Elevation Changes of the Antarctic Ice Sheet from Joint Envisat and CryoSat-2 Radar Altimetry
"> Figure 1
<p>Maps of the total intermission biases between CryoSat-2 ascending tracks and Envisat ascending tracks ((<b>a</b>), <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mrow> <msub> <mi>C</mi> <mi>a</mi> </msub> <msub> <mi>E</mi> <mi>a</mi> </msub> </mrow> </msub> </mrow> </semantics></math>), CryoSat-2 ascending tracks and Envisat descending tracks ((<b>b</b>), <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mrow> <msub> <mi>C</mi> <mi>a</mi> </msub> <msub> <mi>E</mi> <mi>d</mi> </msub> </mrow> </msub> </mrow> </semantics></math>), CryoSat-2 descending tracks and Envisat ascending tracks ((<b>d</b>), <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mrow> <msub> <mi>C</mi> <mi>d</mi> </msub> <msub> <mi>E</mi> <mi>a</mi> </msub> </mrow> </msub> </mrow> </semantics></math>), CryoSat-2 descending tracks and Envisat descending tracks ((<b>e</b>), <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mrow> <msub> <mi>C</mi> <mi>d</mi> </msub> <msub> <mi>E</mi> <mi>d</mi> </msub> </mrow> </msub> </mrow> </semantics></math>) and the intramission ascending–descending (A–D) bias of Envisat ((<b>c</b>), <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mrow> <msub> <mi>C</mi> <mi>a</mi> </msub> <msub> <mi>C</mi> <mi>d</mi> </msub> </mrow> </msub> </mrow> </semantics></math>) and CryoSat-2 ((<b>f</b>), <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mrow> <msub> <mi>E</mi> <mi>d</mi> </msub> <msub> <mi>E</mi> <mi>a</mi> </msub> </mrow> </msub> </mrow> </semantics></math>) at the intersections of Envisat’s ascending tracks and descending tracks. The mode mask boundary between CryoSat-2’s LRM and SARIn modes [<a href="#B29-remotesensing-12-03746" class="html-bibr">29</a>] is shown in orange.</p> "> Figure 2
<p>Validation with laser altimeter elevation data obtained from the OIB and ICESat. Differences between the elevation changes derived from OIB observations and the combined elevation time series between 2002 and 2016 (<b>a</b>). Elevation differences between OIB observations and the combined elevation time series over the period of 2009–2018 (<b>b</b>). Difference between the average elevation change rates from the combined elevation time series and the average ICESat surface elevation change rates between 2003 and 2009 (<b>c</b>). The mode mask boundary between the CryoSat-2 LRM and SARIn modes is shown in orange.</p> "> Figure 3
<p>Maps of the long-term elevation changes from the combined elevation time series over the periods of 2002–2010 (<b>a</b>), 2010–2019 (<b>b</b>) and 2002–2019 (<b>c</b>).</p> "> Figure 4
<p>Elevation time series for Pine Island Glacier (<b>a</b>), Totten Glacier (<b>b</b>), Dronning Maud Land (<b>c</b>), and Lake Vostok (<b>d</b>). The geographical locations of the selected points (A, B, and C) are marked in green, purple, and orange on the left maps of elevation changes over 2002–2017. The time series and their 1σ uncertainty ranges for each point are given in the right maps. The time series of the points A and B are shifted along the Elevation axis for better visibility.</p> "> Figure 5
