Coarse-Resolution Satellite Images Overestimate Urbanization Effects on Vegetation Spring Phenology
"> Figure 1
<p>(<b>a</b>) Location of study site, Beijing; and (<b>b</b>) study area covered by the Sentinel-2 scene T50TMK (red box).</p> "> Figure 2
<p>Steps of data preprocessing to generate fused 10 m time series and urban extent boundary.</p> "> Figure 3
<p>An example of generating fused 10 m image (18 April 2016): (<b>a</b>) raw Landsat-8 image (30 m); (<b>b</b>) cloud and cloud shadow detection by ATSA; (<b>c</b>) cloud mask after manual correction; (<b>d</b>) cloud removal by NSPI; (<b>e</b>) fusion with Sentinel-2 images by ESTARFM (10 m), (<b>f</b>) and (<b>g</b>) zoom-in sub-image marked by a red frame in (d) and (e).</p> "> Figure 4
<p>False color (Red, NIR, Blue bands as R-G-B) images of a sub-region in Beijing at different spatial resolutions.</p> "> Figure 5
<p>Diagram of extracting vegetation spring phenology from NDVI profile by TIMESAT.</p> "> Figure 6
<p>Land cover classification map (<b>a</b>) and rural–urban boundary (<b>b</b>).</p> "> Figure 7
<p>Vegetation spring phenology extracted by TIMESAT at different spatial resolutions.</p> "> Figure 8
<p>The average vegetation spring phenology in rural (<b>a</b>) and urban areas (<b>b</b>) at spatial resolutions from 10 m to 8 km.</p> "> Figure 8 Cont.
<p>The average vegetation spring phenology in rural (<b>a</b>) and urban areas (<b>b</b>) at spatial resolutions from 10 m to 8 km.</p> "> Figure 9
<p>Rural–urban differences of vegetation spring phenology from 10 m to 8 km.</p> "> Figure 10
<p>Frequency histogram of vegetation spring phenology at spatial resolution (10m).</p> "> Figure 11
<p>Average IQR at different spatial resolutions in rural and urban areas.</p> "> Figure 12
<p>Typical NDVI profiles at first quartile (Q1) and third quartile (Q3) in rural areas (<b>a</b>) and urban areas (<b>c</b>); simulated mixed NDVI profiles in rural areas (<b>b</b>) and urban areas (<b>d</b>); and detected vegetation spring phenology for simulated mixed pixels by different methods, seasonal amplitude (0.3) (<b>e</b>), relative threshold (0.1) (<b>f</b>), inflexion-based method (<b>g</b>) and midpoint method (<b>h</b>).</p> "> Figure 13
<p>Comparison of vegetation spring phenology extracted from two different datasets: (<b>a</b>) resampled Sentinel-Landsat (500 m) and (<b>b</b>) MODIS (500 m).</p> ">
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Data Used
3. Methods
3.1. Data Preprocessing
3.1.1. Processing Sentinel-2 and Landsat-8 Images
3.1.2. Processing NPP VIIRS Nighttime Light Data
3.2. Generate NDVI Profiles at Different Spatial Resolutions
3.3. Extract Vegetation Spring Phenology
3.4. Quantify Urbanization Effects
4. Results and Discussion
4.1. Urbanization Effects on Vegetation Spring Phenology at Different Spatial Resolutions
4.2. Possible Reasons for the Amplified Urbanization Effects at Coarse Spatial Resolutions
4.3. Simulation Experiments
4.4. Limitations
5. Conclusion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shen, M.; Piao, S.; Chen, X.; An, S.; Fu, Y.H.; Wang, S.; Cong, N.; Janssens, I.A. Strong impacts of daily minimum temperature on the green-up date and summer greenness of the Tibetan Plateau. Glob. Chang. Biol. 2016, 22, 3057–3066. [Google Scholar] [CrossRef] [PubMed]
