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Abstract: Tropical Rainfall Measurement Mission (TRMM) is one of the most popular global high
resolution satellite-based precipitation products with a goal of measuring precipitation over the
oceans and tropics. However, in recent years, the TRMM mission has come to an end. Its successor,
Global Precipitation Measurement (GPM) mission was launched to measure the earth’s precipitation
structure, with an aim to improve upon the TRMM project. Both of the precipitation products have
their own strengths and weaknesses in resolution, accuracy, and availability. The aim of this study is
to evaluate the hydrologic utilization of the TRMM and GPM products in a humid basin of China.
The main findings of this study can be summarized as follows: (1) 3B42V7 generally outperforms
3B42V6 in terms of hydrologic performance. Meanwhile, 3B42RTV7 significantly outperforms
3B42RTV6, and showed close performance with the bias-adjusted TRMM Multi-satellite Precipitation
Analysis (TMPA) products. (2) The GPM showed better agreement with gauge observation than the
TMPA products with lower RB and higher correlation coefficient (CC) values at different time scales.
(3) The VIC hydrological model generally outperformed the XAJ hydrological model with lower RB,
higher Nash–Sutcliffe Coefficient of Efficiency (NSCE) and CC values; though the 3B42RTV6 and
3B42RTV7 showed higher CC values in simulating the streamflow hydrograph by using the VIC and
XAJ hydrological models. It can be found that the conceptual hydrological model was enough for the
hydrologic evaluation of TRMM and GPM IMERG satellite-based precipitation in a humid basin of
China. This study provides a reference for the comparison of multiple models on watershed scale.

Keywords: TRMM; GPM; hydrological model; humid river basin; China

1. Introduction

Precipitation is one of the key input data for various hydrological models. The accuracy of
precipitation is vital to improve hydrological simulation [1,2]. Ground-based measurement networks
(radar or rain gauge) are either sparse in both time and space or do not exist at all due to the
climatic conditions, human geography, and other limited conditions [3]. Remote sensing technologies
potentially provide a solution to developing spatially distributed estimates of precipitation at the
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watershed scale. Various methods for estimating rain rates from satellite images have been proposed,
from several bands of the eletro-magnetic spectrum [4].

More recently, several satellite-based precipitation products have been emerged to provide
uninterrupted precipitation time series with quasi-global coverage. These satellite-based precipitation
products provide an unprecedented opportunity for hydro-meteorological applications and climate
studies [5,6]. Tropical Rainfall Measurement Mission (TRMM) is probably one of the most popular
products with the specific goal of measuring precipitation over the oceans and tropics [7]. TRMM was
launched in 1997 with its mission scheduled to last just a few years and the TRMM Multi-satellite
Precipitation Analysis (TMPA) was upgraded from version 6 (V6) to version 7 (V7) in May 2012. Many
studies have reported on the improvement of Version-7 TMPA over earlier Version-6 [8,9]. For example,
Chen [6] thought that 3B42V7 clearly improved upon 3B42V6 over China in terms of daily mean
precipitation; Yong et al. [10] reported that 3B42RTV7 represented a substantial improvement over
3B42RTV6 with respect to the systematic bias in the low-latitude Mishui basin; Liu [8] found that
3B42V7 detected more rain events than 3B42V6 in June, July, and August along with December, January
and February; Jiang et al. [11] revealed that the 3B42RTV7 and 3B42V7 precipitation products had
better performance in estimating precipitation in the Ganjiang River basin; Fei et al. [12] indicated
that 3B42V7 was better than 3B42V6 at seasonally and monthly scales. Nevertheless, Chen et al. [6]
discovered that the 3B42V7 precipitation product showed a slightly downgraded performance at daily
scale in the Qinghai-Tibetan plateau.

Now the TRMM mission has come to an end, however, observation of hurricanes and precipitation
from space will not end after TRMM. The Global Precipitation Measurement (GPM) mission was
launched in February 2014 to improve upon the TRMM project. Since the precipitation measurement
by the GPM platform was very similar to its predecessor TRMM, the development of GPM algorithms
to improve precipitation retrievals can be addressed through the lessons learnt from the former TRMM
mission in terms of precipitation retrievals and its associated uncertainty [13]. Tang et al. [14] evaluated
the GPM Day-1 IMERG version 4 (IMERG v4) and TRMM 3B42 v7 products over Mainland China from
April to December 2014 at the hourly time scale. Chen [15] compared the GPM version 5 (IMERG v5)
and the TMPA (3B42 v7) over a semi-humid to humid climate transition area (Huaihe River basin) from
2015 to 2017 and both satellite precipitation products showed a high pearson correlation coefficient
(r, above 0.89) with gauge observations. Omranian and Sharif [16] evaluated the GPM (IMERG)
satellite precipitation products over the lower Colorado River basin, Texas, USA and they found
all IMERG products performed better when the temporal and spatial resolutions were downscaled.
Omranian et al. [17] investigated the Hurricane Harvey and the devastating rainfall to the Houston,
Texas, USA during 25–29 August 2017, and the results indicated that the performance of IMERG
product was satisfactory in detecting the spatial variability of the storm.