<p>Volume change of some subregions north of 81.5° S (Amundsen Sea sector (<b>a</b>), Dronning Maud Land (<b>b</b>), Getz sector (<b>c</b>), Princess Elizabeth Land (<b>d</b>), Bellingshausen Sea sector (<b>e</b>), and Totten Glacier sector (<b>f</b>)) from our combined altimetric time series (green dots) and the Institute for Marine and Atmospheric Research Firn Densification Model (IMAU-FDM) (purple triangles). The blue dashed curves and red dash-dotted curves are the time series after removing the seasonal oscillations using a 13-month moving average. Due to the defects of the moving average algorithm, the 6-month values at the beginning and end of the time series are not displayed. The solid black lines are the best-fit quadratic curves for the altimetric volume time series. Additionally, the altimetric volume time series’ linear and quadratic trend estimates are also included. The gray error bars show the 1σ uncertainty range of the altimetry data. The regions covered by each localization are shaded red in the inset. The boundaries refer to the Antarctic drainage systems in [<a href="#B47-remotesensing-12-03746" class="html-bibr">47</a>].</p> "> Figure 6
<p>Volume changes of some subregions north of 81.5° S (Amundsen Sea sector (<b>a</b>), Dronning Maud Land (<b>b</b>), Getz sector (<b>c</b>), Princess Elizabeth Land (<b>d</b>), Bellingshausen Sea sector (<b>e</b>), and Totten Glacier sector (<b>f</b>)) from our combined altimetric time series (green dots) and IMAU-FDM (purple triangles). After removing the long-term trends, seasonal oscillations were removed using a 13-month moving average. Due to the defects of the moving average algorithm, the 6-month values at the beginning and end of the time series are not displayed. The regions covered by each localization are shaded red in the inset. The boundaries refer to the Antarctic drainage systems in [<a href="#B47-remotesensing-12-03746" class="html-bibr">47</a>].</p> "> Figure 7
<p>Volume changes in the AIS north of 81.5° S (<b>a</b>) and the three subregions ((<b>b</b>): EAIS, (<b>c</b>): WAIS, and (<b>d</b>): APIS) from our combined altimetric time series (green dots) and IMAU-FDM (purple triangles). The blue dashed curves and red dash-dotted curves are the time series after removing seasonal oscillations using a 13-month moving average. Due to the defects of the moving average algorithm, the 6-month values at the beginning and end of the time series are not displayed. The solid black lines are the best-fit quadratic curves for the altimetric volume time series. Included are the altimetric volume time series linear and quadratic trend estimates. The gray error bars show the 1σ uncertainty range of the altimetry data. The regions covered by each localization are shaded red in the inset. The boundaries refer to the Antarctic drainage systems in [<a href="#B47-remotesensing-12-03746" class="html-bibr">47</a>].</p> "> Figure 8
<p>Volume change of the AIS north of 81.5° S (<b>a</b>) and the three subregions ((<b>b</b>): EAIS, (<b>c</b>): WAIS, and (<b>d</b>): APIS) from our combined altimetric time series (green dots) and IMAU-FDM (purple triangles). After removing the long-term trends, seasonal oscillations were removed using a 13-month moving average. Due to the defects of the moving average algorithm, the 6-month values at the beginning and end of the time series are not displayed. The regions covered by each localization are shaded red in the inset. The boundaries refer to the Antarctic drainage systems in [<a href="#B47-remotesensing-12-03746" class="html-bibr">47</a>].</p> ">
Abstract
:1. Introduction
2. Data
2.1. Envisat and CryoSat-2 Altimetry Data
2.2. Laser Altimeter Elevation Datasets from the Operation IceBridge (OIB) Project and ICESat
3. Algorithm for Elevation Time Series
3.1. The Updated Least-Squares Regression Model
3.2. Calculation of the Combined Elevation Time Series
3.3. Calculation of Volume Changes for the AIS from the Combined Elevation Time Series
4. Results
4.1. The Total Intermission Biases and the Intramission A–D Bias
