Investigating the Retention of Solar Wind Implanted Helium-3 on the Moon from the Analysis of Multi-Wavelength Remote Sensing Data
"> Figure 1
<p>Geological setting of Vallis Schroteri over the Aristarchus Plateau (Base: Apollo 15 Metric Camera Photograph AS15-M-2610). Location is depicted by a white box in the Clementine mosaic of the Moon in the bottom right. The white dotted line denotes the buried crater. North is to the top.</p> "> Figure 2
<p>Flow chart of the methodology adopted in the research.</p> "> Figure 3
<p>(<b>a</b>) Retained <sup>3</sup>He in the Vallis Schroteri region. The solid black lines delineated high modeled <sup>3</sup>He abundance regions. (<b>b</b>) Comparison of <span class="html-italic">FTC/IA</span> with laboratory-measured <sup>3</sup>He content. The purple fitted regression line represents the averaged sample measurements while the orange line was fitted to all 61 samples. (<b>c</b>) Zoomed version of high abundant pyroclastic regolith. North is to the top.</p> "> Figure 4
<p>False color composite of the Vallis Schroteri region. Red: continuum slope, green: albedo, blue: integrated band depth ratio, with green and blue channels inverted. In the image, P is the pyroclastic region and E is the ejecta region. Associated spectra are depicted for the corresponding marked regions. Red circles denote the 2800 nm absorption feature in the spectra. North is to the top.</p> "> Figure 5
<p>Spatial variability of the <sup>3</sup>He distribution. (<b>a</b>) Empirical variogram representation of the Vallis Schroteri. (<b>b</b>) Incorporation of the directional component in the variogram analysis and interpretation. The cutoff was taken as 3.</p> "> Figure 6
<p>(<b>a</b>) Spatial distribution of the modeled <sup>3</sup>He abundance per unit area for Vallis Schroteri. (<b>b</b>) Histogram plot of the corresponding areal concentrations. The Default R histogram bin size was used. North is to the top.</p> "> Figure 7
<p>(<b>a</b>) <math display="inline"><semantics> <mi>m</mi> </semantics></math>-<math display="inline"><semantics> <mi>χ</mi> </semantics></math> decomposition image of the Vallis Schroteri region using Mini-RF data. db: double bounce scattering in red, vs: volume scattering in green, and bs: surface scattering in blue. (<b>b</b>) CPR image represents the surface roughness. The red circle represents a freshly formed micro-crater in the vicinity of the primary rille. Black arrows depict the regolith with high volume scattering power. The dotted black line denotes the boundary between pyroclastic and mare deposits. North is to the top.</p> "> Figure 8
<p>3D plots representing the simulated radar backscatter as a function of surface roughness and dielectric properties for (<b>a</b>) HH-pol, and (<b>b</b>) VV-Pol. The incidence angle was set at 57.5°.</p> "> Figure 9
<p>The dielectric constant of the study site from the MLP NN-based inversion model. The observed standard deviation was 0.17. The red circle represents a freshly formed micro-crater with anomalous dielectric constant values. Black arrows denote high dielectric regions. A black dotted line separates the pyroclastic region and mare deposits as observed in <a href="#remotesensing-12-03350-f007" class="html-fig">Figure 7</a>a. North is to the top.</p> "> Figure 10
<p>Multi-sensor comparison of <sup>3</sup>He content for the ejecta cover blanket with (<b>a</b>) CPR, (<b>b</b>) dielectric constant, and (<b>c</b>) scattering power. Note that the linear regression line was fitted for all cases.</p> "> Figure 11