The satellite precipitation products have been widely applied in the hydrologic and related
communities [18]. The hydrologic evaluation of TRMM 3B42 products has also been conducted,
such as Tobin and Bennett [19] compared the performance of gauge observations and 3B42V6 data
by using the SWAT hydrological modeling in South Texas and northern Mexico; Jiang et al. [5]
employed the semi-distributed Xin’anjiang model to evaluate three widely used satellite precipitation
products (TMPA 3B42V6, TMPA 3B42RT, and CMORPH) in South China and found that these satellite
precipitation products have better performance in the streamflow simulation; Xue et al. [20] explored
the improvements of the 3B42V7 algorithm relative to its predecessor 3B42V6 using the Coupled
Routing and Excess Storage (CREST) hydrologic model in the mountainous Wangchu basin of Bhutan,
and found that the 3B42V7 algorithm demonstrates a significant upgrade from 3B42V6 in precipitation
accuracy, thus improving its potential hydrological utility. However, the application of satellite data for
hydrological applications was still very limited [21], especially, the comparison of different hydrological
models was overlooked in evaluating the satellite-based precipitation products.

Although the evaluation of TMPA and GPM satellite precipitation products has been recently
investigated in many areas, their hydrological applications in a river basin are still limited. Therefore,
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the objectives are to (1) evaluate the TMPA and GPM precipitation products at a typical humid climate
zone which is extremely vulnerable to floods and droughts [22–24]; and (2) compare the TMPA and
GPM hydrologic performance of by using VIC and XAJ hydrological model to provide insight into
model selection for supporting water resources management in a humid river basin. This work might
be beneficial to the improvement of monitoring, modeling, and forecasting techniques in extreme
precipitation and streamflow using satellite precipitation products.

2. Materials and Methods

2.1. Study Area

The Ganjiang River is one of the biggest tributaries of the Poyang Lake River basin. The drainage
area is about 83,500 km2, accounting for 51% of the Poyang Lake River basin. The topography in this
basin is complex and the elevation ranges from 2 to 2120 m above sea level. Low hills lie in the central
part of the basin while alluvial plains govern the lower reaches (Figure 1). The Ganjiang River basin is
controlled by the subtropical humid monsoon climate and receives approximately 1400–1800 mm of
precipitation per year. The heaviest rainfall occurs in the plum rain season between April and June,
while monsoon and typhoon rainstorms frequently occur between July and September.

2.2. Data

TMPA satellite rainfall products (3B42 3B42RTV6, 3B42 3B42RTV7, 3B42 3B42V6 and 3B42 3B42V7)
and GPM precipitation products were used in this study (Table 1). The TMPA datasets used in this
study were downloaded from the NASA website (http://trmm.gsfc.nasa.gov/). It has a high temporal
(3 h) and spatial (0.25◦ × 0.25◦) resolution. The 3B42 TMPA dataset is available in two versions:
a research-quality product (3B42) released 10–15 days after each month, covering the global latitude
belt from 60◦N to 60◦S and a near-real-time product (3B42 RT), which is released approximately
9 h after real-time with the coverage of the latitude belt from 50◦N to 50◦S. The main difference
between the two versions is the use of the rain gauge data for bias correction, which are unavailable
in real-time [25]. The 3B42RT uses the TRMM Combined Instrument (TCI) dataset, which includes
the TRMM precipitation radar (PR) and TRMM Microwave Imager (TMI), to calibrate precipitation
estimates derived from available Low Earth Orbit (LEO) microwave (MW) radiometers. The 3B42
adjusts the monthly accumulations of the 3-h fields from 3B42RT based on a monthly gauge analysis,
including the GPCP 1◦ × 1◦ monthly rain gauge analysis and the Climate Assessment and Monitoring
System (CAMS) 0.5◦ × 0.5◦ monthly rain gauge analysis [6].

Table 1. Introduction of the five kinds of satellite precipitation products.

Products Period Spatial Resolution (◦)

3B42RTV6 2003/01–2010/12 0.25
3B42V6 2003/01–2010/12 0.25

3B42RTV7 2003/01–2010/12 0.25
3B42V7 2003/01–2015/10 0.25

GPM 2014/05–2015/10 0.1

Global Precipitation Measurement (GPM) is a new generation of precipitation products based on
TRMM. Compared with the previous satellite precipitation data, GPM has a larger coverage along
with higher spatial and temporal resolution [26]. GPM can also capture micro precipitation and solid
precipitation more accurately, which is of great significance to the study of precipitation in middle and
high latitudes [27]. The GPM-era precipitation product Integrated Multi-satellite Retrievals (IMERG) is
the Level 3 multi-satellite precipitation algorithm of GPM. IMERG combines intermittent precipitation
estimates from monthly gauge precipitation data, all constellation microwave sensors, and IR-based
observations from geosynchronous satellites. IMERG is executed in near real-time and provides two

http://trmm.gsfc.nasa.gov/
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precipitation estimate data options: Early and Late [28]. Early option has a 4-h lag and late provides a
12-h lag. The early option precipitation estimate data was used in this research.