4.2. Comparison with OIB and ICESat
4.3. Elevation Time Series
4.4. Volume Time Series for the AIS
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zwally, H.J.; Bindschadler, R.A.; Brenner, A.C.; Martin, T.V.; Thomas, R.H. Surface elevation contours of greenland and antarctic ice sheets. J. Geophys Res. Ocean. 1983, 88, 1589–1596. [Google Scholar] [CrossRef]
- Helm, V.; Humbert, A.; Miller, H. Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2. Cryosphere 2014, 8, 1539–1559. [Google Scholar] [CrossRef] [Green Version]
- Simonsen, S.B.; Sorensen, L.S. Implications of changing scattering properties on Greenland ice sheet volume change from Cryosat-2 altimetry. Remote Sens. Environ. 2017, 190, 207–216. [Google Scholar] [CrossRef]
- Flament, T.; Remy, F. Dynamic thinning of Antarctic glaciers from along-track repeat radar altimetry. J. Glaciol. 2012, 58, 830–840. [Google Scholar] [CrossRef] [Green Version]
- McMillan, M.; Shepherd, A.; Sundal, A.; Briggs, K.; Muir, A.; Ridout, A.; Hogg, A.; Wingham, D. Increased ice losses from Antarctica detected by CryoSat-2. Geophys. Res. Lett. 2014, 41, 3899–3905. [Google Scholar] [CrossRef]
- Sørensen, L.S.; Simonsen, S.B.; Nielsen, K.; Lucas-Picher, P.; Spada, G.; Adalgeirsdottir, G.; Forsberg, R.; Hvidberg, C.S. Mass balance of the Greenland ice sheet (2003–2008) from ICESat data–The impact of interpolation, sampling and firn density. Cryosphere 2011, 5, 173–186. [Google Scholar] [CrossRef] [Green Version]
- Zwally, H.J.; Li, J.; Brenner, A.C.; Beckley, M.A.; Cornejo, H.G.; DiMarzio, J.P.; Giovinetto, M.B.; Neumann, T.A.; Robbins, J.; Saba, J.L.; et al. Greenland ice sheet mass balance: Distribution of increased mass loss with climate warming; 2003–07 versus 1992–2002. J. Glaciol. 2011, 57, 88–102. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, H.D.; Arthern, R.J.; Vaughan, D.G.; Edwards, L.A. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 2009, 461, 971–975. [Google Scholar] [CrossRef]
- Wouters, B.; Bamber, J.L.; van den Broeke, M.R.; Lenaerts, J.T.M.; Sasgen, I. Limits in detecting acceleration of ice sheet mass loss due to climate variability. Nat. Geosci. 2013, 6, 613–616. [Google Scholar] [CrossRef]
- Schröder, L.; Horwath, M.; Dietrich, R.; Helm, V.; van den Broeke, M.R.; Ligtenberg, S.R.M. Four decades of Antarctic surface elevation changes from multi-mission satellite altimetry. Cryosphere 2019, 13, 427–449. [Google Scholar] [CrossRef] [Green Version]
- Paolo, F.S.; Fricker, H.A.; Padman, L. Constructing improved decadal records of Antarctic ice shelf height change from multiple satellite radar altimeters. Remote Sens. Environ. 2016, 177, 192–205. [Google Scholar] [CrossRef]
- Khvorostovsky, K.S. Merging and analysis of elevation time series over Greenland ice sheet from satellite radar altimetry. IEEE Trans. Geosci. Remote Sens. 2012, 50, 23–36. [Google Scholar] [CrossRef]
- Fricker, H.A.; Padman, L. Thirty years of elevation change on Antarctic Peninsula ice shelves from multimission satellite radar altimetry. J. Geophys. Res. Ocean. 2012, 117, C02026. [Google Scholar] [CrossRef] [Green Version]
- Zwally, H.J.; Giovinetto, M.B.; Li, J.; Cornejo, H.G.; Beckley, M.A.; Brenner, A.C.; Saba, J.L.; Yi, D.H. Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea-level rise: 1992–2002. J. Glaciol. 2005, 51, 509–527. [Google Scholar] [CrossRef] [Green Version]
- Frappart, F.; Legrésy, B.; Niño, F.; Blarel, F.; Fuller, N.; Fleury, S.; Birol, F.; Calmant, S. An ERS-2 altimetry reprocessing compatible with ENVISAT for long-term land and ice sheets studies. Remote Sens. Environ. 2016, 184, 558–581. [Google Scholar] [CrossRef]
