A Random Forest Method to Forecast Downbursts Based on Dual-Polarization Radar Signatures
<p>Cape WINDS tower locations around CCAFS/KSC (red), the 45WS-WSR radar location (blue), and the approximated 67 km range from the 45WS-WSR radar (shaded blue).</p> "> Figure 2
<p>Z<sub>h</sub> at 5 km AGL on 06/09/2015 at 1915 UTC. The spatial definition of a cell associated with a wind event is highlighted as a red box, and the gray ‘X’s show Cape WINDS tower locations. The solid black line indicates the plane of the vertical-cross section shown in <a href="#remotesensing-11-00826-f003" class="html-fig">Figure 3</a>.</p> "> Figure 3
<p>Vertical cross-section of Z<sub>dr</sub> (shaded) and Z<sub>h</sub> (black contour every 10 dBZ, from 10 dBZ to 50 dBZ) at the location shown as black line in <a href="#remotesensing-11-00826-f002" class="html-fig">Figure 2</a>. The horizontal blue line indicates the 0 °C isotherm height.</p> "> Figure 4
<p>Random Forest vote for all events as a function of the observed maximum wind magnitude in kt. The vertical line depicts the wind event threshold of 35 kt. The horizontal line at a vote of 0.5 specifies the minimum vote value necessary for the Random Forest to predict a storm as a wind event. As such, the upper (lower) left quadrant can be interpreted as encompassing the incorrectly (correctly) forecasted null events. Similarly, the upper (lower) right quadrant can be interpreted as including the correctly (incorrectly) forecasted wind events. More details can be found in the main text.</p> "> Figure 5
<p>POD, POFA, TSS, and 1-PC for the single signatures prediction for different thresholds applied. The optimal value for POD and TSS is 1, and for POFA and 1-PC is 0. Radar signatures are: (<b>a</b>) Z<sub>dr</sub> column maximum height; (<b>b</b>) Precipitation ice signature maximum height; (<b>c</b>) VII; (<b>d</b>) Height of peak Z<sub>h</sub> above the 0°C isotherm level; (<b>e</b>) Peak Z<sub>h</sub> above the 0°C isotherm level; (<b>f</b>) Peak Z<sub>h</sub> within the storm; (<b>g</b>) VIL; (<b>h</b>) DVIL.</p> "> Figure 6
<p>TSS for the radar signatures’ threshold with maximum TSS (contours), presented in terms of POD and POFA. Radar signatures are S#1: Z<sub>dr</sub> column maximum height; S#2: Precipitation ice signature maximum height; S#3: VII; S#4: Height of peak Z<sub>h</sub> above the 0°C isotherm level; S#5: Peak Z<sub>h</sub> above the 0°C isotherm level; S#6: Peak Z<sub>h</sub> within the storm; S#7: VIL; S#8: DVIL.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cape WINDS Towers and Soundings
2.2. C-Band Radar and Processing
2.3. Wind and Null Events
2.4. Dual-Polarization Radar Signatures
2.5. Random Forest
2.6. Mean Decrease Accuracy and Mean Decrease Gini
2.7. Single Signature Predictability
3. Results
3.1. Random Forest
3.2. Single Signatures
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fujita, T.T. Manual of Downburst Identification for Project NIMROD; SMRP Res. Paper 156; University of Chicago: Chicago, IL, USA, 1978; p. 104. [Google Scholar]
- Fujita, T.T.; Wakimoto, R.M. Microbursts in JAWS depicted by Doppler radars, PAM, and aerial photographs. In Proceedings of the 21st Conference on Radar Meteorology, Edmonton, AB, Canada, 19–23 September 1983; pp. 638–645. [Google Scholar]
- Fujita, T.T. Tornadoes and downbursts in the context of generalized planetary scales. J. Atmos. Sci. 1981, 38, 1511–1534. [Google Scholar] [CrossRef]
- Hjelmfelt, M.R. The microbursts of 22 June 1982 in JAWS. J. Atmos. Sci. 1987, 44, 1646–1665. [Google Scholar] [CrossRef]
- Hjelmfelt, M.R. Structure and life cycle of microburst outflows observed in Colorado. J. Appl. Meteorol. 1988, 27, 900–927. [Google Scholar] [CrossRef]