Observed precipitation data comes from 35 rain gauge stations in the Ganjiang River basin during
2003–2015. And the stream flow observations at Waizhou hydrological station were used as the outlet
of Ganjiang River basin in this study (Figure 1).
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2.3. Hydrological Model

Xin’anjiang Model

The Xin’anjiang model, developed in 1973 and published in 1980, is a semi-distributed conceptual
rainfall-runoff model [29]. It uses sub-catchments as primary hydrologic units, allowing the spatial
patterns of inputs to be taken into account at the sub-catchment level. The model has been successfully
and widely applied in all major river basins in China since its initial development in the 1970s. The XAJ
model has a larger number of parameters. There is a clear need to have an effective and efficient
method to obtain parameters from measurable quantities of watershed characteristics. The water
balance of XAJ is described using the following equation:

St + Wt = S0 + W0 +
t

∑
i=1

(Rday − Qsur f − Ea − Qlat − Qgw) (1)

where Wt is areal mean tension water storage, which includes the storage capacities of three conceptual
soil layers (i.e., upper, lower, and deepest layer), and St is the areal mean free water storage capacity.
After calculating the total runoff, three components including surface runoff Qsur f , groundwater
contribution Qgw and contribution to lateral flow Qlat are separated. By applying the Muskingum
Method to successive sub-reaches, flood routing from sub-basin outlets to the total basin outlet is
achieved [29].

VIC Model

The VIC model was originally developed jointly at the University of Washington and Princeton
University. It is a macroscale hydrology model used to simulate various hydrologic variables as well
as kinetic energy variables such as soil moisture, snowmelt, direct runoff, baseflow, and various heat
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flux. One of the most distinguishing features of the VIC model is that both water and surface energy
budgets are resolved within each grid cell at each time step. In this study, version VIC 4.1.2 was used
for the offline simulation [30].

2.4. Statistical Method

Relative bias (Bias), correlation coefficient (CC), and root mean square error (RMSE) were used
to measure the differences between the four satellite products. The Bias (%) was used to measure
the agreement between the averaged value of gauge data and observed data. The CC was used to
assess the linearity of the correlated datasets and the RMSE was used to measure the average error
magnitude. For the evaluation of hydrology skills, the indexes Bias, CC, and RMSE were also used
to assess the performance of simulated stream flow. Furthermore, the Nash–Sutcliffe Coefficient of
Efficiency (NSCE) was used to quantify the performance of the XAJ and VIC hydrological models.
The FAR gives the fraction of spurious events among all the events satellites detect [31,32]. The POD
indicates the fraction of precipitation events that were correctly detected, whereas the CSI denotes the
number of correct forecasts of a rain event, divided by the total of the hits, false alarms and misses [33].
They were defined by the following equations as Table 2 [16,20,26]:

Table 2. Statistical Performance Measures Used for Evaluation of Satellite Products.

Indices Formula

Category 1
Relative bias

(Bias)
∑N

n=1(Satn−Gagn)

∑N
n=1 Gagn

Correlation coefficient
(CC)

1
N ∑N

n=1(Satn−Sat)(Gagn−Gag)
(SDSat)(SDGag)

Root mean square error
(RMSE)

√
1
N

N
∑

n=1
(Satn − Gagn)

2

Nash-Sutcliffe Coefficient of Efficiency
(NSCE)

1 − ∑N
n=1(Satn−Gagn)

2

∑N
n=1(Satn−Sat)

2

Category 2
Probability of detection

(POD)
Csg

Csg+CgMS

False alarm ratio
(FAR)

CsMg
Csg+CsMg

Critical success index
(CSI)

Csg
Csg+CsMg+CgMS

Notes: n, number of samples; Satn, satellite rainfall estimate; Gagn, gauge-observed rainfall; Sat, averaged satellite
rainfall; Gag, averaged gauge rainfall; SDSat, standard deviations of satellite rainfall; SDGag, standard deviations of
gauge rainfall; Csg, events captured by satellite and gauge; CsMg, events captured by satellite and missed by gauge;
CgMs, events captured by gauge and missed by satellite [16].

