figure A5
<p>Cross-<a href="#sec1-remotesensing-12-00482" class="html-sec">Section 1</a>, <a href="#sec2-remotesensing-12-00482" class="html-sec">Section 2</a>, <a href="#sec3-remotesensing-12-00482" class="html-sec">Section 3</a> and <a href="#sec4-remotesensing-12-00482" class="html-sec">Section 4</a> and the Nottingham fan corresponds to electromagnetic measurements in eight time periods.</p> "> Figure A6
<p>Accuracy of thee displacement determination on the entire surface of the elaboration. In the background, the Elveflya and Nottingham fans range and DEM from ArcticDEM <a href="https://www.pgc.umn.edu/data/arcticdem/" target="_blank">https://www.pgc.umn.edu/data/arcticdem/</a>.</p> "> Figure A7
<p>Accuracy of displacement. Compilation of two tracks in comparable time (2 and 4 July) <a href="#sec2-remotesensing-12-00482" class="html-sec">Section 2</a> is an example.</p> ">
Abstract
:1. Introduction
2. Methods
3. Study Area
4. Results
4.1. Outwash Plains Morphology
4.2. Landscape Evolution
4.3. Permafrost Occurrence
4.4. Ground Surface Seasonal Dynamics
5. Discussion
6. Conclusions
- The analysis of the existing age determination data for organic deposits and the datings of fossil tundra identified in the glacio-tectonic deformed layer in front of the Werenskiold Glacier end moraine has shown that the advance of the glacier and the evolution of the outwash fans in its marginal zone can be dated to the Little Ice Age. The breakthrough date in the evolution of the investigated sandurs is the years 1963–1969, when the water flow in the Kvisla river ceased as a result of hydrographic changes and the capturing of the river by the Breelva river. The new river, named Werenskioldelva, directed all of the transported bed load towards the Nottingham bay. The Elveflya fan was no longer built-up with fluvio-glacial sediments.
- The photointerpretation allowed the identification of six separate parts in the Elveflya sandur and of their evolution stages. Lateral migration of the Kvisla channels, which is clearly manifested in the separate microfans, could be the result of extreme water discharges. The range of the two youngest microfans is approximately 50% shorter than that of the three older microfans, which may be due to the change in the quantity of the bed load transported outside of the end moraine by the Kvisla river. The sixth microfan is not related to the activity of the Kvisla river, and instead may be attributed to the sediment slopewash at the Werenskiold Glacier end moraine.
- The Nottingham outwash fan, whose evolution rate has increased since the 1970s, grows at an average rate of 13,400 m2·year−1. Its surface growth rate has increased from 5700 m2·year−1 in the period of 1985–2000 to 24,900 m2·year−1 over the years 2010–2017. This means an approximately fivefold increase of the fan aggradation rate.
- High electrical resistivity values observed under the proximal part of the Elveflya fan should be interpreted as evidence of permafrost. Low electrical resistivities measured in the distal part of the outwash fan exclude the possibility of ground ice in this zone. Permafrost is either not present in the area or the ground is in a cryotic condition (marine cryopeg), but conclusive evidence cannot be provided without direct borehole measurements of the ground temperatures.
- In the absence of terrain and geological conditions, the reason behind the varied conditions stimulating ground ice development seems to lie in the hydrogeology of the area: An underground inflow of fresh groundwater from the side of the Werenskiold Glacier to the proximal part of the Elveflya fan and the intrusion of saline sea water in the ground of the distal part of the fan.
- The SBAS analysis of LOS displacement indicates that the surface of Elveflya is relatively stable in the proximal part (apex) of the fan and under the end moraine of the Werenskiold Glacier. Displacements (subsidence, heave) of up to 5 cm are observed in the distal part (toe) of the fan. This division overlaps precisely with the zones of high/low ground resistivity values. This relationship allows a conclusion that the displacements are due to permafrost. The ground with ice presence shows greater stability. The zone subjected to the intrusion of sea water deforms more, as it dries in the summer and is thus prone to contractions, while freezing of the wet ground in the fall causes its heave. These movements result in cracks, which extend in the ground parallel to the seashore and which are observed only in the distal part of the Elveflya fan.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Evolution of Near-Shore Outwash Fans and Permafrost Spreading Under Their Surface: A Case Study from Svalbard
