High-Resolution Reef Bathymetry and Coral Habitat Complexity from Airborne Imaging Spectroscopy
"> Figure 1
<p>(<b>a</b>) Location of the two study bays on the west coast of Hawai’i Island. The two right panels provide a more detailed view of (<b>b</b>) Honaunau Bay and (<b>c</b>) Pāpā Bay. Background satellite imagery © Google 2018.</p> "> Figure 2
<p>Sentinel-2B spectral response curves used for calculation of the 4-band dataset derived from VSWIR imaging spectrometer data. An example Global Airborne Observatory VSWIR spectrum from 1-m deep water is given for reference. The broad bands from multi-spectral sensors average over spectral feature information.</p> "> Figure 3
<p>Heat map scatterplots of the bathymetric values estimated from a neural network model applied to (<b>a</b>) simulated 4-band multispectral imagery and (<b>b</b>) the full VSWIR imaging spectroscopy compared to SHOALS-measured depth. Color represents point density. Isolated points of noise are typically pixels with a high amount of sea surface glint or shaded pixels, both of which can be removed from final maps.</p> "> Figure 4
<p>Demonstration transects from (<b>a</b>) Honaunau Bay and (<b>b</b>) Pāpā Bay shown in black and white dashed lines. Green outlines show the extent of the SHOALS coverage. For the transect lines, the GAO VSWIR spectrometer-derived depth for individual dates are thin dashed red lines and the median is a thick solid red line. The SHOALS-derived depth is shown as a dashed black line for (<b>c</b>) Honaunau Bay and (<b>d</b>) Pāpā Bay. Both transects start in the south end of the given site. Background satellite imagery © Google 2018.</p> "> Figure 5
<p>Scatterplot of SHOALS-derived seafloor depth measurements against the depth estimated from VSWIR imaging spectrometer measurements. (<b>a</b>) Estimates by individual date. (<b>b</b>) Median values for all dates at each site. The solid black line is the 1:1 line.</p> "> Figure 6
<p>Reef rugosity using a 7-pixel moving window estimated water depth from (<b>a</b>) SHOALS (at native 6m spatial resolution) and (<b>b</b>) VSWIR imaging spectroscopy (averaged to 6m spatial resolution) in Honaunau Bay to 20 m ocean depth. These course-resolution rugosity maps are essentially maps of reef slope. For comparison, the high spatial resolution provided by the VSWIR spectrometer (65 cm) affords rugosity metrics at finer resolutions, shown here with (<b>c</b>) 21-pixel and (<b>d</b>) 7-pixel moving windows, which reveal coral colonies in red areas. Background satellite imagery © Google 2018.</p> "> Figure 7
<p>Violin plots of reef rugosity versus depth (m) for (<b>a</b>) Pāpā Bay and (<b>b</b>) Honaunau Bay showing a general increase in rugosity with depth, matching observations of more complex coral habitat in deeper waters. Each plot shows the frequency distribution of high-resolution rugosity values using 40 cm and 65 cm spatial resolution bathymetry maps for Pāpā and Honaunau Bays, respectively. Box plots within violin plots indicate the median, first quartile and third quartile of the distributions.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Airborne Data Collection and Study Sites
2.2. Data Processing
2.3. Bathymetric Modeling
2.4. Three-Dimensional Complexity
3. Results
3.1. Bathymetric Maps
3.2. Reef Rugosity