The Kolmogorov–Smirnov test (K–S test) was used in this paper. In statistics, the K–S test is a
method of calibration, which compares a frequency distribution with a theoretical distribution or two
observational distributions. Its original hypothesis H0: the distributions of two data sets are the same
or in accord with the theoretical distribution. If the actual observed value D > Dn, H0 is rejected, the
H0 hypothesis is accepted [34,35]

The Kriging interpolation method was used to resample the observed precipitation and GPM
products as the TMPA spatial resolution (0.25◦) to make them comparable.

3. Results

3.1. Evaluation of TRMM Precipitation Products

The spatial distribution of annual mean precipitation over the Ganjiang River basin derived
from the observation and four TMPA products were analyzed during the period of 2003 to 2010
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(Figure 2). It can be seen that the observed annual mean precipitation decreased from the south and
west (>1951 mm) to the east and central of the Ganjiang River basin (<1250 mm) (Figure 2a). However,
the annual mean precipitation has been significantly undervalued for the 3B42RTV6 product, and it was
clear that 3B42RTV7 was significantly improved upon than 3B42RTV6 for the whole basin (Figure 2d,e).
As for 3B42V6 and 3B42V7, both of them showed great improvement over real-time products for
the precipitation estimation. It was clear that the 3B42V6 and 3B42V7 had good performance in
the southern and western edge areas of the basin (Figure 2b,c). Therefore, the bias-adjusted TMPA
products 3B42V6 and 3B42V7 showed better agreement with gauge observation than the unadjusted
counterparts 3B42RTV6 and 3B42RTV7, especially in capturing the spatial pattern of multi-year
precipitation, and temporal pattern of timing, probability distribution of occurrence, and volume.
The 3B42V6 and 3B42V7 agreed well with gauge observation with lower RB and high CC at monthly
scale. It can be seen that lower annual mean precipitation appeared in the middle reaches of the
Ganjiang River basin based on the observed precipitation. However, this “basin” pattern phenomenon
did not appear in the TMPA products. This may be a consequence of 3B42V6, 3B42V7 and 3B42RTV7
overestimating the precipitation in the middle reaches of the Ganjiang River basin (Figure 2b,c,e).
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The comparison between the GPM and 3B42V7 over the Ganjiang River basin from 2014 to 2015
was shown in Figure 3. Similar results can be found that the observed annual mean precipitation
decreased from the north to the east and lower precipitation areas mainly distributed in the central
and southwestern basin. The 3B42V7 overestimated annual mean precipitation in the north and east
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of Ganjiang River basin while GPM overestimated the precipitation in the east and central regions of
the Ganjiang River basin. The 3B42V7 and GPM products generally captured the spatial pattern of
precipitation over the Ganjiang River basin, and the GPM agreed better with gauge observation than
that of the 3B42V7 at daily scale.Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 20 
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3B42V7 and Observed data from 2014 to 2015 (a) Observed data; (b) 3B42V7; (c) GPM).

The annual mean TMPA and observed precipitation at different time scales in the Ganjiang River
basin from 2003 to 2010 were shown in Figure 4. It can be seen that all of the four TRMM products
showed good performance at daily, monthly and annual time scales. However, the 3B42RTV6 product
underestimated the monthly precipitation obviously and the product of 3B42RTV7 overestimated the
monthly precipitation slightly. As for the annual time scale, it has been greatly underestimated by the
3B42RTV6 precipitation product (Figure 4c). This phenomenon was similar to that of the daily time
scale. In addition, it can be found that the TMPA precipitation got its maximum value between May
and July, and reached its minimum value around December during the period of 2003 to 2010.
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Figure 4. The precipitation time series for TMPA and observed precipitation in the Ganjiang River
basin from 2003 to 2010 ((a), Daily; (b), Monthly; (c), Annual).

The correlations between the TMPA and observed precipitation has been analyzed in Table 3.
It can be seen that all of the TMPA products slightly overestimated the precipitation, except for
the 3B42RTV6, which strikingly underestimates the precipitation by 24.15% at the daily time scale.
The RMSE and CC value were 5.98 mm and 0.72 for the 3B42RTV6 product, respectively. In addition,
the RB, RMSE and CC values were 3.60%, 5.56 mm, and 0.80 for the 3B42V6 product in the Ganjiang
River basin, respectively. The 3B42RTV7 showed better performance with high CC (0.79), low RMSE
(5.69mm), and low RB value (2.97%). And the 3B42V7 had much better performance with higher CC
(0.82), lower RMSE with the value of 5.24 mm, and lower RB (2.95%). Generally, the 3 B42V7 product
performed much better than other TMPA products in terms of RB, RMSE, and CC. When it came to
the monthly scale, the 3B42RTV6 underestimated the precipitation by 26.25% as a whole. However,
the 3B42RTV7 showed much bettr than that of 3B42RTV6 with slight underestimation by 0.30% as a
whole. The 3B42RTV6 and 3B42RTV7 showed good correlations with the gauged precipitation, but
the 3B42RTV7 had better performance with higher CC (0.90 vs. 0.86) and better RMSE (1.63 mm vs.
1.96 mm). From the monthly statistics of satellite rainfall products (Table 3), the 3B42V6 was observed
to achieve all the best indexes of RB (0.01%) and CC (0.95) except RMSE (1.04 mm), and the 3B42V7
was found to attain all the best indexes of RMSE (1.00 mm) and CC (0.95) except RB (1.06%). Overall,
3B42V6 and 3B42V7 perform better than 3B42RTV6 and 3B42RTV7.