- Wakimoto, R.M.; Bringi, V.N. Dual-polarization observations of microbursts associated with intense convection: The 20 July storm during the MIST project. Mon. Weather Rev. 1988, 116, 1521–1539. [Google Scholar] [CrossRef]
- Knupp, K.R. Structure and evolution of a long-lived, microburst-producing storm. Mon. Weather Rev. 1996, 124, 2785–2806. [Google Scholar] [CrossRef]
- Mahale, V.N.; Zhang, G.; Xue, M. Characterization of the 14 June 2011 Norman, Oklahoma, downburst through dual-polarization radar observations and hydrometeor classification. J. Appl. Meteorol. Climatol. 2016, 55, 2635–2655. [Google Scholar] [CrossRef]
- Kuster, C.M.; Heinselman, P.L.; Schuur, T.J. Rapid-update radar observations of downbursts occurring within an intense multicell thunderstorm on 14 June 2011. Weather Forecast. 2016, 31, 827–851. [Google Scholar] [CrossRef]
- Srivastava, R.C. A simple model of evaporatively driven dowadraft: Application to microburst downdraft. J. Atmos. Sci. 1985, 42, 1004–1023. [Google Scholar] [CrossRef]
- Proctor, F.H. Numerical simulations of an isolated microburst. Part I: Dynamics and structure. J. Atmos. Sci. 1988, 45, 3137–3160. [Google Scholar] [CrossRef]
- Proctor, F.H. Numerical simulations of an isolated microburst. Part II: Sensitivity experiments. J. Atmos. Sci. 1989, 46, 2143–2165. [Google Scholar] [CrossRef]
- Hjelmfelt, M.R.; Roberts, R.D.; Orville, H.D.; Chen, J.P.; Kopp, F.J. Observational and numerical study of a microburst line-producing storm. J. Atmos. Sci. 1989, 46, 2731–2744. [Google Scholar] [CrossRef]
- Fu, D.; Guo, X. Numerical study on a severe downburst-producing thunderstorm on 23 August 2001 in Beijing. Adv. Atmos. Sci. 2007, 24, 227–238. [Google Scholar] [CrossRef]
- Srivastava, R.C. A model of intense downdrafts driven by the melting and evaporation of precipitation. J. Atmos. Sci. 1987, 44, 1752–1774. [Google Scholar] [CrossRef]
- Lolli, S.; Di Girolamo, P.; Demoz, B.; Li, X.; Welton, E.J. Rain evaporation rate estimates from dual-wavelength lidar measurements and intercomparison against a model analytical solution. J. Atmos. Ocean. Technol. 2017, 34, 829–839. [Google Scholar] [CrossRef]
- Smith, T.M.; Elmore, K.L.; Dulin, S.A. A damaging downburst prediction and detection algorithm for the WSR-88D. Weather Forecast. 2004, 19, 240–250. [Google Scholar] [CrossRef]
- Wolfson, M.M.; Delanoy, R.L.; Forman, B.E.; Hallowell, R.G.; Pawlak, M.L.; Smith, P.D. Automated microburst wind-shear prediction. Linc. Lab. J. 1994, 7, 399–426. [Google Scholar]
- Lagerquist, R.; McGovern, A.; Smith, T. Machine learning for real-time prediction of damaging straight-line convective wind. Weather Forecast. 2017, 32, 2175–2193. [Google Scholar] [CrossRef]
- Kumjian, M.R.; Ryzhkov, A.V. Polarimetric signatures in supercell thunderstorms. J. Appl. Meteorol. Climatol. 2008, 47, 1940–1961. [Google Scholar] [CrossRef]
- Suzuki, S.I.; Maesaka, T.; Iwanami, K.; Misumi, R.; Shimizu, S.; Maki, M. Multi-parameter radar observation of a downburst storm in Tokyo on 12 July 2008. SOLA 2010, 6, 53–56. [Google Scholar] [CrossRef]
- Richter, H.; Peter, J.; Collis, S. Analysis of a destructive wind storm on 16 November 2008 in Brisbane, Australia. Mon. Weather Rev. 2014, 142, 3038–3060. [Google Scholar] [CrossRef]
- Loconto, A.N. Improvements of Warm-Season Convective Wind Forecasts at the Kennedy Space Center and Cape Canaveral Air Force Station. Master’s Thesis, Department of Chemical, Earth, Atmospheric, and Physical Sciences, Plymouth State University, Plymouth, NH, USA, 2006. [Google Scholar]
- Rennie, J.J. Evaluating WSR-88D Methods to Predict Warm-Season Convective Wind Events at Cape Canaveral Air Force Station and Kennedy Space Center. Master’s Thesis, Department of Atmospheric Science and Chemistry, Plymouth State University, Plymouth, NH, USA, 2010. [Google Scholar]