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Freshw. Res. 1999, 50, 839–866. [Google Scholar] [CrossRef] [Green Version]
- Brown, B.E. Coral bleaching: Causes and consequences. Coral Reefs 1997, 16, S129–S138. [Google Scholar] [CrossRef]
- Carlson, R.R.; Foo, S.A.; Asner, G.P. Land use impacts on coral reef health: A ridge-to-reef perspective. Front. Mar. Sci. 2019, 6, 562. [Google Scholar] [CrossRef]
- Graham, N.A.; Jennings, S.; MacNeil, M.A.; Mouillot, D.; Wilson, S.K. Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 2015, 518, 94–97. [Google Scholar] [CrossRef] [PubMed]
- Dustan, P.; Doherty, O.; Pardede, S. Digital reef rugosity estimates coral reef habitat complexity. PLoS ONE 2013, 8, e57386. [Google Scholar] [CrossRef] [PubMed]
- Graham, N.; Nash, K. The importance of structural complexity in coral reef ecosystems. Coral Reefs 2013, 32, 315–326. [Google Scholar] [CrossRef]
- Kuffner, I.B.; Brock, J.C.; Grober-Dunsmore, R.; Bonito, V.E.; Hickey, T.D.; Wright, C.W. Relationships between reef fish communities and remotely sensed rugosity measurements in Biscayne National Park, Florida, USA. Environ. Biol. Fishes 2007, 78, 71–82. [Google Scholar] [CrossRef]
- Harborne, A.R.; Mumby, P.J.; Ferrari, R. The effectiveness of different meso-scale rugosity metrics for predicting intra-habitat variation in coral-reef fish assemblages. Environ. Biol. Fishes 2012, 94, 431–442. [Google Scholar] [CrossRef]
- Brock, J.C.; Wright, C.W.; Clayton, T.D.; Nayegandhi, A. LIDAR optical rugosity of coral reefs in Biscayne National Park, Florida. Coral Reefs 2004, 23, 48–59. [Google Scholar] [CrossRef]
- Prada, M.; Appeldoorn, R.; Rivera, J.A. Improving coral reef habitat mapping of the Puerto Rico insular shelf using side scan sonar. Mar. Geod. 2008, 31, 49–73. [Google Scholar] [CrossRef]
- Putney, A.; Chang, E.; Chatham, R.; Marx, D.; Nelson, M.; Warman, L.K. Synthetic aperture sonar-the modern method of underwater remote sensing. In Proceedings of the 2001 IEEE Aerospace Conference Proceedings (Cat. No. 01TH8542), Big Sky, MT, USA, 10–17 March 2001; Volume 1744, pp. 4/1749–4/1756. [Google Scholar]
- Irish, J.L.; Lillycrop, W.J. Scanning laser mapping of the coastal zone: The SHOALS system. ISPRS J. Photogramm. Remote Sens. 1999, 54, 123–129. [Google Scholar] [CrossRef]
- Guenther, G.C.; Brooks, M.W.; LaRocque, P.E. New capabilities of the “SHOALS” airborne lidar bathymeter. Remote Sens. Environ. 2000, 73, 247–255. [Google Scholar] [CrossRef]
- Polcyn, F.C.; Rollin, R. Remote Sensing Techniques for the Location and Measurement of Shallow-Water Features; The University of Michigan: Ann Arbor, MI, USA, 1969. [Google Scholar]
- Eakin, C.M.; Nim, C.J.; Brainard, R.E.; Aubrecht, C.; Elvidge, C.; Gledhill, D.K.; Muller-Karger, F.; Mumby, P.J.; Skirving, W.J.; Strong, A.E. Monitoring coral reefs from space. Oceanography 2010, 23, 118–133. [Google Scholar] [CrossRef]
- Bierwirth, P.; Lee, T.; Burne, R. Shallow sea-floor reflectance and water depth derived by unmixing multispectral imagery. Photogramm. Eng. Remote Sens. 1993, 59, 331–338. [Google Scholar]
- Li, J.; Knapp, D.E.; Schill, S.R.; Roelfsema, C.; Phinn, S.; Silman, M.; Mascaro, J.; Asner, G.P. Adaptive bathymetry estimation for shallow coastal waters using Planet Dove satellites. Remote Sens. Environ. 2019, 232, 111302. [Google Scholar] [CrossRef]