<p>Cross-variogram between <sup>3</sup>He and the physical properties of the (<b>a</b>) high abundant pyroclastic regolith and (<b>b</b>) low abundant ejecta cover regolith.</p> "> Figure A1
<p>Comparison of laboratory-measured <sup>3</sup>He with the predictions made by our model and Fa model [<a href="#B8-remotesensing-12-03350" class="html-bibr">8</a>]. In this, a total of 25 Apollo samples were considered as reported in [<a href="#B8-remotesensing-12-03350" class="html-bibr">8</a>]. The reported standard deviation was 2.62 in the Fa model whereas our model had a standard deviation of 2.52.</p> "> Figure A2
<p>Distribution of the difference in solar wind flux between the proposed topographically normalized model and the conventional model as in [<a href="#B8-remotesensing-12-03350" class="html-bibr">8</a>].</p> ">
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Multi-Wavelength Remote Sensing Datasets
3.2. Methods
3.2.1. Theoretical Model of Normalized Solar Wind Fluence on the Moon
3.2.2. Quantitative Abundance of Lunar 3He from Space Weathering Perspectives
3.2.3. Retrieval of Scattering Mechanisms from Lunar Regolith Using - Decomposition Approach
3.2.4. Machine Learning Inversion Model for Dielectric Characterization of Lunar Regolith
3.2.5. Modeling the Spatial Orientation of 3He with Depth from Variography
3.2.6. Analysis of Multi-Wavelength Data Using Cross-Variography and Transects
3.2.7. Validation
4. Results and Analysis
4.1. Quantitative Estimation of Retained 3He from Chandryaan-1 M3Spectroscopy
4.2. Spatial Variations of 3He with Respect to Depth
4.3. Physical Properties of Lunar Regolith Using Bistatic Mini-RF S-Band Data
4.4. Understanding the Impact of Surface Processes on the 3He Retentions from Multi-Sensor Perspectives
5. Discussion
5.1. Retention of Solar Wind Implanted 3He on the Moon
5.2. Spatial Orientation of Retained 3He
5.3. Physical Properties of Lunar Regolith
5.4. Influence of Physical Properties on the Retention of Implanted 3He
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Kulcinski, G.L.; Schmitt, H.H. The Moon: An abundant source of clean and safe fusion fuel for the 21st century. In Lunar Helium-3 and Fusion Power (NASA Conference Publication 10018); NASA: Washington, DC, USA, 1988; pp. 135–163. [Google Scholar]
- Swindle, T.D. Abundance of 3He and other solar wind derived volatiles in lunar soil. In NASA Space Engineering Research Center for Utilization of Local Planetary Resources: Annual Progress Report (APR-92), III; NASA: Tucson, AZ, USA, 1992; pp. 19–26. [Google Scholar]
- Santarius, J.F. Lunar 3He and Fusion Power. Fusion Technology. Presented at the IEEE Rock River Valley Section, Rockford, IL, USA, 28 September 2004. [Google Scholar]
- Heiken, G.; Vaniman, D.T.; French, B.M. Lunar Sourcebook: A User’s Guide to the Moon, 1st ed.; Cambridge University Press: New York, NY, USA, 1991. [Google Scholar]
- Keller, L.P.; Mckay, D.S. The nature and origin of rims on lunar soil grains. Geochim. Cosmochim. Acta 1997, 61, 2311–2341. [Google Scholar] [CrossRef] [Green Version]
- van der Meer, F.; Yang, H.; Lang, H. Imaging spectrometry and geological applications. In Imaging Spectrometry: Basic Principles and Prospective Applications, 3rd ed.; van der Meer, F., de Jong, S.M., Eds.; Springer: Dordretch, The Netherlands, 2011; Volume 3, pp. 201–218. [Google Scholar]
- Le Mouelic, S.; Langevin, Y.; Erard, S.; Pinet, P.; Chevrel, S.; Daydou, Y. Discrimination between maturity and composition of lunar soils from integrated Clementine UV-visible/near-infrared data: Application to the Aristarchus plateau. J. Geophys. Res. 2000, 105, 9445–9455. [Google Scholar] [CrossRef]