Dataset/Orbit Path/Track Number | InSAR Processing Method | Spatial Resolution Range × Azimuth/Pixel Spacing Range × Azimuth | Maximum Spatial and Temporal Baselines | Number of Selected Interferograms | Coherence Filter |
---|---|---|---|---|---|
S1A/1B IWS Ascending 14 | Small Baseline Subset (SBAS) 2018 | 2.7–3.5/22.5–22.7 m 2.3 × 14.1 m | 118 m 42 d | 84 | 0.6 in >50% interferograms |
S1A/1B IWS Descending 154 | Small Baseline Subset (SBAS) 2018 | 2.7–3.5/22.5-22.7–m 2.3 × 14.1 m | 132 m 42 d | 101 | 0.5 in >50% interferograms |
References
- Isaksen, K.; Mühll, D.V.; Gubler, H.; Kohl, T.; Sollid, J.L. Ground surface-temperature reconstruction based on data from a deep borehole in permafrost at Janssonhaugen, Svalbard. Ann. Glaciol. 2000, 31, 287–294. [Google Scholar] [CrossRef] [Green Version]
- Christiansen, H.H.; Etzelmüller, B.; Isaksen, K.; Juliussen, H.; Farbrot, H.; Humlum, O.; Johansson, M.; Ingeman-Nielsen, T.; Kristensen, L.; Hjort, J.; et al. The thermal state of permafrost in the Nordic area during the international polar year 2007–2009. Permafr. Periglac. Process. 2010, 21, 156–181. [Google Scholar] [CrossRef] [Green Version]
- Haeberli, W. Investigating glacier–permafrost relationships in high-mountain areas: Historical background, selected examples and research needs. In Cryospheric Systems: Glaciers and Permafrost; Harris, C., Murton, J.B., Eds.; Special Publications; Geological Society: London, UK, 2005; Volume 242, pp. 29–37. [Google Scholar]
- Harris, C.; Murton, J.B. Interactions between Glaciers and Permafrost: An Introduction. Cryospheric Systems: Glaciers and Permafrost; Special Publications; Geological Society: London, UK, 2005; Volume 242, pp. 1–9. [Google Scholar]
- Waller, R.I.; Murton, J.B.; Kristensen, L. Glacier–permafrost interactions: Processes, products and glaciological implications. Sediment. Geol. 2012, 255–256, 1–28. [Google Scholar] [CrossRef]
- Kasprzak, M.; Strzelecki, M.C.; Traczyk, A.; Kondracka, M.; Lim, M.; Migała, K. On the potential for a bottom active layer below coastal permafrost: The impact of seawater on permafrost degradation imaged by electrical resistivity tomography (Hornsund, SW Spitsbergen). Geomorphology 2017, 293 Pt B, 347–359. [Google Scholar] [CrossRef] [Green Version]
- Strzelecki, M.; Kasprzak, M.; Lim, M.; Świrad, Z.M.; Jaskólski, M.; Pawłowski, Ł.; Modzel, P. Cryo-conditioned rocky coast systems: A case study from Wilczekodden, Svalbard. Sci. Total Environ. 2017, 607–608, 443–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angelopoulos, M.; Westermann, S.; Overduin, P.P.; Faguet, A.; Olenchenko, V.; Grosse, G.; Grigoriev, M.N. Heat and salt flow in subsea permafrost modeled withCryoGRID2. J. Geophys. Res. Earth Surf. 2019, 124, 920–937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nuth, C.; Kohler, J.; König, M.; von Deschwanden, A.; Hagen, O.; Kääb, A.; Moholdt, G.; Pettersson, R. Decadal changes from a multi-temporal glacier inventory of Svalbard. Cryosphere 2013, 7, 1603–1621. [Google Scholar] [CrossRef] [Green Version]
- Małecki, J. Accelerating retreat and high-elevation thinning of glaciers in central Spitsbergen. Cryosphere 2016, 10, 1317–1329. [Google Scholar] [CrossRef] [Green Version]
- Bourriquen, M.; Mercier, D.; Baltzer, A.; Fournier, J.; Costa, S.; Roussel, E. Paraglacial coasts responses to glacier retreat and associatedshifts in river floodplains over decadal timescales (1966–2016), Kongsfjorden, Svalbard. Land Degrad. Dev. 2018, 29, 4173–4185. [Google Scholar] [CrossRef]
- Strzelecki, M.C.; Long, A.J.; Lloyd, J.M.; Małecki, J.; Zagórski, P.; Pawłowski, Ł.; Jaskólski, M.W. The role of rapid glacier retreat and landscape transformation in controlling the post-Little Ice Age evolution of paraglacial coasts in central Spitsbergen (Billefjorden, Svalbard). Land Degrad. Dev. 2018, 29, 1962–1978. [Google Scholar] [CrossRef]