- Stumpf, R.P.; Holderied, K.; Sinclair, M. Determination of water depth with high-resolution satellite imagery over variable bottom types. Limnol. Oceanogr. 2003, 48, 547–556. [Google Scholar] [CrossRef]
- Foo, S.A.; Asner, G.P. Scaling up coral reef restoration using remote sensing technology. Front. Mar. Sci. 2019, 6, 79. [Google Scholar] [CrossRef] [Green Version]
- Thompson, D.R.; Hochberg, E.J.; Asner, G.P.; Green, R.O.; Knapp, D.E.; Gao, B.-C.; Garcia, R.; Gierach, M.; Lee, Z.; Maritorena, S. Airborne mapping of benthic reflectance spectra with Bayesian linear mixtures. Remote Sens. Environ. 2017, 200, 18–30. [Google Scholar] [CrossRef]
- Lesser, M.; Mobley, C. Bathymetry, water optical properties, and benthic classification of coral reefs using hyperspectral remote sensing imagery. Coral Reefs 2007, 26, 819–829. [Google Scholar] [CrossRef]
- Asner, G.P.; Knapp, D.E.; Boardman, J.; Green, R.O.; Kennedy-Bowdoin, T.; Eastwood, M.; Martin, R.E.; Anderson, C.; Field, C.B. Carnegie Airborne Observatory-2: Increasing science data dimensionality via high-fidelity multi-sensor fusion. Remote Sens. Environ. 2012, 124, 454–465. [Google Scholar] [CrossRef]
- Chapman, J.W.; Thompson, D.R.; Helmlinger, M.C.; Bue, B.D.; Green, R.O.; Eastwood, M.L.; Geier, S.; Olson-Duvall, W.; Lundeen, S.R. Spectral and radiometric calibration of the next generation airborne visible infrared spectrometer (AVIRIS-NG). Remote Sens. 2019, 11, 2129. [Google Scholar] [CrossRef] [Green Version]
- Mouroulis, P.; Green, R.O.; Chrien, T.G. Design of pushbroom imaging spectrometers for optimum recovery of spectroscopic and spatial information. Appl. Opt. 2000, 39, 2210–2220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kramer, K.; Cotton, S.; Lamson, M.; Walsh, W. Bleaching and catastrophic mortality of reef-building corals along west Hawai’i island: Findings and future directions. In Proceedings of the 13th International Coral Reef Symposium, Honolulu, Hawaii, 19–24 June 2016. [Google Scholar]
- Gao, B.-C.; Goetz, A.F.H. Column atmospheric water vapor and vegetation liquid water retrievals from airborne imaging spectrometer data. J. Geophys. Res. 1990, 95, 3549–3564. [Google Scholar] [CrossRef]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M. TensorFlow: Large-scale machine learning on heterogeneous distributed systems. arXiv 2016, arXiv:1603.04467. [Google Scholar]
- Kingma, D.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Sappington, J.M.; Longshore, K.M.; Thompson, D.R. Quantifying landscape ruggedness for animal habitat analysis: A case study using bighorn sheep in the Mojave Desert. Wildfire 2007, 71, 1419–1427. [Google Scholar] [CrossRef]
- Magel, J.M.T.; Burns, J.H.R.; Gates, R.D.; Baum, J.K. Effects of bleaching-associated mass coral mortality on reef structural complexity across a gradient of local disturbance. Sci. Rep. 2019, 9, 2512. [Google Scholar] [CrossRef] [Green Version]
- Walbridge, S.; Slocum, N.; Pobuda, M.; Wright, D.J. Unified geomorphological analysis workflows with Benthic Terrain Modeler. Geosciences 2018, 8, 94. [Google Scholar] [CrossRef] [Green Version]