- Fa, W.Z.; Jin, Y.Q. Quantitative estimation of Helium-3 spatial distribution in the lunar regolith layer. Icarus 2007, 190, 15–23. [Google Scholar] [CrossRef]
- Johnson, J.R.; Swindle, T.D.; Lucey, P.G. Estimated solar wind implanted Helium-3 distribution on the Moon. Geophys. Res. Lett. 1999, 26, 385–388. [Google Scholar] [CrossRef]
- Swindle, T.D.; Glass, C.E.; Poulton, M.M. Mining Lunar Soils for 3He; University of Arizona Press: Tucson, AZ, USA, 1990. [Google Scholar]
- Slyuta, E.N.; Abdrakhimov, A.M.; Galimov, E.M. The estimation of Helium-3 probable reserves in lunar regolith. In Proceedings of the Lunar and Planetary Science Conference, League City, TX, USA, 12–16 March 2007. [Google Scholar]
- Lucey, P.G.; Blewett, D.; Taylor, J.; Hawke, R. Imaging of lunar surface maturity. J. Geophys. Res. Planets 2000, 105, 20377–20386. [Google Scholar] [CrossRef]
- Horz, F.; Grieve, R.A.; Heiken, G.; Spudis, P.D.; Binder, A. Lunar Surface Processes. In Lunar Sourcebook: A User’s Guide to the Moon, 1st ed.; Cambridge University Press: New York, NY, USA, 1991; Volume 1, pp. 61–120. [Google Scholar]
- Patterson, G.W.; Stickle, A.M.; Turner, F.S.; Jensen, J.R.; Bussey, D.B.; Spudis, P.; Espiritu, R.C.; Schulze, R.C.; Yocky, D.A.; Wahl, D.E.; et al. Bistatic radar observations of the Moon using Mini-RF on LRO and the Arecibo Observatory. Icarus 2017, 283, 2–19. [Google Scholar] [CrossRef]
- Wahl, D.E.; Yocky, D.A.; Bussey, B.; Jakowatz, C.V. Generating lunar bistatic SAR images using Arecibo and Mini-RF. In Proceedings of the SPIE Defense, Security, and Sensing: Algorithm for Synthetic Aperture Radar Imagery XIX, Baltimore, MD, USA, 25–26 April 2012. [Google Scholar]
- Lucey, P.G.; Hawke, B.R.; Pieters, C.M.; Head, J.W.; McCord, T.B. A Compositional Study of the Aristarchus Region of the Moon Using Near-Infrared Reflectance Spectroscopy. J. Geophys. Res. 1986, 91, D344–D354. [Google Scholar] [CrossRef] [Green Version]
- McEwen, A.S.; Robinson, M.S.; Eliason, E.M.; Lucey, P.G.; Duxburg, T.C.; Spudis, P.D. Clementine Observations of the Aristarchus Region of the Moon. Science 1994, 266, 1858–1862. [Google Scholar] [CrossRef]
- Campbell, B.A.; Carter, L.M.; Hawke, B.R.; Campbell, D.B.; Ghent, R.R. Volcanic and impact deposits of the Moon’s Aristarchus Plateau: A new view from Earth-based radar images. Geology 2008, 36, 135–138. [Google Scholar] [CrossRef]
- Chevrel, S.D.; Pinet, P.C.; Daydou, Y.; Le Mouélic, S.; Langevin, Y.; Costard, F.; Erard, S. The Aristarchus Plateau on the Moon: Mineralogical and structural study from integrated Clementine UV-VIS-NIR spectral data. Icarus 2009, 199, 9–24. [Google Scholar] [CrossRef]
- Whitford-Stark, J.L. Factors influencing the morphology of volcanic landforms: An earth-moon comparison. Earth Sci. Rev. 1982, 18, 109–168. [Google Scholar] [CrossRef]
- Zisk, S.H.; Hodges, C.A.; Moore, H.J.; Shorthill, R.W.; Thompson, T.W.; Whitaker, E.A.; Wilhelms, D.E. The Aristarchus-Harbinger region of the moon: Surface geology and history from recent remote-sensing observations. Moon 1977, 17, 59–99. [Google Scholar] [CrossRef]
- Cameron, W.S. An Interpretation of Schroter’s Valley and Other Lunar Sinuous Rilles. J. Geophys. Res. 1964, 69, 2423–2430. [Google Scholar] [CrossRef]
- Pieters, C.M.; Boardman, J.; Buratti, B.; Chatterjee, A.; Clark, R.; Glavich, T.; Green, R.; Head, J., III; Isaacson, P.; Malaret, E.; et al. The Moon Mineralogy Mapper (M3) on Chandrayaan-1. Curr. Sci. 2009, 96, 500–505. [Google Scholar]