- Tomczyk, A.M.; Ewertowski, M.W.; Stawska, M.; Rachlewicz, G. Detailed alluvial fan geomorphology in a high-arctic periglacial environment, Svalbard: Application of unmanned aerial vehicle (UAV) surveys. J. Maps 2019, 15, 460–473. [Google Scholar] [CrossRef] [Green Version]
- Forman, S.L.; Lubinski, D.J.; Ingólfsson, Ó.; Zeeberg, J.J.; Snyder, J.A.; Siegert, M.J.; Matishov, G.G. A review of postglacial emergence on Svalbard, Franz Josef Land and Novaya Zemlya, northern Eurasia. Quat. Sci. Rev. 2004, 23, 1391–1434. [Google Scholar] [CrossRef]
- Osterkamp, T.E. Sub-sea permafrost. In Encyclopedia of Ocean Sciences; Steele, J.H., Thorpe, S.A., Turekian, K.K., Eds.; Academic Press: San Diego, CA, USA, 2001; pp. 2902–2912. [Google Scholar]
- Mackay, J.R. Offshore permafrost and ground ice, Southern Beaufort Sea, Canada. Can. J. Earth Sci. 1972, 9, 1550–1561. [Google Scholar] [CrossRef]
- Hill, P.R.; Lewis, C.P.; Desmarais, S.; Kauppaymuthoo, V.; Rais, H. The Mackenzie Delta: Sedimentary processes and facies of a high-latitude, fine-grained delta. Sedimentology 2001, 48, 1047–1078. [Google Scholar] [CrossRef]
- Romanovskii, N.N.; Hubberten, H.-W.; Gavrilov, A.V.; Tumskoy, V.E.; Kholodov, A.L. Permafrost of the east Siberian Arctic shelf and coastal lowlands. Quat. Sci. Rev. 2004, 23, 1359–1369. [Google Scholar] [CrossRef]
- Rekant, P.; Cherkashev, G.; Vanstein, B.; Krinitsky, P. Submarine permafrost in the nearshore zone of the southwestern Kara Sea. Geo-Mar. Lett. 2005, 25, 183–189. [Google Scholar] [CrossRef] [Green Version]
- Rekant, P.; Bauch, H.A.; Schwenk, T.; Portnov, A.; Gusev, E.; Spiess, V.; Cherkashov, G.; Kassens, H. Evolution of subsea permafrost landscapes in Arctic Siberia since the Late Pleistocene: A synoptic insight from acoustic data of the Laptev Sea. Arktos 2015, 1, 11. [Google Scholar] [CrossRef] [Green Version]
- Overduin, P.P.; Wetterich, S.; Günther, F.; Grigoriev, M.N.; Grosse, G.; Schirrmeister, L.; Hubberten, H.-W.; Makarov, A. Coastal dynamics and submarine permafrost in shallow water of the central Laptev Sea, East Siberia. Cryosphere 2016, 10, 1449–1462. [Google Scholar] [CrossRef] [Green Version]
- Humlum, O.; Instanes, A.; Sollid, J.L. Permafrost in Svalbard: A review of research history, climatic background and engineering challenges. Polar Res. 2003, 22, 191–215. [Google Scholar] [CrossRef] [Green Version]
- Etzelmüller, B.; Schuler, T.V.; Isaksen, K.; Christiansen, H.H.; Farbot, H.; Benestad, R.E. Modelling past and future permafrost conditions in Svalbard. Cryosphere Discuss. 2010, 4, 1877–1908. [Google Scholar] [CrossRef]
- Christiansen, H.H.; Gilbert, G.L.; Demidov, N.; Guglielmin, M.; Osuch, M.; Boike, J. Permafrost thermal snapshot and active-layer thickness in Svalbard 2016–2017. In SESS Report 2018—The State of Environmental Science in Svalbard; Svalbard Science Centre: Longyearbyen, Norway, 2018; 22p. [Google Scholar]
- Noetzli, J.; Christiansen, H.H.; Deline, P.; Gugliemin, M.; Isaksen, K.; Romanovsky, V.E.; Smith, S.L.; Zhao, L.; Streletskiy, D.A. Permafrost thermal state [in “State of the Climate in 2017”]. Bull. Am. Meteorol. Soc. 2018, 99, 20–22. [Google Scholar]
- Biskaborn, B.K.; Smith, S.L.; Noetzli, J.; Matthes, H.; Vieira, G.; Streletskiy, D.A.; Schoeneich, P.; Romanovsky, V.E.; Lewkowicz, A.G.; Abramov, A.; et al. Permafrost is warming at a global scale. Nat. Commun. 2019, 10, 264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasprzak, M.; Szymanowski, M. Terrain determinants of permafrost active layer thermal conditions: A case study from Arctic deglaciated catchment (Bratteggdalen, SW Spitsbergen). Peer J. Prepr. 2018, 6, e27119v2. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Zhao, R.; Li, Z.W.; Feng, G.C.; Wang, Q.J.; Hu, J. Monitoring surface deformation over permafrost with an improved SBAS-InSAR algorithm: With emphasis on climatic factors modeling. Remote Sens. Environ. 2016, 184, 276–287. [Google Scholar] [CrossRef]
- Eckerstorfer, M.; Eriksen, H.Ø.; Rouyet, L.; Christiansen, H.H.; Lauknes, T.R.; Blikra, L.H. Comparison of geomorphological field- and 2D InSAR mapping of periglacial landscape activity at Nordnesfjellet, Northern Norway: Comparison of geomorphological field- and 2D InSAR mapping. Earth Surf. Process. Landf. 2018, 43, 2147–2156. [Google Scholar] [CrossRef]