- Price, D.M.; Robert, K.; Callaway, A.; Lo lacono, C.; Hall, R.A.; Huvenne, V.A.I. Using 3D photogrammetry from ROV video to quantify cold-water coral reef structural complexity and investigate its influence on biodiversity and community assemblage. Coral Reefs 2019, 28, 1007–1021. [Google Scholar] [CrossRef] [Green Version]
- Lee, Z.; Weidemann, A.; Arnone, R. Combined effect of reduced band number and increased bandwidth on shallow water remote sensing: The case of WorldView 2. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2577–2586. [Google Scholar] [CrossRef]
- Guenther, G.C. Airborne lidar bathymetry. Digit. Elev. Model Technol. Appl. DEM Users Man. 2007, 2, 253–320. [Google Scholar]
- Rodgers, K.S.; Bahr, K.D.; Jokiel, P.L.; Donà, A.R. Patterns of bleaching and mortality following widespread warming events in 2014 and 2015 at the Hanauma Bay Nature Preserve, Hawai’i. PeerJ 2017, 5, e3355. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.M.; Cable, M.L.; Hook, S.J.; Green, R.O.; Ustin, S.L.; Mandl, D.J.; Middleton, E.M. An introduction to the NASA Hyperspectral InfraRed Imager (HyspIRI) mission and preparatory activities. Remote Sens. Environ. 2015, 167, 6–19. [Google Scholar] [CrossRef]
Date | Solar Zenith (deg) | Solar Azimuth (deg) | Sensor Zenith (deg) | Sensor Azimuth (deg) | Wind Speed * (m s−1) | Tide ** (m) | Notes |
---|---|---|---|---|---|---|---|
Honaunau Bay | |||||||
23 June 2017 | 44.6–47.6 | 75.6–76.0 | 0.0–17.0 | 0.0–360.0 | 2.7 | −0.17 | Clear |
6 September 2017 | 57.4–61.7 | 93.2–94.9 | 0.0–17.0 | 0.0–360.0 | 1.3 | −0.25 | Vog $ |
29 September 2017 | 45.6–48.9 | 111.6–114.2 | 0.0–17.0 | 0.0–360.0 | 3.1 | 0.05 | Clear |
5 November 2017 | 49.5–51.5 | 130.4–132.9 | 0.0–17.0 | 0.0–360.0 | 3.1 | −0.15 | Clear |
7 January 2018 | 53.7–56.2 | 136.1–139.4 | 0.0–17.0 | 0.0–360.0 | 2.7 | 0.12 | Clear |
Pāpā Bay | |||||||
23 June 2017 | 52.8–55.5 | 74.3–74.7 | 0.0–17.0 | 0.0–360.0 | 0.0 | −0.18 | Clear |
6 September 2017 | 50.4–56.0 | 95.3–97.7 | 0.0–17.0 | 0.0–360.0 | 2.7 | −0.27 | Vog |
29 September 2017 | 50.1–56.4 | 106.6–110.5 | 0.0–17.0 | 0.0–360.0 | 3.1 | 0.02 | Clear |
5 November 2017 | 52.8–57.8 | 123.9–128.6 | 0.0–17.0 | 0.0–360.0 | 2.7 | −0.12 | Vog |
7 January 2018 | 57.0–60.4 | 131.3–134.9 | 0.0–17.0 | 0.0–360.0 | 2.2 | 0.15 | Vog |
13 January 2018 | 55.9–58.9 | 131.5–135.2 | 0.0–17.0 | 0.0–360.0 | 4.0 | −0.17 | Clear |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asner, G.P.; Vaughn, N.R.; Balzotti, C.; Brodrick, P.G.; Heckler, J. High-Resolution Reef Bathymetry and Coral Habitat Complexity from Airborne Imaging Spectroscopy. Remote Sens. 2020, 12, 310. https://doi.org/10.3390/rs12020310
Asner GP, Vaughn NR, Balzotti C, Brodrick PG, Heckler J. High-Resolution Reef Bathymetry and Coral Habitat Complexity from Airborne Imaging Spectroscopy. Remote Sensing. 2020; 12(2):310. https://doi.org/10.3390/rs12020310
Chicago/Turabian StyleAsner, Gregory P., Nicholas R. Vaughn, Christopher Balzotti, Philip G. Brodrick, and Joseph Heckler. 2020. "High-Resolution Reef Bathymetry and Coral Habitat Complexity from Airborne Imaging Spectroscopy" Remote Sensing 12, no. 2: 310. https://doi.org/10.3390/rs12020310
APA StyleAsner, G. P., Vaughn, N. R., Balzotti, C., Brodrick, P. G., & Heckler, J. (2020). High-Resolution Reef Bathymetry and Coral Habitat Complexity from Airborne Imaging Spectroscopy. Remote Sensing, 12(2), 310. https://doi.org/10.3390/rs12020310