- Adusumilli, S.; Fricker, H.A.; Siegfried, M.R.; Padman, L.; Paolo, F.S.; Ligtenberg, S.R.M. Variable basal melt rates of Antarctic Peninsula ice shelves, 1994–2016. Geophys. Res. Lett. 2018, 45, 4086–4095. [Google Scholar] [CrossRef] [Green Version]
- Sørensen, L.S.; Simonsen, S.B.; Forsberg, R.; Khvorostovsky, K.; Meister, R.; Engdahl, M.E. 25 years of elevation changes of the Greenland Ice Sheet from ERS, Envisat, and CryoSat-2 radar altimetry. Earth Planet. Sci. Lett. 2018, 495, 234–241. [Google Scholar] [CrossRef]
- Armitage, T.W.K.; Wingham, D.J.; Ridout, A.L. Meteorological origin of the static crossover pattern present in low-resolution-mode CryoSat-2 data over Central Antarctica. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1295–1299. [Google Scholar] [CrossRef]
- Remy, F.; Legresy, B.; Benveniste, J. On the azimuthally anisotropy effects of polarization for altimetric measurements. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3289–3296. [Google Scholar] [CrossRef]
- Arthern, R.J.; Wingham, D.J.; Ridout, A.L. Controls on ERS altimeter measurements over ice sheets: Footprint-scale topography, backscatter fluctuations, and the dependence of microwave penetration depth on satellite orientation. J. Geophys. Res. Atmos. 2001, 106, 33471–33484. [Google Scholar] [CrossRef] [Green Version]
- Legresy, B.; Remy, F.; Schaeffer, P. Different ERS altimeter measurements between ascending and descending tracks caused by wind induced features over ice sheets. Geophys. Res. Lett. 1999, 26, 2231–2234. [Google Scholar] [CrossRef]
- Yang, Q.M.; Yang, Y.D.; Wang, Z.M.; Zhang, B.J.; Jiang, H. Elevation change derived from SARAL/ALtiKa altimetric mission: Quality assessment and performance of the Ka-Band. Remote Sens. 2018, 10. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.D.; Li, F.; Hwang, C.; Ding, M.H.; Ran, J.J. Space-Time evolution of Greenland Ice Sheet elevation and mass from Envisat and GRACE data. J. Geophys. Res. Earth Surf. 2019, 124, 2079–2100. [Google Scholar] [CrossRef]
- Batoula, S.; Urien, S.; Picard, B.; Muir, A.; Roca, M.; Garcia, P. Envisat Altimetry Level 2 Product Handbook. CLS-ESLF-18-0003 2018, Issue 2.0. Available online: https://earth.esa.int/documents/700255/3528455/PH_light_3528452rev3528450_ESA.pdf/ (accessed on 22 July 2020).
- Wingham, D.; Rapley, C.; Griffiths, H. New techniques in satellite altimeter tracking systems. In Proceedings of the IGARSS Symposium, Zurich, Switzerland, 8–11 September 1986; Guyenne, T.D., Hunt, J.J., Eds.; European Space Agency Publications Division: Noordwijk, The Netherlands, 1986; Volume SP-254, pp. 1339–1344. [Google Scholar]
- Davis, C.H. A robust threshold retracking algorithm for measuring ice-sheet surface elevation change from satellite radar altimeters. IEEE Trans. Geosci. Remote Sens. 1997, 35, 974–979. [Google Scholar] [CrossRef]
- Nilsson, J.; Gardner, A.; Sørensen, L.S.; Forsberg, R. Improved retrieval of land ice topography from CryoSat-2 data and its impact for volume-change estimation of the Greenland Ice Sheet. Cryosphere 2016, 10, 2953–2969. [Google Scholar] [CrossRef] [Green Version]
- Schröder, L.; Richter, A.; Fedorov, D.V.; Eberlein, L.; Brovkov, E.V.; Popov, S.V.; Knöfel, C.; Horwath, M.; Dietrich, R.; Matveev, A.Y.; et al. Validation of satellite altimetry by kinematic GNSS in central East Antarctica. Cryosphere 2017, 11, 1111–1130. [Google Scholar] [CrossRef] [Green Version]
- Bouzinac, C. CryoSat Product Handbook. 2014. Available online: https://earth.esa.int/documents/10174/125272/CryoSat_Product_Handbook (accessed on 30 June 2020).