- Rouyet, L.; Lauknesa, T.R.; Christiansen, H.H.; Strand, S.M.; Larsen, Y. Seasonal dynamics of a permafrost landscape, Adventdalen, Svalbard, investigated by InSAR. Remote Sens. Environ. 2019, 231. [Google Scholar] [CrossRef]
- Church, M. Baffin Island Sandurs: A study of arctic fluvial processes. Geol. Survey Canada Bull. 1972, 216, 208. [Google Scholar]
- Maizels, J. Lithofacies variations within sandur deposits: The role of runoff regime, flow dynamics and sediment supply characteristics. Sediment. Geol. 1993, 85, 299–325. [Google Scholar] [CrossRef]
- Marren, P. Glacier margin fluctuations, Skaftafellsjökull, Iceland: Implications for sandur evolution. Boreas 2002, 31, 75–81. [Google Scholar] [CrossRef]
- Marren, P.M.; Russel, A.J.; Rushmer, E.L. Sedimentology of a sandur formed by multiple jökulhlaups, Kverkfjöll, Iceland. Sediment. Geol. 2009, 213, 77–88. [Google Scholar] [CrossRef]
- Weckwerth, P.; Greń, K.; Sobota, I. Controls on downstream variation in surficial sediment size of an outwash braidplain developed under high Arctic conditions (Kaffiøyra, Svalbard). Sediment. Geol. 2019, 387, 75–86. [Google Scholar] [CrossRef]
- Kolondra, L. Werenskioldbreen and Surrounding Areas. Spitsbergen, Svalbard, Norway. Orthophotomap 1:25:000; Jania, J., Kolondra, L., Aas, H.F., Eds.; Wydział Nauk o Ziemi, Uniwersytet Śląski, Sosnowiec and Norsk Polar Institutt: Tromsø, Norway, 2002. [Google Scholar]
- Irwin, B.J.; Ventura, S.J.; Slater, B.K. Fuzzy and isodata classification of landform elements from digital terrain data in Pleasant Valley, Wisconsin. Geoderma 1997, 77, 137–154. [Google Scholar]
- Adam, S.; Vitse, I.; Johannsen, C.; Monbaliu, J. Sediment type unsupervised classification of the Molenplaat, Westerschelde Estuary, The Netherlands. EARSeL eProc. 2006, 5, 146–160. [Google Scholar]
- Rozenstein, O.; Karnieli, A. Comparison of methods for land-use classification incorporating remote sensing and GIS inputs. Appl. Geogr. 2011, 31, 533–544. [Google Scholar] [CrossRef]
- Raynolds, M.K.; Walker, D.A.; Maier, H.A. NDVI patterns and phytomass distribution in the circumpolar Arctic. Remote Sens. Environ. 2006, 102, 271–281. [Google Scholar] [CrossRef]
- Rouse, J.; Haas, R.; Scheel, J.; Deering, D. Monitoring Vegetation Systems in the Great Plains with ERTS. In Proceedings of the 3rd Earth Resource Technology Satellite (ERTS) Symposium (1), Washington, DC, USA, 10–14 December 1973; pp. 48–62. [Google Scholar]
- Baranowski, S.; Karlén, W. Remnants of Viking Age Tundra in Spitsbergen and Northern Scandinavia. Geogr. Ann. Ser. A Phys. Geogr. 1976, 58, 35–40. [Google Scholar] [CrossRef]
- Traczyk, A. Significnce of the Quaternary glaciatons on the relief evolution of the western coastal zone of the Spitsbergen on example of the Hornsund area (in Polish with Eng. abs.). In Środowisko Przyrodnicze Obszarów Polarnych; Kolwalska, A., Latocha, A., Marszałek, H., Pereyma, J., Eds.; Wydział Nauk Przyrodniczych Uniwersytetu Wrocławskiego, Uniwersytet Wrocławski: Wrocław, Poland, 2008; pp. 79–88, GAJT Publ. [Google Scholar]
- Dafflon, B.; Hubbard, S.S.; Ulrich, C.; Peterson, J.E. Electrical Conductivity Imaging of Active Layer and Permafrost in an Arctic Ecosystem, through Advanced Inversion of Electromagnetic Induction Data. Vadose Zone J. 2013. [Google Scholar] [CrossRef]
- Reynolds, J.M. Electrical Resistivity Methods. In An Introduction to Applied and Environmental Geophysics, 2nd ed.; Wiley: Chichester, UK, 2011; pp. 289–372. [Google Scholar]
- Hauck, C. Frozen ground monitoring using DC resistivity tomography. Geophys. Res. Lett. 2002, 29, 2016. [Google Scholar] [CrossRef]
- Ishikawa, M. Application of DC resistivity imaging to frozen ground investigations. J. Jpn. Soc. Snow Ice 2004, 66, 177–186. [Google Scholar] [CrossRef]
- Hayley, K.; Bentley, L.R.; Gharibi, M.; Nightingale, M. Low temperature dependence of electrical resistivity: Implications for near surface geophysical monitoring. Geophys. Res. Lett. 2007, 34, L18402. [Google Scholar] [CrossRef]
- MacKay, D.K. Electrical resistivity measurements in frozen ground, Mackenzie Delta area, Northwest Territories. Actes du Colloque de Becarest Repr. Ser. 1969, 82, 363–375. [Google Scholar]