- Bennie, J.; Davies, T.W.; Cruse, D.; Gaston, K.J. Ecological effects of artificial light at night on wild plants. J. Ecol. 2016, 104, 611–620. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.H.; Piao, S.; Delpierre, N.; Hao, F.; Hänninen, H.; Liu, Y.; Sun, W.; Janssens, I.A.; Campioli, M. Larger temperature response of autumn leaf senescence than spring leaf-out phenology. Glob. Chang. Biol. 2018, 24, 2159–2168. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Tang, Y.; Chen, J.; Yang, X.; Wang, C.; Cui, X.; Yang, Y.; Han, L.; Li, L.; Du, J.; et al. Earlier-Season Vegetation Has Greater Temperature Sensitivity of Spring Phenology in Northern Hemisphere. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Piao, S.; Cong, N.; Zhang, G.; Jassens, I.A. Precipitation impacts on vegetation spring phenology on the Tibetan Plateau. Glob. Chang. Biol. 2015, 21, 3647–3656. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.H.; Zhao, H.; Piao, S.; Peaucelle, M.; Peng, S.; Zhou, G.; Ciais, P.; Huang, M.; Menzel, A.; Peñuelas, J.; et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature 2015, 526, 104–107. [Google Scholar] [CrossRef] [Green Version]
- Richardson, A.D.; Hufkens, K.; Milliman, T.; Aubrecht, D.M.; Furze, M.E.; Nettles, R.; Heiderman, R.R.; Seyednasrollah, B.; Krassovski, M.B.; Latimer, J.M.; et al. Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures. Nature 2018, 560, 368. [Google Scholar] [CrossRef]
- Brown, M.E.; de Beurs, K.M.; Marshall, M. Global phenological response to climate change in crop areas using satellite remote sensing of vegetation, humidity and temperature over 26 years. Remote Sens. Environ. 2012, 126, 174–183. [Google Scholar] [CrossRef]
- Yang, B.; He, M.; Shishov, V.; Tychkov, I.; Vaganov, E.; Rossi, S.; Ljungqvist, F.C.; Bräuning, A.; Grießinger, J. New perspective on spring vegetation phenology and global climate change based on Tibetan Plateau tree-ring data. Proc. Natl. Acad. Sci. USA 2017, 114, 6966–6971. [Google Scholar] [CrossRef] [Green Version]
- Shen, M.; Piao, S.; Dorji, T.; Liu, Q.; Cong, N.; Chen, X.; An, S.; Wang, S.; Wang, T.; Zhang, G. Plant phenological responses to climate change on the Tibetan Plateau: Research status and challenges. Nat. Sci. Rev. 2015, 2, 454–467. [Google Scholar] [CrossRef] [Green Version]
- Buitenwerf, R.; Rose, L.; Higgins, S.I. Three decades of multi-dimensional change in global leaf phenology. Nat. Clim. Chang. 2015, 5, 364–368. [Google Scholar] [CrossRef]
- Piao, S.; Cui, M.; Chen, A.; Wang, X.; Ciais, P.; Liu, J.; Tang, Y. Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang Plateau. Agric. For. Meteorol. 2011, 151, 1599–1608. [Google Scholar] [CrossRef]
- Shen, M.; Cao, R. Temperature sensitivity as an explanation of the latitudinal pattern of green-up date trend in Northern Hemisphere vegetation during 1982–2008. Int. J. Climatol. 2015, 35, 3707–3712. [Google Scholar] [CrossRef]
- Chen, M.; Melaas, E.K.; Gray, J.M.; Friedl, M.A.; Richardson, A.D. A new seasonal-deciduous spring phenology submodel in the Community Land Model 4.5: Impacts on carbon and water cycling under future climate scenarios. Glob. Chang. Biol. 2016, 22, 3675–3688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richardson, A.D.; Keenan, T.F.; Migliavacca, M.; Ryu, Y.; Sonnentag, O.; Toomey, M. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 2013, 169, 156–173. [Google Scholar] [CrossRef]
- Han, Q.; Wang, T.; Jiang, Y.; Fischer, R.; Li, C. Phenological variation decreased carbon uptake in European forests during 1999–2013. For. Ecol. Manage. 2018, 427, 45–51. [Google Scholar] [CrossRef]
- Piao, S.; Fang, J.; Ciais, P.; Peylin, P.; Huang, Y.; Sitch, S.; Wang, T. The carbon balance of terrestrial ecosystems in China. Nature 2009, 458, 1009–1013. [Google Scholar] [CrossRef]
- Richardson, A.D.; Andy Black, T.; Ciais, P.; Delbart, N.; Friedl, M.A.; Gobron, N.; Hollinger, D.Y.; Kutsch, W.L.; Longdoz, B.; Luyssaert, S.; et al. Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 3227–3246. [Google Scholar] [CrossRef] [Green Version]
- Piao, S.; Ciais, P.; Friedlingstein, P.; Peylin, P.; Reichstein, M.; Luyssaert, S.; Margolis, H.; Fang, J.; Barr, A.; Chen, A.; et al. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 2008, 451, 49–52. [Google Scholar] [CrossRef]