Table 3. The difference between the estimated precipitation of four satellite products and the observed
precipitation in the Ganjiang River basin.

Precipitation
Product

Daily Monthly

RB (%) RMSE (mm) CC RB (%) RMSE (mm) CC

3B42RTV6 −24.15 5.98 0.72 −26.25 1.96 0.86
3B42RTV7 2.97 5.69 0.79 −0.30 1.63 0.90

3B42V6 3.60 5.56 0.80 −0.01 1.04 0.95
3B42V7 2.95 5.24 0.82 −1.06 1.00 0.95
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Figure 5 showed the daily and monthly precipitation time series for the GPM, 3B32V7, and
observed precipitation in the Ganjiang River basin from May 2014 to October 2015. It can be found
that there was a good relationship between the GPM and observed precipitation products at daily and
monthly scales. Similar results can also be found between the 3B42V7 and observed precipitation. Both
of the 3B42V7 and GPM precipitation products were close to that of gauge observations with high CC
value at daily and monthly time scale. In addition, there was only small magnitude of overestimation
1.90% and when it came to the monthly scale 1.34% for 3B42V7 and GPM, respectively. Although
the RB value of GPM was better than 3B42V7, the RMSE of GPM was higher than that of 3B42V7
(17.08 mm vs. 16.29 mm).
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Figure 5. The precipitation time series from GPM and rain gauges in the Ganjiang River basin from
May 2014 to October 2015 ((a), Daily; (b), Monthly).

The statistical indices (POD, CSI, and FAR) at the daily time scale for different rainfall thresholds
are shown in Figure 6. High values of POD and CSI at rainfall rates from 0.5–10.0 mm/day indicated
that TMPA precipitation products had better performance (Figure 6a,b). The POD and CSI value
decreased with the rainfall rate increasing, and the FAR increased at the same time which revealed
the limitation of TMPA products for detecting heavy rainfall events (Figure 6a–c). Therefore, it can
be found that all the TRMM products except 3B42RTV6 showed good performance in detecting
precipitation in the Ganjiang River basin, especially for rainfall rates of 0.5–10.0 mm/day. Higher
POD and CSI values at 0.5–5.0 mm/day rainfall rates can be found in Figure 6. This phenomenon
revealed that both GPM and 3B42V7 precipitation products performed much better at these rainfall
rates. However, the 3B42V7 product showed better performance than the GPM product in detecting
precipitation in the Ganjiang River basin, especially at rainfall rates from 0.5–6.0 mm/day. Above
all, the 3B42V7 showed the best performance for the detecting precipitation events in the Ganjiang
River basin.
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Figure 6. Statistical indices for different rainfall thresholds at daily time scale ((a,d) POD; (b,e) CSI and
(c,f) FAR).

3.2. Hydrologic Model Calibration

The MOCOM-UA algorithm was used in this paper to calibrate the XAJ and VIC hydrologic
models’ parameter automatically. The method is an effective and efficient methodology for solving
the multiple-objective global optimization problem which is an extension of the successful SCE-UA
single-objective global optimization algorithm [36]. The XAJ and VIC model Calibrated paraments
and calibrated values in Ganjiang River Basin were shown in Tables 4 and 5, respectively.

Table 4. The XAJ model Calibrated Paraments and Calibrated Values in Ganjiang River Basin.

Module Parameter Description Value

Evapotranspiration

Kc Ratio of potential evapotranspiration to pan evaporation 0.599
Wum Tension water capacity of upper layer (mm) 20
Wlm Tension water capacity of lower layer (mm) 60

C Evapotranspiration coefficient of deeper layer 0.143

Runoff generation
Wm Tension water capacity (mm) 131.6

B Exponent of distribution of tension water capacity 0.899
Im Ratio of impervious area to the total area of the basin 0.01

Runoff separation

Sm* Free water capacity (mm) 64.654
Ex Exponent of distribution of free water capacity 0.580

Kg* Outflow coefficient of free water storage to groundwater 0.223
Ki

a Outflow coefficient of free water storage to interflow 0.215

Routing

Cg* Recession constant of groundwater storage 0.839
Ci* Recession constant of interflow storage 0.988

Cs*,b Recession constant in the lag-and-route method 0.85
Lag*,b Lag time (h) 2

Ke
c Muskingum time constant for each sub-reach (h) 1

Xe* Muskingum weighting factor for each sub-reach 0.31
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Table 5. The VIC model Calibrated Parameters and Calibrated Values in Ganjiang River Basin.