- Harris, R.A. Comparing Variable Updraft Melting Layer Heights to Convective Wind Speeds Using Polarimetric Radar Data. Master’s Thesis, Department of Atmospheric Science and Chemistry, Plymouth State University, Plymouth, NH, USA, 2011. [Google Scholar]
- Scholten, C.A. Dual-Polarimetric Radar Characteristics of Convective-Wind-Producing Thunderstorms over Kennedy Space Center. Master’s Thesis, Department of Atmospheric Science and Chemistry, Plymouth State University, Plymouth, NH, USA, 2013. [Google Scholar]
- Roeder, W.P.; Huddleston, L.L.; Bauman, W.H.; Doser, K.B. Weather research requirements to improve space launch from Cape Canaveral Air Force Station and NASA Kennedy Space Center. In Proceedings of the Space Traffic Management Conference, Daytona Beach, FL, USA, 26 June 2014. [Google Scholar]
- Barnes, L.R.; Schultz, D.M.; Gruntfest, E.C.; Hayden, M.H.; Benight, C.C. CORRIGENDUM: False alarm rate or false alarm ratio? Weather Forecast. 2009, 24, 1452–1454. [Google Scholar] [CrossRef]
- Edwards, R.; Allen, J.T.; Carbin, G.W. Reliability and climatological impacts of convective wind estimations. J. Appl. Meteorol. Climatol. 2018, 57, 1825–1845. [Google Scholar] [CrossRef]
- Computer Sciences Raytheon. 45th Space Wing Eastern Range Instrumentation Handbook—CAPE WINDS; Computer Sciences Raytheon: Brevard County, FL, USA, 2015; p. 27. [Google Scholar]
- Amiot, C.G.; Carey, L.D.; Roeder, W.P.; McNamara, T.M.; Blakeslee, R.J. C-band Dual-Polarization Radar Signatures of Wet Downbursts around Cape Canaveral, Florida. Weather Forecast. 2019, 34, 103–131. [Google Scholar] [CrossRef]
- Roeder, W.P.; McNamara, T.M.; Boyd, B.F.; Merceret, F.J. The new weather radar for America’s space program in Florida: An overview. In Proceedings of the 34th Conference on Radar Meteorology, Williamsburg, VA, USA, 5 October 2009. [Google Scholar]
- Cressman, G.P. An operational objective analysis system. Mon. Weather Rev. 1959, 87, 367–374. [Google Scholar] [CrossRef]
- Helmus, J.J.; Collis, S.M. The Python ARM Radar Toolkit (Py-ART), a library for working with weather radar data in the Python programming language. J. Open Res. Softw. 2016, 4, e25. [Google Scholar] [CrossRef]
- Lorenz, E. Empirical Orthogonal Functions and Statistical Weather Prediction; MIT Department of Meteorology: Cambridge, MA, USA, 1956; p. 49. [Google Scholar]
- Illingworth, A.J.; Goddard, J.W.F.; Cherry, S.M. Polarization radar studies of precipitation development in convective storms. Q. J. R. Meteorol. Soc. 1987, 113, 469–489. [Google Scholar] [CrossRef]
- Tuttle, J.D.; Bringi, V.N.; Orville, H.D.; Kopp, F.J. Multiparameter radar study of a microburst: Comparison with model results. J. Atmos. Sci. 1989, 46, 601–620. [Google Scholar] [CrossRef]
- Herzegh, P.H.; Jameson, A.R. Observing precipitation through dual-polarization radar measurements. Bull. Am. Meteorol. Soc. 1992, 73, 1365–1376. [Google Scholar] [CrossRef]
- Hubbert, J.C.V.N.; Bringi, V.N.; Carey, L.D.; Bolen, S. CSU-CHILL polarimetric radar measurements from a severe hail storm in eastern Colorado. J. Appl. Meteorol. 1998, 37, 749–775. [Google Scholar] [CrossRef]
- Straka, J.M.; Zrnić, D.S.; Ryzhkov, A.V. Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteorol. 2000, 39, 1341–1372. [Google Scholar] [CrossRef]
- Carey, L.D.; Rutledge, S.A. The relationship between precipitation and lightning in tropical island convection: A C-band polarimetric radar study. Mon. Weather Rev. 2000, 128, 2687–2710. [Google Scholar] [CrossRef]
- Mosier, R.M.; Schumacher, C.; Orville, R.E.; Carey, L.D. Radar nowcasting of cloud-to-ground lightning over Houston, Texas. Weather Forecast. 2011, 26, 199–212. [Google Scholar] [CrossRef]