- Cahill, J.T.S.; Thomson, B.J.; Patterson, G.W.; Bussey, D.B.J.; Neish, C.D.; Lopez, N.R.; Turner, F.S.; Aldridge, T.; McAdam, M.; Meyer, H.M.; et al. The miniature radio frequency instrument’s (Mini-RF) global observations of Earth’s Moon. Icarus 2014, 243, 173–190. [Google Scholar] [CrossRef]
- Carter, L.M.; Campbell, B.A.; Hawke, B.R.; Campbell, D.B.; Nolan, M.C. Radar remote sensing of nearside lunar pyroclastic deposits. J. Geophys. Res. 2009, 114, E11004. [Google Scholar] [CrossRef] [Green Version]
- Nozette, S.; Spudis, P.; Bussey, B.; Jensen, R.; Raney, K.; Winters, H.; Lichtenberg, C.L.; Marinelli, W.; Crusan, J.; Gates, M.; et al. The Lunar Reconnaissance Orbiter Miniature Radio Frequency (Mini-RF) Technology Demonstration. Space Sci. Rev. 2010, 150, 285–302. [Google Scholar] [CrossRef]
- Scholten, F.; Oberst, J.; Matz, K.; Roatsch, T.; Wählisch, M.; Speyerer, E.J.; Robinson, M.S. GLD100: The near-global lunar 100 m raster DTM from LROC WAC stereo image data. J. Geophys. Res. 2012, 117, E00H17. [Google Scholar] [CrossRef] [Green Version]
- Wittenberg, L.J.; Cameron, E.N.; Kulcinski, G.L.; Ott, S.H.; Santarius, J.F.; Sviatoslavsky, G.I.; Sviatoslavsky, I.N.; Thompson, H.E. A Review of 3He Resources and Acquisition for Use as Fusion Fuel. J. Fusion Technol. 1992, 21, 2230–2253. [Google Scholar] [CrossRef]
- Nettles, J.W.; Staid, M.; Besse, S.; Boardman, J.; Clark, R.N.; Dhingra, D.; Isaacson, P.; Klima, R.; Kramer, G.; Pieters, C.M.; et al. Optical maturity variation in lunar spectra as measured by Moon Mineralogy Mapper data. J. Geophys. Res. 2011, 116, E00G17. [Google Scholar] [CrossRef]
- Shkuratov, Y.G.; Kaydash, V.G.; Opanasenko, N.V. Iron and Titanium Abundance and Maturity Degree Distribution on the Lunar Nearside. Icarus 1999, 137, 222–234. [Google Scholar] [CrossRef] [Green Version]
- Raney, R.K.; Cahill, J.T.S.; Patterson, G.W.; Bussey, D.B.J. The m-chi decomposition of hybrid dual-polarimetric radar data with application to lunar craters. J. Geophys. Res. 2012, 117, E00H21. [Google Scholar]
- Fa, W.Z.; Wieczorek, M.A.; Heggy, E. Modeling polarimetric radar scattering from the lunar surface: Study on the effect of physical properties of the regolith layer. J. Geophys. Res. 2011, 116, E03005. [Google Scholar] [CrossRef]
- Fung, A.K.; Li, Z.; Chen, K.S. Backscattering from a Randomly Rough Dielectric Surface. IEEE Trans. Geosci. Remote Sens. 1992, 30, 356–369. [Google Scholar] [CrossRef]
- Tzeng, Y.C.; Chen, K.S. A dynamic learning neural network for remote sensing applications. IEEE Trans. Geosci. Remote Sens. 1994, 32, 1096–1102. [Google Scholar] [CrossRef]
- Fa, W.Z.; Jin, Y.Q. Simulation of brightness temperature from lunar surface and inversion of regolith-layer thickness. J. Geophys. Res. 2007, 112, E05003. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Shukla, S. Lunar Regolith Characterization for Solar Wind Implanted Helium-3 Using M3 Spectroscopy and Bistatic Miniature Radar. Master’s Thesis, University of Twente Faculty of Geo-information Science and Earth Observation (ITC), Enschede, The Netherlands, 2019. [Google Scholar]
- Bhiravarasu, S.S.; Rivera-Valentin, E.G.; Taylor, P.A.; Patterson, G.W.; Neish, C.D.; Thomson, B.J. Radar circular polarization ratio characteristics of lunar terrain as a function of viewing geometry. In Proceedings of the Lunar and Planetary Science Conference, The Woodlands, TX, USA, 12–16 March 2007. [Google Scholar]
- Hintenberger, H.; Weber, H.W.; Schultz, L. Solar, spallogenic, and radiogenic rare gases in Apollo 17 soils and breccias. In Proceedings of the Lunar Science Conference, Houston, TX, USA, 18–22 March 1974; pp. 2005–2022. [Google Scholar]