- Doolittle, J.A.; Brevik, E.C. The use of electromagnetic induction techniques in soils studies. Geoderma 2014, 223–225, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Balkov, E.V.; Fadeev, D.I.; Karin, Y.G.; Manshtein, A.K.; Manshtein, Y.A.; Panin, G.L. A new approach to shallow-depth electromagnetic sounding. Russ. Geol. Geophys. 2017, 58, 635–641. [Google Scholar] [CrossRef]
- Loke, M.H. Manual for RES3DINV. Rapid 3-D Resistivity & IP Inversion Using the Least-Squares Method (For 3-D Surveys Using the Pole–Pole, Pole–Dipole, Dipole–Dipole, Rectangular, Wenner, Wenner-Schlumberger and non-Conventional Arrays). On Land, Aquatic and Cross-Borehole Surveys. Geoelectrical Imaging 2-D & 3-D; Geotomo: Penang, Malaysia, 2013. [Google Scholar]
- Sandwell, D.; Mellors, R.; Tong, X.; Wei, M.; Wessel, P. Open radar interferometry software for mapping surface deformation. Eos 2011, 92, 234. [Google Scholar] [CrossRef] [Green Version]
- Massonnet, D.; Feigl, K.L. Radar interferometry and its application to changes in the earth’s surface. Rev. Geophys. 1998, 36, 441–500. [Google Scholar] [CrossRef] [Green Version]
- Farr, T.; Kobrick, M. Shuttle Radar Topography Mission produces a wealth of data. Eos 2000, 81, 583–585. [Google Scholar] [CrossRef]
- Chen, C.W.; Zebker, H.A. Phase unwrapping for large SAR interferograms: Statistical segmentation and generalized network models. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1709–1719. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef] [Green Version]
- Cavalié, O.; Doin, M.P.; Lasserre, C.; Briole, P. Groundmotion measurement in the Lake Mead area, Nevada, by differential synthetic aperture radar interferometry time series analysis: Probing the lithosphere rheological structure. J. Geophys. Res. Solid Earth 2007, B3, 112. [Google Scholar] [CrossRef] [Green Version]
- Lyons, S.; Sandwell, D. Fault creep along the southern San Andreas from interferometric synthetic aperture radar, permanent scatterers and stacking. J. Geophys. Res. Solid Earth 2003, 108, 1–24. [Google Scholar] [CrossRef]
- Pereyma, J.; Migała, K.; Sikora, K. Climate. In Ancient and Modern Geosystems of Spitsbergen; Zwoliński, Z., Kostrzewski, A., Pulina, M., Eds.; Bogucki Wyd. Naukowe: Poznań, Poland, 2013; pp. 118–121. [Google Scholar]
- Koenigk, T.; Berg, P.; Doscher, R. Arctic climate change in an ensemble of regional CORDEX simulations. Polar Res. 2015, 34, 24603. [Google Scholar] [CrossRef]
- Osuch, M.; Wawrzyniak, T. Climate projections in the Hornsund area, Southern Spitsbergen. Pol. Polar Res. 2016, 37, 379–402. [Google Scholar] [CrossRef] [Green Version]
- Przybylak, R.; Wyszyński, P. Air temperature changes in the Arctic in the period 1951–2015 in the light of observational and reanalysis data. Theor. Appl. Climatol. 2019. [Google Scholar] [CrossRef] [Green Version]
- Łupikasza, E. Atmospheric precipitation. In Climate and Climate Change at Hornsund, Svalbard; Marsz, A.A., Styszyńska, A., Eds.; Gdynia Maritime Univ.: Gdynia, Poland, 2013; pp. 199–211. [Google Scholar]
- Niedźwiedź, T.; Styszyńska, A. Snow cover at the Hornsund Station. In Climate and Climate Change at Hornsund, Svalbard; Marsz, A.A., Styszyńska, A., Eds.; Gdynia Maritime Univ.: Gdynia, Poland, 2013; pp. 367–372. [Google Scholar]
- Ciężkowski, W.; Głowacki, T.; Grudzińska, K.K.; Kasza, D.; Zagożdżon, P. Front of the Werenskiold Glacier (Svalbard)—Changes in years 1957–2013. E3S Web Conf. 2018, 29, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Pulina, M.; Pereyma, J.; Kida, J.; Krawczyk, W. Characteristics of the polar hydrological year 1979/1980 in the basin of the Werenskiold Glacier, SW Spitsbergen. Pol. Polar Res. 1984, 5, 165–182. [Google Scholar]
- 69. Marszałek, H.; Rysiukiewicz, M.; Staśko, S.; Wąsik, M. Waters. In Ancient and Modern Geosystems of Spitsbergen; Zwoliński, Z., Kostrzewski, A., Pulina, M., Eds.; Bogucki Wyd. Naukowe: Poznań, Poland, 2013; pp. 125–131. [Google Scholar]
- Majchrowska, E.; Ignatiuk, D.; Jania, J.; Marszałek, H.; Wąsik, M. Seasonal and interannual variability in runofffrom the Werenskioldbreen catchment, Spitsbergen. Pol. Polar Res. 2015, 36, 197–224. [Google Scholar] [CrossRef] [Green Version]
- Czerny, J.; Kieres, A.; Manecki, M.; Rajchel, J. Geological Map of the SW Part of Wedel Jarlsberg Land, Spitsbergen 1:25 000 (with explanations); Manecki, A., Ed.; Institute of Geology and Mineral Deposits, University of Mining and Metallurgy: Cracow, Poland, 1993; pp. 1–61. [Google Scholar]