- Greene, D.R.; Clark, R.A. Vertically integrated liquid water—A new analysis tool. Mon. Weather Rev. 1972, 100, 548–552. [Google Scholar] [CrossRef]
- Amburn, S.A.; Wolf, P.L. VIL density as a hail indicator. Weather Forecast. 1997, 12, 473–478. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer: New York, NY, USA, 2013; Volume 112. [Google Scholar]
- Mecikalski, J.R.; Williams, J.K.; Jewett, C.P.; Ahijevych, D.; LeRoy, A.; Walker, J.R. Probabilistic 0–1-h convective initiation nowcasts that combine geostationary satellite observations and numerical weather prediction model data. J. Appl. Meteorol. Climatol. 2015, 54, 1039–1059. [Google Scholar] [CrossRef]
- Ahijevych, D.; Pinto, J.O.; Williams, J.K.; Steiner, M. Probabilistic forecasts of mesoscale convective system initiation using the random forest data mining technique. Weather Forecast. 2016, 31, 581–599. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Wilks, D. Statistical Methods in the Atmospheric Sciences, 3rd ed.; Academic Press: Cambridge, MA, USA, 2011; p. 676. [Google Scholar]
- Lakshmanan, V.; Rabin, R.; DeBrunner, V. Multiscale storm identification and forecast. Atmos. Res. 2003, 67–68, 367–380. [Google Scholar] [CrossRef]
- Lakshmanan, V.; Smith, T.; Stumpf, G.; Hondl, K. The warning decision support system integrated information. Weather Forecast. 2007, 22, 596–612. [Google Scholar] [CrossRef]
Signature Number | Description | Units |
---|---|---|
S#1 | vertical extent of the 1 dB Zdr contour in a Zdr column in the presence of Zh ≥ 30 dBZ at temperatures colder than 0°C | m |
S#2 | vertical extent of co-located values of Zh ≥ 30 dBZ and Zdr ~0 dB at temperatures colder than 0°C | m |
S#3 | maximum vertically integrated ice (VII) within a storm | kg m−2 |
S#4 | height of the peak Zh in the storm | m |
S#5 | peak Zh at temperatures colder than 0°C | dBZ |
S#6 | peak Zh at any temperature within a storm | dBZ |
S#7 | maximum vertically integrated liquid (VIL) within a storm | kg m−2 |
S#8 | maximum density of VIL (DVIL) within a storm | g m−3 |
Observation | |||
---|---|---|---|
Null | Wind | ||
Prediction | Wind | b = 23 | a = 49 |
Null | d = 102 | c = 35 | |
Total | 125 | 84 |
Signature | Mean Decrease Accuracy | Mean Decrease Gini |
---|---|---|
S#1: Height of Zdr column | 10.73 | 12.55 |
S#2: Height of precipitation ice | 5.39 | 10.34 |
S#3: VII | 12.98 | 13.86 |
S#4: Height of peak Zh above 0°C | −1.17 | 10.11 |
S#5: Peak Zh above 0°C | 10.34 | 13.26 |
S#6: Peak Zh | 14.58 | 13.56 |
S#7: VIL | 8.18 | 12.85 |
S#8: DVIL | 9.26 | 13.34 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medina, B.L.; Carey, L.D.; Amiot, C.G.; Mecikalski, R.M.; Roeder, W.P.; McNamara, T.M.; Blakeslee, R.J. A Random Forest Method to Forecast Downbursts Based on Dual-Polarization Radar Signatures. Remote Sens. 2019, 11, 826. https://doi.org/10.3390/rs11070826
Medina BL, Carey LD, Amiot CG, Mecikalski RM, Roeder WP, McNamara TM, Blakeslee RJ. A Random Forest Method to Forecast Downbursts Based on Dual-Polarization Radar Signatures. Remote Sensing. 2019; 11(7):826. https://doi.org/10.3390/rs11070826
Chicago/Turabian StyleMedina, Bruno L., Lawrence D. Carey, Corey G. Amiot, Retha M. Mecikalski, William P. Roeder, Todd M. McNamara, and Richard J. Blakeslee. 2019. "A Random Forest Method to Forecast Downbursts Based on Dual-Polarization Radar Signatures" Remote Sensing 11, no. 7: 826. https://doi.org/10.3390/rs11070826
APA StyleMedina, B. L., Carey, L. D., Amiot, C. G., Mecikalski, R. M., Roeder, W. P., McNamara, T. M., & Blakeslee, R. J. (2019). A Random Forest Method to Forecast Downbursts Based on Dual-Polarization Radar Signatures. Remote Sensing, 11(7), 826. https://doi.org/10.3390/rs11070826