- Keenan, T.F.; Gray, J.; Friedl, M.A.; Toomey, M.; Bohrer, G.; Hollinger, D.Y.; Munger, J.W.; O’Keefe, J.; Schmid, H.P.; Wing, I.S.; et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Chang. 2014, 4, 598–604. [Google Scholar] [CrossRef]
- Zipper, S.C.; Schatz, J.; Singh, A.; Kucharik, C.J.; Townsend, P.A.; Loheide, S.P., II. Urban heat island impacts on plant phenology: Intra-urban variability and response to land cover. Environ. Res. Lett. 2016, 11, 54023. [Google Scholar] [CrossRef]
- Parece, T.; Campbell, J. Intra-Urban Microclimate Effects on Phenology. Urban Sci. 2018, 2, 26. [Google Scholar] [CrossRef] [Green Version]
- Yao, R.; Wang, L.; Huang, X.; Guo, X.; Niu, Z.; Liu, H. Investigation of urbanization effects on land surface phenology in Northeast China during 2001-2015. Remote Sens. 2017, 9, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhou, Y.; Asrar, G.R.; Mao, J.; Li, X.; Li, W. Response of vegetation phenology to urbanization in the conterminous United States. Glob. Chang. Biol. 2016, 23, 2818–2830. [Google Scholar] [CrossRef]
- Zhou, D.; Zhao, S.; Zhang, L.; Liu, S. Remotely sensed assessment of urbanization effects on vegetation phenology in China’s 32 major cities. Remote Sens. Environ. 2016, 176, 272–281. [Google Scholar] [CrossRef] [Green Version]
- Qiu, T.; Song, C.; Li, J. Impacts of urbanization on vegetation phenology over the past three decades in Shanghai, China. Remote Sens. 2017, 9, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Han, G.; Xu, J. Land surface phenology and land surface temperature changes along an urban-rural gradient in yangtze River Delta, China. Environ. Manage. 2013, 52, 234–249. [Google Scholar] [CrossRef]
- Gervais, N.; Buyantuev, A.; Gao, F. Modeling the Effects of the Urban Built-Up Environment on Plant Phenology Using Fused Satellite Data. Remote Sens. 2017, 9, 99. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Schneider, A. The footprint of urban climates on vegetation phenology. Geophys. Res. Lett. 2004, 31, 10–13. [Google Scholar] [CrossRef]
- Melaas, E.K.; Wang, J.A.; Miller, D.L.; Friedl, M.A. Interactions between urban vegetation and surface urban heat islands: A case study in the Boston metropolitan region. Environ. Res. Lett. 2016, 11. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H. Climate controls on vegetation phenological patterns in northern mid- and high latitudes inferred from MODIS data. Glob. Chang. Biol. 2004, 10, 1133–1145. [Google Scholar] [CrossRef]
- White, M.A.; Nemani, R.R.; Thornton, P.E.; Running, S.W. Satellite evidence of phenological differences between urbanized and rural areas of the eastern United States deciduous broadleaf forest. Ecosystems 2002, 5, 260–273. [Google Scholar] [CrossRef]
- Chen, X.; Wang, D.; Chen, J.; Wang, C.; Shen, M. The mixed pixel effect in land surface phenology: A simulation study. Remote Sens. Environ. 2018, 211, 338–344. [Google Scholar] [CrossRef]
- Peng, D.; Zhang, X.; Zhang, B.; Liu, L.; Liu, X.; Huete, A.R.; Huang, W.; Wang, S.; Luo, S.; Zhang, X.; et al. Scaling effects on spring phenology detections from MODIS data at multiple spatial resolutions over the contiguous United States. ISPRS J. Photogramm. Remote Sens. 2017, 132, 185–198. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Gao, F.; Liu, Y.; Schaaf, C.; Friedl, M.; Yu, Y.; Jayavelu, S.; Gray, J.; Liu, L.; et al. Exploration of scaling effects on coarse resolution land surface phenology. Remote Sens. Environ. 2017, 190, 318–330. [Google Scholar] [CrossRef] [Green Version]
- ESA (European Space Agency). SENTINEL-2 User Handbook; ESA (European Space Agency): Paris, France, 2015; pp. 1–64.