- Baranowski, S. Thermic conditions of the periglacial tundra in SW Spitsbergen. Acta Univ. Wratislav. 1968, 68, 74. [Google Scholar]
- Jahn, A. Soil thawing and active layer of permafrost in Spitsbergen. Acta Univ. Wratislav. 1982, 525, 57–75. [Google Scholar]
- Grześ, M. Characteristic of permafrost active layer on the western coast of Spitsbergen (in Polish with Eng. abstract). Przegląd Geograficzny 1985, 57, 671–691. [Google Scholar]
- Migała, K. The characteristic features of the active layer of the permafrost in the climate of Spitsbergen (in Polish with Eng. abstract). Acta Univ. Wratislav. 1994, 1590, 79–111. [Google Scholar]
- Chmal, H.; Klementowski, J.; Migała, K. Thermal currents of active layer in Hornsund area. In Permafrost, Proceedings of the Fifth International Conference, Trondheim, Norway, 2–5 August 1988; Senneset, K., Ed.; Proceedings Volume 1; Tapir Pub.: Trondheim, Norway, 1988; pp. 44–49. [Google Scholar]
- Migała, K.; Wojtuń, B.; Szymański, W.; Muskała, P. Soil moisture and temperature variation under different types of tundra vegetation during the growing season: A case study from the Fuglebekken catchment, SW Spitsbergen. Catena 2014, 116, 10–18. [Google Scholar] [CrossRef]
- Kosiba, A. Glacio-hydrodynamic processes and changes on the Werenskiold Glacier and the Hans Glacier, SW-Spitsbergen. Acta Univ. Wratislav. 1982, 525, 133–152. [Google Scholar]
- Kowalska, A.; Sroka, W. Sedimentary environment of the Nottinghambukta delta, SW Spitsbergen. Pol. Polar Res. 2008, 29, 245–259. [Google Scholar]
- Chmal, H. Pleistocene sea level changes and glacial history of the Hornsund area, Svalbard. Polar Res. 1987, 5, 269–270. [Google Scholar] [CrossRef]
- Isaksson, E.; Hermanson, M.; Hicks, S.; Igarashi, M.; Kamiyama, K.; Moore, J.; Motoyama, H.; Muir, D.; Pohjola, V.; Vaikmae, R.; et al. Ice cores from Svalbard—Useful archives of past climate and pollution history. Phys. Chem. Earth. 2003, 28, 1217–1228. [Google Scholar] [CrossRef] [Green Version]
- Szczuciński, W.; Zajączkowski, M.; Scholten, M. Sediment accumulation rates in subpolar fjords—Impact of post-Little Ice Age glaciers retreat, Billefjorden, Svalbard. Estuar. Coast. Shelf Sci. 2009, 85, 345–356. [Google Scholar] [CrossRef]
- Krawczyk, W.E. Chemical characteristics of water circulating in the Werenskiold Glacier (SW Spitsbergen). In Proceedings of the 2nd International Symposium of Glacier Caves and Karst in Polar Regions, Miedzygórze—Velká Morava, Sosnowiec, Poland, 10–16 February 1992; Silesian University: Sosnowiec, Poland, 1992; pp. 65–80. [Google Scholar]
- Olichwer, T.; Tarka, T.; Modelska, M. Chemical composition of groundwaters in the Hornsund region, southern Spitsbergen. Hydrol. Res. 2013, 44, 117–130. [Google Scholar] [CrossRef]
- Stachnik, Ł.; Majchrowska, E.; Yde, J.C.; Nawrot, A.; Cichała-Kamrowska, K.; Ignatiuk, D.; Piechota, A. Chemical denudation and the role of sulfide oxidation at Werenskioldbreen, Svalbard. J. Hydrol. 2016, 538, 177–193. [Google Scholar] [CrossRef] [Green Version]
- Zajączkowski, M.; Szczuciński, W.; Plessen, B.; Jernas, P. Benthic foraminifera in Hornsund, Svalbard: Implications for paleoenvironmental reconstructions. Polish Polar Res. 2010, 31, 349–375. [Google Scholar] [CrossRef]
- Promińska, A.; Falck, E.; Walczowski, W. Interannual variability in hydrography and water mass distribution in Hornsund, an Arctic fjord in Svalbard. Polar Res. 2018, 37, 1495546. [Google Scholar] [CrossRef] [Green Version]
- Swerpel, S. Hydrological investigations of the coastal waters in the Hornsund Fiord in the summer of 1975. Acta Univ. Wratislav. 1982, 525, 235–253. [Google Scholar]
- Swerpel, S. The Hornsund fiord: Water masses. Pol. Polar Res. 1985, 6, 475–496. [Google Scholar]
- Lech, J.; Walczowski, W. Data Report on Hydrological Measurements: Norwegian Sea, Fjords, Polar Front; 13.06–09.08.1994, Cruise AREX-94 (in Polish). Institute of Oceanology PAS: Sopot, Poland, 1994. [Google Scholar]
- Włodarska-Kowalczuk, M.; Węslawski, J.M.; Kotwicki, L. Spitsbergen glacial bays macrobenthos—A comperative study. Polar Biol. 1998, 20, 66–73. [Google Scholar] [CrossRef]