- Krabill, W.; Hanna, E.; Huybrechts, P.; Abdalati, W.; Cappelen, J.; Csatho, B.; Frederick, E.; Manizade, S.; Martin, C.; Sonntag, J.; et al. Greenland ice sheet: Increased coastal thinning. Geophys. Res. Lett. 2004, 31, L24402. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Wang, Z.; Li, F.; An, J.; Yang, Y.; Liu, J. Estimation of present-day glacial isostatic adjustment, ice mass change and elastic vertical crustal deformation over the Antarctic ice sheet. J. Glaciol. 2017, 63, 703–715. [Google Scholar] [CrossRef] [Green Version]
- Ewert, H.; Groh, A.; Dietrich, R. Volume and mass changes of the Greenland ice sheet inferred from ICESat and GRACE. J. Geodyn. 2012, 59–60, 111–123. [Google Scholar] [CrossRef]
- Argus, D.F.; Peltier, W.R.; Drummond, R.; Moore, A.W. The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based on GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories. Geophys. J. Int. 2014, 198, 537–563. [Google Scholar] [CrossRef]
- Groh, A.; Ewert, H.; Scheinert, M.; Fritsche, M.; Rülke, A.; Richter, A.; Rosenau, R.; Dietrich, R. An investigation of glacial isostatic adjustment over the Amundsen Sea sector, West Antarctica. Glob. Planet. Chang. 2012, 98–99, 45–53. [Google Scholar] [CrossRef]
- Ligtenberg, S.R.M.; Helsen, M.M.; van den Broeke, M.R. An improved semi-empirical model for the densification of Antarctic firn. Cryosphere 2011, 5, 809–819. [Google Scholar] [CrossRef] [Green Version]
- Martin, C.F.; Krabill, W.B.; Manizade, S.S.; Russell, R.L.; Sonntag, J.G.; Swift, R.N.; Yungel, J.K. Airborne Topographic Mapper Calibration Procedures and Accuracy Assessment. Nasa Technical Memorandum TM2012-21(February) 2012, 20120008479. Available online: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120008479.pdf (accessed on 15 July 2020).
- Magruder, L.A.; Webb, C.E.; Urban, T.J.; Silverberg, E.C.; Schutz, B.E. ICESat altimetry data product verification at white sands space harbor. IEEE Trans. Geosci. Remote Sens. 2007, 45, 147–155. [Google Scholar] [CrossRef]
- Studinger, M. National Snow and Ice Data Center. IceBridge ATM L4 Surface Elevation Rate of Change; Version 1; updated 2018; USA NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2014; Available online: https://nsidc.org/data/IDHDT4/versions/1 (accessed on 15 July 2020). [CrossRef]
- Studinger, M. IceBridge ATM L2 Icessn Elevation, Slope, and Roughness; Version 2; updated 2020; ASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2014; Available online: https://nsidc.org/data/ILATM2/versions/2 (accessed on 15 July 2020). [CrossRef]
- Slater, T.; Shepherd, A.; McMillan, M.; Muir, A.; Gilbert, L.; Hogg, A.E.; Konrad, H.; Parrinello, T. A new digital elevation model of Antarctica derived from CryoSat-2 altimetry. Cryosphere 2018, 12, 1551–1562. [Google Scholar] [CrossRef] [Green Version]