- U.S. Geological Survey. Landsat 8 (L8) Data Users Handbook; U.S. Geological Survey: Reston, VA, USA, 2005; volume 8, p. 1993.
- Zhu, X.; Chen, J.; Gao, F.; Chen, X.; Masek, J.G. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sens. Environ. 2010, 114, 2610–2623. [Google Scholar] [CrossRef]
- Shi, K.; Huang, C.; Yu, B.; Yin, B.; Huang, Y.; Wu, J. Evaluation of NPP-VIIRS night-time light composite data for extracting built-up urban areas. Remote Sens. Lett. 2014, 5, 358–366. [Google Scholar] [CrossRef]
- Zhu, X.; Helmer, E.H. An automatic method for screening clouds and cloud shadows in optical satellite image time series in cloudy regions. Remote Sens. Environ. 2018, 214, 135–153. [Google Scholar] [CrossRef]
- Zhu, X.; Gao, F.; Liu, D.; Chen, J. A modified neighborhood similar pixel interpolator approach for removing thick clouds in landsat images. IEEE Geosci. Remote Sens. Lett. 2012, 9, 521–525. [Google Scholar] [CrossRef]
- Zhu, X.; Helmer, E.H.; Chen, J.; Liu, D. An Automatic System for Reconstructing High-Quality Seasonal Landsat Time Series. In Remote Sensing Time Series Image Processing; Weng, Q., Ed.; CRC Press: Boca Raton, FL, USA, 2018; pp. 47–64. [Google Scholar]
- Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the Blending of the Landsat and MODIS Surface Reflectance: Predicting Daily Landsat Surface Reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218. [Google Scholar]
- Zhang, W.; Li, A.; Jin, H.; Bian, J.; Zhang, Z.; Lei, G.; Qin, Z.; Huang, C. An Enhanced Spatial and Temporal Data Fusion Model for Fusing Landsat and MODIS Surface Reflectance to Generate High Temporal Landsat-Like Data. Remote Sens. 2013, 5, 5346–5368. [Google Scholar] [CrossRef] [Green Version]
- Ren, Q.; He, C.; Huang, Q.; Zhou, Y. Urbanization Impacts on Vegetation Phenology in China. Remote Sens. 2018, 10, 1095. [Google Scholar] [CrossRef] [Green Version]
- Sobrino, J.A.; Oltra-Carrió, R.; Sòria, G.; Bianchi, R.; Paganini, M. Impact of spatial resolution and satellite overpass time on evaluation of the surface urban heat island effects. Remote Sens. Environ. 2012, 117, 50–56. [Google Scholar] [CrossRef]
- Townshend, J.R.G.; Huang, C.; Kalluri, S.N.V.; Defries, R.S.; Liang, S.; Yang, K. Beware of per-pixel characterization of land cover. Int. J. Remote Sens. 2000, 21, 839–843. [Google Scholar] [CrossRef] [Green Version]
- Pontius, R.G.; Huffaker, D.; Denman, K. Useful techniques of validation for spatially explicit land-change models. Ecol. Modell. 2004, 179, 445–461. [Google Scholar] [CrossRef]
- Jönsson, P.; Eklundh, L. TIMESAT—A program for analyzing time-series of satellite sensor data. Comput. Geosci. 2004, 30, 833–845. [Google Scholar] [CrossRef] [Green Version]
- Jönsson, P.; Eklundh, L. Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1824–1832. [Google Scholar] [CrossRef]
- Eklundh, L.; Jönsson, P. TIMESAT 3.3 with seasonal trend decomposition and parallel processing Software Manual. Lund Malmo Univ. Sweden 2017, 1–92. [Google Scholar]