- Martínez, J.; Benavente, J.; García-Aróstegui, J.L.; Hidalgo, M.C.; Rey, J. Contribution of electrical resistivity tomography to the study of detrital aquifers affected by seawater intrusion–extrusion effects: The river Vélez delta (Vélez-Málaga, southern Spain). Eng. Geol. 2009, 108, 161–168. [Google Scholar] [CrossRef]
- Morrow, F.J.; Ingham, M.R.; McConchie, J.A. Monitoring of tidal influences on the saline interface using resistivity traversing and cross-borehole resistivity tomography. J. Hydrol. 2010, 389, 69–77. [Google Scholar] [CrossRef]
- Werner, A.D.; Ward, J.D.; Morgan, L.K.; Simmons, C.T.; Robinson, N.I.; Teubner, M.D. Vulnerability indicators of sea water intrusion. Groundwater 2012, 50, 48–58. [Google Scholar] [CrossRef]
- De Franco, R.; Biella, G.; Tosi, L.; Teatini, P.; Lozej, A.; Chiozzotto, B.; Giada, M.; Rizzetto, F.; Claude, C.; Mayer, A.; et al. Monitoring the saltwater intrusion by time lapse electrical resistivity tomography: The Chioggia test site (Venice Lagoon, Italy). J. Appl. Geophys. 2009, 69, 117–130. [Google Scholar] [CrossRef]
- Kazakis, N.; Pavlou, A.; Vargemezis, G.; Voudouris, K.S.; Soulios, G.; Pliakas, F.; Tsokas, G. Seawater intrusion mapping using electrical resistivity tomography and hydrochemical data. An application in the coastal area of eastern Thermaikos Gulf, Greece. Sci. Total Environ. 2016, 543, 373–387. [Google Scholar] [CrossRef]
- Pidlisecky, A.; Moran, T.; Hansen, B.; Knight, R. Electrical Resistivity Imaging of Seawater Intrusion into the Monterey Bay Aquifer System. Groundwater 2016, 54, 255–261. [Google Scholar] [CrossRef]
- Haldorsen, S.; Heim, M.; Dale, B.; Landvik, J.Y.; van der Ploeg, M.; Leijnse, A.; Salvigsen, O.; Hagen, J.O.; Banks, D. Sensitivity to long-term climate change of subpermafrost groundwater systems in Svalbard. Quat. Res. 2010, 73, 393–402. [Google Scholar] [CrossRef]
- Van der Ploeg, M.J.; Haldorsen, S.; Leijnse, A.; Heom, M. Subpermafrost groundwater systems: Dealing with virtual reality while having virtually no data. J. Hydrol. 2012, 475, 42–52. [Google Scholar] [CrossRef]
- Tolstikhin, N.I. Groundwater of the permafrost region of the USSR. In Permafrost Second International Conference, 13–28 July 1973; Sanger, F.J., Hyde, P.J., Eds.; Yakutsk. U.S.R.R. USRR Contribution, National Academy of Sciences: Washington, DC, USA, 1973; pp. 724–733. [Google Scholar]
- Gregersen, O.; Phukan, A.; Johansen, T. Engineering properties and foundation design alternatives in marine Svea clay, Svalbard. In Proceedings of the 4th International Conference on Permafrost, Fairbanks, AK, USA, 17–22 July 1983; Norwegian Geotechnical Institute: Oslo, Norway, 1985; Volume 159, pp. 384–388. [Google Scholar]
- Tsytovich, N.A.; Kronik, Y.A.; Markin, K.F.; Aksenov, V.I.; Samuel’son, M.V. Physical and mechanical properties of saline soils. In Permafrost Second International Conference, 13–28 July 1973; Sanger, F.J., Hyde, P.J., Eds.; Yakutsk, U.S.R.R. USRR Contribution, National Academy of Sciences: Washington, DC, USA, 1978; pp. 238–247. [Google Scholar]
- MacKay, D.K. Electrical resistivity measurements in frozen ground, Mackenzie Delta area, Northwest Territories. In Association Internationale d’Hydrologie Scientifique, Actes du Colloque de Becarest; Reprint Ser. 82; Department of Energy, Mines and Resources, Inland Waters Branch: Ceuterick, Belgium, 1969; pp. 363–375. [Google Scholar]
- Arcone, S.A.; Delaney, A.J. Borehole investigations of the electrical properties of frozen silt. In Permafrost, Proceedings of the Fifth International Conference, Trondheim, Norway, 2–5 August 1988; Senneset, K., Ed.; Proceedings Volume 2; Tapir Pub.: Trondheim, Norway, 1988; pp. 910–915. [Google Scholar]
- Kearey, P.; Brooks, M.; Hill, I. Electrical surveying. In An Introduction to Geophysical Exploration, 3rd ed.; Blackwell Science Ltd.: New Jersey, NJ, USA, 2002. [Google Scholar]
- Hilbich, C.; Marescot, L.; Hauck, C.; Loke, M.H.; Mäusbacher, R. Applicability of electrical resistivity tomography monitoring to coarse blocky and ice-rich permafrost landforms. Permafr. Periglac. Process. 2009, 20, 269–284. [Google Scholar] [CrossRef] [Green Version]
- Lewkowicz, A.G.; Etzelmüller, B.; Smith, S.L. Characteristics of discontinuous permafrost based on ground temperature measurements and electrical resistivity tomography, Southern Yukon, Canada. Permafr. Periglac. Process. 2011, 22, 320–342. [Google Scholar] [CrossRef]