Parameters Definition Value Range Calibrated Value

B Variable infiltration curve parameter (binfilt) 0.001–1.0 0.236

Ws Fraction of maximum soil moisture where non-linear
baseflow occurs ≥0.5 0.533

Ds Fraction of Dsmax where non-linear baseflow begins 0.001–1.0 0.481

Dsmax Maximum velocity of baseflow (mm/day) 0–50 13.748

d0
Thickness of each soil moisture layer (m) 0.1–3.0

0.300

d1 2.430

d2 0.533

Table 5 showed the calibrated parameters and calibrated values in Ganjiang River basin. The B,
Ws, Ds, Dsmax, d0, d1 and d2 were 0.236, 0.533, 0.481, 13.748, 0.300, 2.430 and 0.533, respectively.

Figure 7 compared the simulated streamflow forced by rain gauge data with the observed
streamflow in terms of time series plots at daily scales. The calibration period was selected from 2003
to 2004 and the simulation period was selected from 2005 to 2010. The results showed that both models
were good at simulating the daily hydrograph in this basin and the VIC model has a better effect than
the XAJ hydrological model. It can be found that a general agreement existed between the observed
and simulated streamflow. However, the simulated streamflow consistently underestimates the peaks,
especially in the simulation period and in relatively low flow seasons as well (Figure 7a,b).
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Figure 7. Comparison of observed and simulated streamflow using gauge data as input and
corresponding daily precipitation for the calibration period and simulation period ((a) VIX; (b) XAJ).

3.3. Hydrologic Model Simulation

The estimated streamflow by VIC hydrological model as well as XAJ hydrological model driven
by observed precipitation and TMPA products of the Ganjiang River basin was shown in Figure 8.
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It was noted that the simulated streamflow by the VIC hydrological model driven by 3B42V6 and
3B42V7 agreed well with that of observed precipitation with high CC values (0.88 and 0.89), high NSCE
(0.78 and 0.79) and low RB (0.13% and 0.99%), respectively. Therefore, the 3B42V7 products were better
than 3B42V6 for the streamflow simulation when using the VIC hydrological model. However, the RB,
NSCE and CC values were 28.15%, 0.66 and 0.88 by using the XAJ hydrological model driven by the
3B42V7 product in the Ganjiang River basin, respectively. It was clearly that the VIC hydrological
model demonstrated better performance than the XAJ hydrological model with a higher NSCE value
except for the 3B42RTV6 product.
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Figure 8. Scatter plots of the observed and simulated streamflow by using VIC and XAJ hydrological
models in the Ganjiang River basin ((a–d) VIC; (f–i) XAJ).

The VIC hydrological model was used to evaluate the 3B42V7 and GPM products hydrologic
utility in the Ganjiang River basin during the period March 2014 to June 2015. As was shown in
Figure 9, the patterns of the simulated streamflow based on the 3B42V7 and GPM precipitation data
by using VIC hydrological model in the Ganjiang River basin were similar to that of the observed
streamflow. However, the simulated streamflow consistently underestimated the peaks between
12 June 2014 and 12 December 2014, especially in the period from 12 June 2014 and 12 September 2014.
Overall, a good agreement existed between the observed and simulated series in the daily time scales.
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Figure 9. Comparison of the observed and simulated streamflow based on the 3B42V7 and GPM
precipitation data by using VIC hydrological model in the Ganjiang River basin.

Cumulative probabilities of precipitation and streamflow in the Ganjiang River basin were shown
in Figure 10. The results showed that the cumulative probabilities of precipitation in the Ganjiang
River basin for the 3B42RTV7, 3B42V6, and 3B42V7 products were higher than that of observed
precipitation, while the cumulative probability of precipitation for the 3B42RTV6 was lower than that
of the observed precipitation. It indicated that the cumulative probabilities of streamflow simulation
driven by TMPA products were higher than that of the observed precipitation in the Ganjiang River
basin by using the XAJ hydrological model. Generally, the cumulative probabilities of streamflow by
the VIC hydrological model driven by the observed precipitation, 3B42RTV7, 3B42V6 and 3B42V7 were
similar to that of the observed streamflow in the Ganjiang River basin. Meanwhile, the cumulative
probability of precipitation by the VIC hydrological model driven by 3B42RTV6 was much lower
than that of observation. Moreover, the differences between the observed and simulated probability
distributions were significant by using the Kolmogorov–Smirnov statistic method (p < 0.05).
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Figure 10. Cumulative probabilities of the observed streamflow and simulated streamflow using
the XAJ and VIC hydrological models in the Ganjiang River basin (the difference in the observed
and simulated probability distributions was statistically significant at the 0.05 significance level with
Kolmogorov-Smirnov statistic).