- Cai, Z.; Jönsson, P.; Jin, H.; Eklundh, L. Performance of smoothing methods for reconstructing NDVI time-series and estimating vegetation phenology from MODIS data. Remote Sens. 2017, 9, 20–22. [Google Scholar] [CrossRef] [Green Version]
- Chu, L.; Liu, Q.S.; Huang, C.; Liu, G.H. Monitoring of winter wheat distribution and phenological phases based on MODIS time-series: A case study in the Yellow River Delta, China. J. Integr. Agric. 2016, 15, 2403–2416. [Google Scholar] [CrossRef]
- White, M.A.; de Beurs, K.M.; Didan, K.; Inouye, D.W.; Richardson, A.D.; Jensen, O.P.; O’Keefe, J.; Zhang, G.; Nemani, R.R.; van Leeuwen, W.J.D.; et al. Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982-2006. Glob. Chang. Biol. 2009, 15, 2335–2359. [Google Scholar] [CrossRef]
- Cong, N.; Piao, S.; Chen, A.; Wang, X.; Lin, X.; Chen, S.; Han, S.; Zhou, G.; Zhang, X. Spring vegetation green-up date in China inferred from SPOT NDVI data: A multiple model analysis. Agric. For. Meteorol. 2012, 165, 104–113. [Google Scholar] [CrossRef]
- Zhang, X.; Friedl, M.A.; Schaaf, C.B. Global vegetation phenology from Moderate Resolution Imaging Spectroradiometer (MODIS): Evaluation of global patterns and comparison with in situ measurements. J. Geophys. Res. Biogeosciences 2006, 111, 1–14. [Google Scholar] [CrossRef]
- Xie, Z.; Chen, Y.; Lu, D.; Li, G. Classification of Land Cover, Forest, and Tree Species Classes with ZiYuan-3 Multispectral and Stereo Data. Remote Sens. 2019, 11, 164. [Google Scholar] [CrossRef] [Green Version]
- Piao, S.; Fang, J.; Zhou, L.; Ciais, P.; Zhu, B. Variations in satellite-derived phenology in China’s temperate vegetation. Glob. Chang. Biol. 2006, 12, 672–685. [Google Scholar] [CrossRef]
- Shen, M.; Zhang, G.; Cong, N.; Wang, S.; Kong, W.; Piao, S. Increasing altitudinal gradient of spring vegetation phenology during the last decade on the Qinghai-Tibetan Plateau. Agric. For. Meteorol. 2014, 189, 71–80. [Google Scholar] [CrossRef]
- Yu, H.; Luedeling, E.; Xu, J. Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proc. Natl. Acad. Sci. USA 2010, 107, 22151–22156. [Google Scholar] [CrossRef] [Green Version]
- Shang, R.; Liu, R.; Xu, M.; Liu, Y.; Zuo, L.; Ge, Q. Remote Sensing of Environment The relationship between threshold-based and in fl exion-based approaches for extraction of land surface phenology. Remote Sens. Environ. 2017, 199, 167–170. [Google Scholar] [CrossRef]
- Ahas, R.; Aasa, R.; Menzel, A.; Fedotova, V.G.; Scheifinger, H. Changes in European spring phenology. Int. J. Climatol. 2002, 22, 1727–1738. [Google Scholar] [CrossRef]
- Liu, L.; Cao, R.; Shen, M.; Chen, J.; Wang, J.; Zhang, X. How Does Scale Effect Influence Spring Vegetation Phenology Estimated from Satellite-Derived Vegetation Indexes? Remote Sens. 2019, 11, 2137. [Google Scholar] [CrossRef] [Green Version]
Data Used | Method | Study Area | D 1 (days) | ref. |