- Hintenberger, H.W.; Weber, H.W. Trapped rare gases in lunar fines and breccias. In Proceedings of the Lunar Science Conference, Houston, TX, USA, 21–25 March 1973; pp. 2003–2019. [Google Scholar]
- Bogard, D.D.; Hirsch, W.C.; Nyquist, L.E. Nobel gases in Apollo 17 fines: Mass fractionation effects in trapped Xe and Kr. In Proceedings of the Lunar Science Conference, Houston, TX, USA, 18–22 March 1974; pp. 1975–2003. [Google Scholar]
Dataset | Product ID | Purpose |
---|---|---|
Chandrayaan-1 M3 (Level 2) | M3G20090418T174554_V01_RFL, OP2A | Vallis Schroteri |
M3G20090107T130225_V01_RFL (A11), OP1A M3G20090416T181121_V01_RFL (A12), OP2A M3G20090416T081001_V01_RFL (A14), OP2A M3G20090205T111013_V01_RFL (A15), OP1B M3G20090108T044645_V01_RFL (A16), OP1A M3G20090203T080104_V01_RFL (A17), OP1B M3G20090201T085853_V01_RFL (L16 & L20), OP1B M3G20090728T130752_V01_RFL (L24), OP2C | Validation of the Retention model with Apollo and Luna landing site data. | |
LRO Mini-RF (Reduced Data Records and Derived Data Records) | LST_15317_1S1_XIU_28N309_V2 LST_15317_1S2_XIU_28N309_V2 LST_15317_1S3_XIU_28N309_V2 LST_15317_1S4_XIU_28N309_V2 LST_15317_1CP_XIU_28N309_V2 | Bistatic data of Vallis Schroteri |
LSZ_00377_2CD_EKU_01N023_V1 (A11) LSZ_02293_2CD_EKU_04S342_V3 (A14) LSZ_02609_2CD_EKU_16S016_V1 (A16) LSZ_06603_2CD_EKU_14S016_V1 (A16) | Validation of Inversion model with available monostatic data of Apollo landing sites | |
LRO Global DEM | GLDEM100 | Topographic normalization of solar wind fluence model |
Apollo Science data | from [10] | Validation of Retention model with laboratory-measured data of 3He |
Methods | R2 | RMSE (ppb) | MAE (ppb) | |
---|---|---|---|---|
61 Samples | 0.7625 | 1.1701 | 0.9443 | 0.9289 |
Average | 0.9295 | 0.7181 | 0.6522 | 0.9814 |
Landing Site | Actual | Inverted |
---|---|---|
Apollo 11 | 11.00 | 11.18 |
Apollo 14 | 4.45 | 4.19 |
Apollo 16 | 5.64 | 5.69 |
Samples | Description | TiO2 wt% | m) | 3He ppb | Reference |
---|---|---|---|---|---|
72501 | Light mantle soil | 1.59 | <20 20–25 25–35 35–54 54–75 75–120 120–200 200–300 | 5.6 2.4 1.5 1.0 0.7 0.5 0.3 0.4 | [39] |
74220 | Orange soil | 8.62 | <20 20–25 25–35.5 35.5–54 54–75 75–120 120–200 200–300 | 1.1 0.2 0.1 0.1 0.07 0.06 0.03 0.03 | [40] |
76501 | Dark mantle soil (Pyroclastic) | 3.18 | <20 20–30 30–44 44–63 63–125 125–250 250–1000 | 8.8 4.0 2.8 2.0 1.8 1.1 1.0 | [41] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shukla, S.; Tolpekin, V.; Kumar, S.; Stein, A. Investigating the Retention of Solar Wind Implanted Helium-3 on the Moon from the Analysis of Multi-Wavelength Remote Sensing Data. Remote Sens. 2020, 12, 3350. https://doi.org/10.3390/rs12203350
Shukla S, Tolpekin V, Kumar S, Stein A. Investigating the Retention of Solar Wind Implanted Helium-3 on the Moon from the Analysis of Multi-Wavelength Remote Sensing Data. Remote Sensing. 2020; 12(20):3350. https://doi.org/10.3390/rs12203350
Chicago/Turabian StyleShukla, Shashwat, Valentyn Tolpekin, Shashi Kumar, and Alfred Stein. 2020. "Investigating the Retention of Solar Wind Implanted Helium-3 on the Moon from the Analysis of Multi-Wavelength Remote Sensing Data" Remote Sensing 12, no. 20: 3350. https://doi.org/10.3390/rs12203350
APA StyleShukla, S., Tolpekin, V., Kumar, S., & Stein, A. (2020). Investigating the Retention of Solar Wind Implanted Helium-3 on the Moon from the Analysis of Multi-Wavelength Remote Sensing Data. Remote Sensing, 12(20), 3350. https://doi.org/10.3390/rs12203350