- Sørensen, L.S.; Simonsen, S.B.; Meister, R.; Forsberg, R.; Levinsen, J.F.; Flament, T. Envisat-derived elevation changes of the Greenland ice sheet, and a comparison with ICESat results in the accumulation area. Remote Sens. Environ. 2015, 160, 56–62. [Google Scholar] [CrossRef]
- Li, X.; Rignot, E.; Mouginot, J.; Scheuchl, B. Ice flow dynamics and mass loss of Totten Glacier, East Antarctica, from 1989 to 2015. Geophys. Res. Lett. 2016, 43, 6366–6373. [Google Scholar] [CrossRef]
- Groh, A.; Ewert, H.; Rosenau, R.; Fagiolini, E.; Gruber, C.; Floricioiu, D.; Abdel Jaber, W.; Linow, S.; Flechtner, F.; Eineder, M.; et al. Mass, volume and velocity of the Antarctic ice sheet: Present-Day changes and error effects. Surv. Geophys. 2014, 35, 1481–1505. [Google Scholar] [CrossRef] [Green Version]
- Velicogna, I.; Sutterley, T.C.; van den Broeke, M.R. Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data. Geophys. Res. Lett. 2014, 41, 8130–8137. [Google Scholar] [CrossRef] [Green Version]
- Legrésy, B.; Rémy, F. Using the temporal variability of satellite radar altimetric observations to map surface properties of the Antarctic ice sheet. J. Glaciol. 1998, 44, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Davis, C.H.; Ferguson, A.C. Elevation change of the Antarctic ice sheet, 1995–2000, from ERS-2 satellite radar altimetry. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2437–2445. [Google Scholar] [CrossRef]
- Zwally, H.J.; Giovinetto, M.B.; Beckley, M.A.; Saba, J.L. Antarctic and Greenland Drainage Systems. GSFC Cryospheric Sciences Laboratory. 2012. Available online: http://icesat4.gsfc.nasa.gov/cryo_data/ant_grn_drainage_systems.php (accessed on 15 July 2020).
- Boening, C.; Lebsock, M.; Landerer, F.; Stephens, G. Snowfall-driven mass change on the East Antarctic ice sheet. Geophys. Res. Lett. 2012, 39, L21501. [Google Scholar] [CrossRef]
- Lenaerts, J.T.M.; van Meijgaard, E.; van den Broeke, M.R.; Ligtenberg, S.R.M.; Horwath, M.; Isaksson, E. Recent snowfall anomalies in Dronning Maud Land, East Antarctica, in a historical and future climate perspective. Geophys. Res. Lett. 2013, 40, 2684–2688. [Google Scholar] [CrossRef]
- Shepherd, A.; Ivins, E.; Rignot, E.; Smith, B.; van den Broeke, M.; Velicogna, I.; Whitehouse, P.; Briggs, K.; Joughin, I.; Krinner, G.; et al. Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature 2018, 558, 219–222. [Google Scholar] [CrossRef] [Green Version]
- Shuman, C.A.; Berthier, E.; Scambos, T.A. 2001–2009 elevation and mass losses in the Larsen A and B embayments, Antarctic Peninsula. J. Glaciol. 2011, 57, 737–754. [Google Scholar] [CrossRef] [Green Version]
- Berthier, E.; Scambos, T.A.; Shuman, C.A. Mass loss of Larsen B tributary glaciers (Antarctic Peninsula) unabated since 2002. Geophys. Res. Lett. 2012, 39, L13501. [Google Scholar] [CrossRef] [Green Version]
- Mouginot, J.; Rignot, E.; Scheuchl, B. Sustained increase in ice discharge from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013. Geophys. Res. Lett. 2014, 41, 1576–1584. [Google Scholar] [CrossRef] [Green Version]