The statistical indices (POD, CSI, and FAR) for different streamflow thresholds of the VIC and XAJ
models were shown in Figure 11. High values of POD and CSI at streamflow from 2000–6000 m3/s
indicated that VIC model driven by TRMM precipitation products performed better (Figure 11a,b).
However, there was a poor performance for the 3B42RTV6 precipitation in the streamflow simulation
by using the VIC model. The POD and CSI values decreased obviously while the FAR increased as the
streamflow getting bigger and bigger, which indicated the limited capability of VIC model driven by
3B42RTV7, 3B42V6 and 3B42v7 for detecting large streamflow (Figure 11a–c). The relatively higher
POD and CSI also revealed that all the TRMM products showed good performance in simulating
streamflow in the humid basin of China except 3B42RTV6 by using the VIC model, especially for
streamflow rates of 2000–6000 m3/s. As was shown in Figure 11, there was a good performance in
simulating streamflow in the Ganjiang River basin, especially for the streamflow from 2000–7000 m3/s.
It also can be found that both the GPM and 3B42V7 precipitation products performed well in simulating
extreme streamflow in this basin by using VIC hydrologic model, especially for the streamflow
simulation from 2000–5000 m3/s. However, the product of 3B42V7 performed much better than the
GPM product in detecting extreme streamflow events, especially for the streamflow 0f 2000–7000 m3/s
(Figure 11g–i).
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Figure 11. Daily statistical indices for different streamflow thresholds of VIC and XAJ model
((a,d,g) POD; (b,e,h) CSI and (c,f,i) FAR).

4. Discussion

Satellite precipitation products have played an important role in hydro-relation applications
by hydrologic modelers, climate searchers and scientists in other scientific communities [5,8,18].
The upgrade of TMPA from 3B42V6 to 3B42V7 provides the users with higher-quality QPE products
that were better in applications. In this paper, we found that the upgraded 3B42V7 TMPA precipitation
products, including research product and the real-time product, showed distinct improvement over
previous 3B42V6 counterparts in a humid basin (Ganjiang River basin). This conclusion was the same
as many other researches [37]. For example, Huang et al. [38] revealed that 3B42V7 and 3B42RTV7
have higher precipitation estimation accuracy than 3B42V6 and 3B42RTV6. Fei et al. [12] revealed that
3B42V6 and 3B42V7 agreed well with the actual annual rainfall at the year scale in humid southern
China, while the two products had poor performance at the day and month scale. Zhu et al. [39]
demonstrated that the two 3B42 products agreed better with gauge precipitation data than the two
products of 3B42RT. Fei et al. [12] and Huang et al. [38] indicated that the 3B42V7 product has the
highest precipitation estimation accuracy, which could understand the complex hydrological process
better, while the product of 3B42RTV7 showed a greater improvement than 3B42RTV6.

The success of 3B42V7 TMPA casts a confidence vote for the TMPA developers in developing
higher resolution QPE products with observations from the GPM that was launched in February of
2014. In this paper, the GPM precipitation products showed better agreement with gauge observation
than the 3B42V7, which agreed fairly with gauge observations with lower RB (1.34%) and higher CC
(0.99) at monthly scale. However, there were no significant advantages for the GPM precipitation
product than that of the 3B42V7, which was different to previous studies [37,40]. The reason may
be that the GPM IMERG data were resampled to the same spatial resolution by using the Kriging
interpolation method (0.25◦) to make them comparable. The potential errors would possibly be
introduced during the resampling procedure. Other researchers have made similar findings, for
example, Chen Cheng et al. [15] investigated the impact of the initial (0.25◦) and the interpolated (0.1◦)



Remote Sens. 2019, 11, 431 16 of 19

TRMM data had different performances at multiple scales, and they thought there might be a typical
scale mismatch issue between point-based rain gauge data and the gridded precipitation products,
therefore the comparison of different interpolation methods is necessary to obtain higher precision for
precipitation. Omranian [16] also studied the impact of temporal and spatial downscaling of different
satellite products (near/post-real-time) on their accuracy and they found that the GPM satellite rainfall
products showed better performance when the temporal and spatial resolutions were downscaled.