- Kneisel, C. Frozen ground conditions in a subarctic mountain environment, Northern Sweden. Geomorphology 2010, 118, 80–92. [Google Scholar] [CrossRef]
- Wu, Y.; Nakagawa, S.; Kneafsey, T.J.; Dafflon, B.; Hubbard, S. Electrical and seismic response of saline permafrost soil during freeze—Thaw transition. J. Appl. Geophys. 2017, 146, 16–26. [Google Scholar] [CrossRef]
- Smith, M.W. Observations of soil freezing and frost heave at Inuvik, Northwest Territories, Canada. Can. J. Earth Sci. 1985, 22, 282–290. [Google Scholar] [CrossRef]
- Strozzi, T.; Kääb, A.; Frauenfelder, R. Detecting and quantifying mountain permafrost creep from in situ inventory, space-borne radar interferometry and airborne digital photogrammetry. Int. J. Remote Sens. 2004, 25, 2919–2931. [Google Scholar] [CrossRef]
Type of Data | Time | Methods | Results | Application |
---|---|---|---|---|
Orthophotomaps | 1990, 2011 | True color ISO | outwash fan segmentation | landform evolution |
LANDSAT | 1985–2017 | True Color, NVDI | outwash fan segmentation | landform evolution |
Geophysical | 2017 | EMI | electrical resistivity of ground | permafrost identification |
InSAR | 2018 | LOS SBAS | vertical displacement of terrain surface | surface processes |
Lp. | Series | Sensors and Resolution | Date | Time |
---|---|---|---|---|
1. | L7 | ETM+ (30 m) | 2002-07-10 | 11:28 |
2. | L7 | ETM+ (30 m) | 2010-08-24 | 11:38 |
3. | L8 | OLI (15 m) | 2017-08-3 | 11:46 |
SAR Mode/Geometry | Frame/Polaryzation | Path | Observation Period (First–Last Selected Scenes) | Revisit Time | Number of Selected Scenes | LOS (Orientation/Incidence Angle) |
---|---|---|---|---|---|---|
Interferometric Wide Swath (IWS) Ascending | 251 HH+HV | 14 | 2018-05-24–2018-10-15 | 6 days | 25 | 344.0°/43.4° |
Interferometric Wide Swath (IWS) Descending | 333 VV+HV | 154 | 2018-05-22–2018-10-13 | 6 days | 25 | 215.0°/38.8° |
No | Age 14C (BP) | Calendar Age (Calibrated)–Ranges 68% | Calendar Age (Calibrated)–Ranges 95% |
---|---|---|---|
GdS-1502 | 680 ± 90 | 690–620 cal BP (37.8%) 615–550 cal BP (30.4%) | 770–520 cal BP (95.4%) |
GdS-1503 | 780 ± 85 | 780–655 cal BP (68.2%) | 915–635 cal BP (90.1%) 595–560 cal BP (5.3%) |
Elveflya | Nottingham | |
---|---|---|
Contemporary deposition of fluvioglacial sediments | No | Yes |
Age | <770–520 years cal BP >1969 | <770–520 years cal BP with a sudden increase after 1969 |
Size | 5.57 km2 | 0.85 km2 |
Heights | 1.5 m b.s.l.–40 m a.s.l. | 0–8 m a.s.l. |
Slope | Up to 3.69°, average 0.86° | Up to 2°, average less than 0.5° |
Aspect | W–SW | W |
Current active processes | Eolian, cryogenic/degradation | Fluvial, marine/agradation |
Morphology | Dry channels and bars of braided river, bedrock outcrops, ground crevices, storm ridges | Active channels and bars of braided river, tidal flat, skerries |
Surface color | varied | homogeneous |
NDVI | Low to medium, presence of pioneer vegetation | Close to −1 |
Electrical resistivity of ground | ρ > 1000 Ω.m in the proximal part, ρ < 200 Ω.m in the distal part | ρ < 200 Ω.m |
Ground Ice/permafrost | Present in the proximal part (apex) | No evidence |
Other features | Driftwood on the coast | Single boulders |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasprzak, M.; Łopuch, M.; Głowacki, T.; Milczarek, W. Evolution of Near-Shore Outwash Fans and Permafrost Spreading Under Their Surface: A Case Study from Svalbard. Remote Sens. 2020, 12, 482. https://doi.org/10.3390/rs12030482
Kasprzak M, Łopuch M, Głowacki T, Milczarek W. Evolution of Near-Shore Outwash Fans and Permafrost Spreading Under Their Surface: A Case Study from Svalbard. Remote Sensing. 2020; 12(3):482. https://doi.org/10.3390/rs12030482
Chicago/Turabian StyleKasprzak, Marek, Michał Łopuch, Tadeusz Głowacki, and Wojciech Milczarek. 2020. "Evolution of Near-Shore Outwash Fans and Permafrost Spreading Under Their Surface: A Case Study from Svalbard" Remote Sensing 12, no. 3: 482. https://doi.org/10.3390/rs12030482
APA StyleKasprzak, M., Łopuch, M., Głowacki, T., & Milczarek, W. (2020). Evolution of Near-Shore Outwash Fans and Permafrost Spreading Under Their Surface: A Case Study from Svalbard. Remote Sensing, 12(3), 482. https://doi.org/10.3390/rs12030482