---|---|---|---|---|
MODIS EVI (250 m) | TIMESAT | China’s 32 major cities | 11.9 | [25] |
MODIS EVI (500 m) | Sigmoid function | Conterminous United States | 9 | [24] |
MODIS EVI (1 km) | TIMESAT | Northeast, China | 16.8 | [23] |
Landsat EVI (30 m) | Threshold | Shanghai, China | 5–10 | [26] |
MODIS EVI (1 km) | Logistic function | Eastern North, America | 7 | [29] |
Landsat EVI (30 m) | LPA 2 | Boston, United States | 10–12 | [30] |
MODIS EVI (1 km) | Curvature | Northern mid-high latitudes | 4–9 | [31] |
AVHRR NDVI (1 km) | Threshold | Eastern United States | 5.7 | [32] |
SPOT NDVI (1 km) | Model fit | Yangtze River Delta, China | Less than 15 | [27] |
Fused NDVI 3 (30 m) | TIMESAT | Salt Lake City, United States | Less than 3.56 | [28] |
No. | Satellite | Date | DOY | Contaminated Pixels (%) | Interpolated Pixels (%) | Data Fusion 2 |
---|---|---|---|---|---|---|
1 | Landsat-8 | 20160113 | 13 | 57.84 | 0 1 | Yes |
2 | Landsat-8 | 20160214 | 45 | 21.75 | 21.75 | Yes |
3 | Landsat-8 | 20160301 | 61 | 0 | 0 | Yes |
4 | Sentinel-2 | 20160314 | 74 | 0 | 0 | No |
5 | Sentinel-2 | 20160324 | 84 | 0 | 0 | No |
6 | Sentinel-2 | 20160403 | 94 | 0 | 0 | No |
7 | Landsat-8 | 20160418 | 109 | 16.39 | 16.39 | Yes |
8 | Landsat-8 | 20160504 | 125 | 15.78 | 15.78 | Yes |
9 | Sentinel-2 | 20160602 | 154 | 6.72 | 6.72 | No |
10 | Landsat-8 | 20160808 | 221 | 14.39 | 14.39 | Yes |
11 | Sentinel-2 | 20160821 | 234 | 5.50 | 5.50 | No |
12 | Sentinel-2 | 20160831 | 244 | 6.14 | 6.14 | No |
13 | Landsat-8 | 20160909 | 253 | 45.03 | 0 1 | Yes |
14 | Sentinel-2 | 20160920 | 264 | 55.68 | 0 1 | No |
15 | Sentinel-2 | 20160930 | 274 | 0.12 | 0.12 | No |
16 | Sentinel-2 | 20161010 | 284 | 0.02 | 0.02 | No |
17 | Sentinel-2 | 20161119 | 324 | 2.70 | 2.70 | No |
18 | Landsat-8 | 20161128 | 333 | 0 | 0 | Yes |
19 | Sentinel-2 | 20161209 | 344 | 26.80 | 26.80 | No |
20 | Landsat-8 | 20161214 | 349 | 0 | 0 | Yes |
21 | Sentinel-2 | 20161229 | 364 | 1.37 | 1.37 | No |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, J.; Zhu, X.; Wu, J.; Shen, M.; Chen, J. Coarse-Resolution Satellite Images Overestimate Urbanization Effects on Vegetation Spring Phenology. Remote Sens. 2020, 12, 117. https://doi.org/10.3390/rs12010117
Tian J, Zhu X, Wu J, Shen M, Chen J. Coarse-Resolution Satellite Images Overestimate Urbanization Effects on Vegetation Spring Phenology. Remote Sensing. 2020; 12(1):117. https://doi.org/10.3390/rs12010117
Chicago/Turabian StyleTian, Jiaqi, Xiaolin Zhu, Jin Wu, Miaogen Shen, and Jin Chen. 2020. "Coarse-Resolution Satellite Images Overestimate Urbanization Effects on Vegetation Spring Phenology" Remote Sensing 12, no. 1: 117. https://doi.org/10.3390/rs12010117
APA StyleTian, J., Zhu, X., Wu, J., Shen, M., & Chen, J. (2020). Coarse-Resolution Satellite Images Overestimate Urbanization Effects on Vegetation Spring Phenology. Remote Sensing, 12(1), 117. https://doi.org/10.3390/rs12010117