- Shepherd, A.; Gilbert, L.; Muir, A.S.; Konrad, H.; McMillan, M.; Slater, T.; Briggs, K.H.; Sundal, A.V.; Hogg, A.E.; Engdahl, M.E. Trends in Antarctic ice sheet elevation and mass. Geophys. Res. Lett. 2019, 46, 8174–8183. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, J.; Vallelonga, P.; Simonsen, S.B.; Sørensen, L.S.; Forsberg, R.; Dahl-Jensen, D.; Hirabayashi, M.; Goto-Azuma, K.; Hvidberg, C.S.; Kjær, H.A.; et al. Greenland 2012 melt event effects on CryoSat-2 radar altimetry. Geophys. Res. Lett. 2015, 42, 3919–3926. [Google Scholar] [CrossRef]
- Gardner, A.S.; Moholdt, G.; Scambos, T.; Fahnstock, M.; Ligtenberg, S.; van den Broeke, M.; Nilsson, J. Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years. Cryosphere 2018, 12, 521–547. [Google Scholar] [CrossRef] [Green Version]
- Harig, C.; Simons, F.J. Accelerated West Antarctic ice mass loss continues to outpace East Antarctic gains. Earth Planet. Sci. Lett. 2015, 415, 134–141. [Google Scholar] [CrossRef]
Parameter | SARIn | LRM | ||||||
---|---|---|---|---|---|---|---|---|
Median (m) | Mean (m) | RMS (m) | P90–P10 (m) | Median (m) | Mean (m) | RMS (m) | P90–P10 (m) | |
1.20 | 2.35 | 21.00 | 12.40 | −0.29 | −0.14 | 1.40 | 0.19 | |
1.13 | 0.96 | 25.36 | 11.44 | −0.29 | −0.14 | 1.45 | 0.21 | |
0.00 | −0.14 | 4.71 | 1.81 | 0.00 | −0.01 | 1.59 | 0.12 | |
1.16 | 2.49 | 20.47 | 12.58 | −0.29 | −0.13 | 1.48 | 0.16 | |
1.09 | 1.11 | 24.73 | 11.64 | −0.29 | −0.13 | 1.46 | 0.16 | |
0.00 | −1.38 | 13.86 | 0.94 | 0.00 | 0.00 | 0.46 | 0.10 |
Different Regions | Difference Periods | ||||||
---|---|---|---|---|---|---|---|
All | SARIn | LRM | Before 2010 | After 2010 | From 2002–2016 | ||
This study | Mean (m) | −0.83 | −0.94 | 0.20 | −0.59 | −0.27 | −1.72 |
RMS (m) | 4.41 | 4.62 | 1.58 | 5.18 | 2.00 | 5.83 | |
Schröder et al. (2019) | Mean (m) | −0.81 | −1.00 | 0.11 | −0.85 | −0.14 | −2.11 |
RMS (m) | 5.88 | 6.43 | 1.17 | 5.79 | 2.40 | 9.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Wang, Z.; Yang, Q.; Liu, J.; An, J.; Li, F.; Liu, T.; Geng, H. Elevation Changes of the Antarctic Ice Sheet from Joint Envisat and CryoSat-2 Radar Altimetry. Remote Sens. 2020, 12, 3746. https://doi.org/10.3390/rs12223746
Zhang B, Wang Z, Yang Q, Liu J, An J, Li F, Liu T, Geng H. Elevation Changes of the Antarctic Ice Sheet from Joint Envisat and CryoSat-2 Radar Altimetry. Remote Sensing. 2020; 12(22):3746. https://doi.org/10.3390/rs12223746
Chicago/Turabian StyleZhang, Baojun, Zemin Wang, Quanming Yang, Jingbin Liu, Jiachun An, Fei Li, Tingting Liu, and Hong Geng. 2020. "Elevation Changes of the Antarctic Ice Sheet from Joint Envisat and CryoSat-2 Radar Altimetry" Remote Sensing 12, no. 22: 3746. https://doi.org/10.3390/rs12223746
APA StyleZhang, B., Wang, Z., Yang, Q., Liu, J., An, J., Li, F., Liu, T., & Geng, H. (2020). Elevation Changes of the Antarctic Ice Sheet from Joint Envisat and CryoSat-2 Radar Altimetry. Remote Sensing, 12(22), 3746. https://doi.org/10.3390/rs12223746