The accuracy of precipitation is important for the improvement of hydrological simulation [1,2].
The hydrologic performance of TMPA and GPM IMERG satellite-based precipitation were evaluated by
using the VIC and XAJ hydrological models in the Ganjiang River basin of China. This paper compared
the streamflow simulated by the XAJ and VIC hydrological models using satellite products. It can
be found that the simulated streamflow driven by the products of 3B42RTV7 (V7) performed better
than the 3B42RTV6 (V6). And the VIC hydrological model outperformed the XAJ hydrological model
with lower RB, higher NSCE, and higher CC values. Although the VIC and XAJ hydrological models
can be used in the streamflow simulation in the Ganjiang River basin, the streamflow simulated by
the VIC hydrological model driven by the 3B42V7 underestimated by 0.99%, and it overestimated the
streamflow by 23.16% driven by XAJ hydrological model. As a whole, the 3B42V7 TMPA precipitation
products, especially the real-time product 3B42RTV7, showed better potentials than that of 3B42RTV6
(V6) in hydrology utility. Some researches obtained the same conclusion [11,38]. Huang et al. [38] and
Chen et al. [25] found that the product of 3B42RTV7 performed better than the 3B42RTV6 product in the
hydrological simulation as well. The 3B42RTV7 and 3B42V7 products could simulate the streamflow
well by utilizing the VIC and XAJ hydrological model, respectively [11]. Different spatial and temporal
resolutions can also change the accuracy of the satellite products and subsequently alter the accuracy of
the hydrological simulation. Therefore, the TRMM-era satellite rainfall products still have limitations
in terms of resolution and accuracy in the complex areas, especially for the mountainous [21,41,42].

Estimating precipitation accurately is very important due to their susceptibility to hazards [43].
Hence, caution should be kept in the minds of TMPA users for hydrological modeling and natural
hazards modeling and monitoring when TMPA products are used as inputs. Mei and Anagnostou [43]
indicated the products of 3B42V6 and 3B42V7 performed better in quantifying and detecting hazards.
Jiang et al. [11] revealed that the 3B42RTV7 and 3B42V7 products showed nice performance in
estimating extreme precipitation in the Ganjiang River basin. Omranian et al. [18] found that the
GPM product could reconstruct precipitation and recognize the spatial variability of the storm well.
Prakash et al. [44] also indicated that the product of GPM performed much better than the TRMM
products in detecting heavy rainfall in India. As for the hydrologic utilization, Jiang et al. [11] used
the VIC hydrological model to simulate the streamflow in the Ganjiang River basin, and discovered
that 3B42RTV7/3B42V7 precipitation products perform nicely in the extreme streamflow estimation
in this basin. Tang et al. [14] and Wang et al. [45] revealed that the GPM showed better hydrological
performance than the product of 3B42V7 at the mid-latitude and high-latitude, along with relatively
dry climate regions. However, Chen et al. [13] found that the 3B42RTV7 product presented a slight
downgraded performance than the product of 3B42RTV6 at the daily scale. Both of the TMPA and
GPM precipitation products have their own strengths and weakness and different models perform
differently in the streamflow simulation [46]. It was expected that the 3B42RTV7 (V7) and GPM
IMERG will further improve the QPE products for hydro-meteorological applications such as floods
and landslide.

5. Conclusions

This study evaluated four widely used global high-resolution satellite precipitation products
against gauge observations and higher resolution QPE products with observations from GPM over
the Ganjiang River basin. Numerous satellite precipitation validation studies have been implemented
with an aim to give both products’ users and algorithm developers the information about the quality
of satellite precipitation estimates. The main findings of this study can be summarized as follows:
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(1) The 3B42RTV7 (RB = 2.97%, RMSE = 5.69 mm, and CC= 0.79) had better performance than
that of 3B42RTV6 (RB = −24.15%, RMSE = 5.98 mm, and CC = 0.72). And the 3B42V7
(RB = 2.95%, RMSE = 5.24 mm, and CC = 0.82) perform better than that of 3B42V6 (RB = 3.60%,
RMSE = 5.56 mm, and CC = 0.80) with higher CC and lower RMSE value at daily time scale.
For the monthly statistics of satellite rainfall products, the 3B42V6 was observed to achieve
all the best indexes of RB (0.01%) and CC (0.95) except RMSE (1.04 mm), and the 3B42V7 was
found to attain all the best indexes of RMSE (1.00 mm) and CC (0.95) except RB (1.06%). Overall,
the 3B42V6 and 3B42V7 perform better than the 3B42RTV6 and 3B42RTV7.

(2) The 3B42RTV6 and 3B42V7 have good hydrological performance in the streamflow simulation
by the VIC and XAJ hydrological models with higher NSCE and CC values. The 3B42RTV6 and
3B42RTV7 demonstrated lower NSCE score (0.50 vs. 0.70). In general, 3B42RTV6 and 3B42RTV7
showed higher CC (>0.8) in simulating stream flow by the VIC and XAJ hydrological model.

(3) The streamflow simulated by the VIC hydrological model driven by the 3B42V7 underestimated
by 0.99%, however, it overestimated the stream flow by 23.16% simulated by the XAJ hydrological
model. The 3B42V7 generally outperformed 3B42V6 in terms of hydrologic performance, and
the VIC hydrological model generally outperformed the XAJ hydrological model with lower
RB, higher NSCE, and higher CC values. Of course, the conceptual hydrological model was
enough for the hydrologic evaluation of TRMM and GPM IMERG satellite-based precipitation in
a humid basin of China. This study provides a reference for the comparison of multiple models
on watershed scale.
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