Earth and Rock-Filled Dam Monitoring by High-Resolution X-Band Interferometry: Gongming Dam Case Study
"> Figure 1
<p>The middle-sized earth- and rock-filled dam transverse section and radar reflection geometry.</p> "> Figure 2
<p>The dam transverse section along the radar range direction.</p> "> Figure 3
<p>The dam surface vertical deformation projecting in the radar range direction.</p> "> Figure 4
<p>Gongming dam: (<b>A</b>) The Google earth image as the background with TSX-SL and CSK-SM images covering the frames; the small orange box represents the number 4 dam; (<b>B</b>) an optical image of the number 4 dam taken by Unmanned Aerial Vehicle (UAV) in December 2016, when the main part of the dam construction was complete; P1 and P2 illustrate the dam top; (<b>C</b>) the topography of the number 4 dam, produced by the UAV Lidar with a 45 cm resolution in pixels and 20 cm precision in height.</p> "> Figure 5
<p>(<b>a</b>) A contour Map of the Gongming No. 4 dam; (<b>b</b>) a longitudinal axis profile map between P1 and P2; (<b>c</b>) a transect map at 235 m.</p> "> Figure 6
<p>The transect at (0 + 235 m) of the Gongming dam (No. 4) and its surface projection on the radar coordinate.</p> "> Figure 7
<p>The dam surface foreshortening geometry on the ascending and descending images.</p> "> Figure 8
<p>The dam surface material scattering geometry on the ascending and descending images.</p> "> Figure 9
<p>The average intensity of the dam surface in ascending and descending TSX-SL images.</p> "> Figure 10
<p>The differential interferograms and coherence map of the ascending TSX-SL images.</p> "> Figure 11
<p>The differential interferograms and coherence map of the descending TSX-SL images.</p> "> Figure 12
<p>The coherence of the dam surface changing in the TSX-SL time series.</p> "> Figure 13
<p>The deformation series results of the downstream slope in the ascending orbit TSX-SL: (<b>A</b>) date: 27/02/2017, (<b>B</b>) date: 26/05/2017, (<b>C</b>) date: 09/07/2017, (<b>D</b>) date: 05/10/2017, and (<b>E</b>) residual error.</p> "> Figure 14
<p>The deformation series results of the upstream slope in descending orbit TSX-SL: (<b>A</b>) date: 10/08/2017, (<b>B</b>) date: 04/10/2017, (<b>C</b>) date: 28/11/2017, (<b>D</b>) date: 31/12/2017, and (<b>E</b>) residual error.</p> "> Figure 15
<p>The total settlement on the dam top along the longitudinal section with clay core depth curves by TSXSL.</p> "> Figure 16
<p>The average velocity results from the CSK-SM data sets by the stacking method: (<b>a</b>) the downstream slope in the ascending orbit and (<b>b</b>) the upstream slope in the descending orbit.</p> "> Figure 17
<p>The dam top deformation series results of the CSK-SM data sets by the stacking method: (<b>a</b>) Points on the downstream slope in the ascending orbit and (<b>b</b>) Points on the upstream slope in the descending orbit.</p> ">
Abstract
:1. Introduction
2. Geometric Projection of SAR and Decomposition of the Dam Settlement
2.1. Slope Geometry Distortion
2.2. The Surface Vertical Subsidence Projection on the Radar Coordinate
3. Dam Location Area and SAR Processing Method
3.1. The Gongming Dam
3.2. SAR Data Parameters
3.3. Stacking Method
4. Monitoring Results and Discussion
4.1. Dam Geometrical Distortion
4.2. Dam Surface Scattering Characteristics
4.2.1. Slope of the Near-Range Reflection
4.2.2. Slope of the Far-Range Reflection
4.2.3. Top Wall Dihedral Reflection
4.2.4. Horizontal Smooth Surface Reflection
4.3. TSX-SL Differential Interferograms and Decorrelation Analysis
4.4. TSX-SL Data Stacking Results Analysis
4.5. CSK-SM Data Stacking Results Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Crosetto, M.; Monserrat, O.; Cuevas, M.; Crippa, B. Spaceborne differential SAR interferometry: Data analysis tools for deformation measurement. Remot Sens. 2011, 3, 305–318. [Google Scholar] [CrossRef]
- Del Ventisette, C.; Ciampalini, A.; Calò, F.; Manunta, M.; Paglia, L.; Reichenbach, P.; Colombo, D.; Mora, O.; Strozzi, T.; Garcia, I.; et al. Exploitation of large archives of ERS and ENVISAT C-Band SAR data to characterize ground deformation. Remote Sens. 2013, 5, 3896–3917. [Google Scholar] [CrossRef]
- Antonielli, B.; Monserrat, O.; Bonini, M.; Righini, G.; Sani, F.; Luzi, G.; Feyzullayev, A.A.; Aliyev, A.S. Pre-eruptive ground deformation of Azerbaijan mud volcanoes detected through satellite radar interferometry (DInSAR). Tectonophysics 2014, 637, 163–177. [Google Scholar] [CrossRef]
- Wang, T.; Perissin, D.; Rocca, F.; Liao, M.S. Three Gorges Dam stability monitoring with time-series InSAR image analysis. Sci. China Earth Sci. 2011, 54, 720–732. [Google Scholar] [CrossRef]
- Zhou, W.; Li, S.; Zhou, Z.W.; Chang, X.L. InSAR observation and numerical modeling of the earth-dam displacement of Shuibuya Dam (China). Remote Sens. 2016, 8, 877. [Google Scholar] [CrossRef]
- Zhou, W.; Li, S.; Zhou, Z.W.; Chang, X.L. Remote sensing of deformation of a high concrete-faced rockfill dam using InSAR: A study of the Shuibuya Dam, China. Remote Sens. 2016, 8, 255. [Google Scholar] [CrossRef]
- Milillo, P.; Perissin, D.; Salzer, J.T.; Lundgren, P.; Lacava, G.; Milillo, G.; Serio, C. Monitoring dam structural health from space: Insights from novel InSAR techniques and multi-parametric modeling applied to the Pertusillo dam Basilicata, Italy. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 221–229. [Google Scholar] [CrossRef]
- Milillo, P.; Bürgmann, R.; Lundgren, P.; Salzer, J.; Perissin, D.; Fielding, E.; Milillo, F.B.G. Space geodetic monitoring of engineered structures: The ongoing destabilization of the Mosul dam. Iraq Sci. Rep. 2016, 6, 37408. [Google Scholar] [CrossRef]
- Al-Husseinawi, Y.; Li, Z.; Clarke, P.; Edwards, S. Evaluation of the Stability of the Darbandikhan Dam after the 12 November 2017 Mw 7.3 Sarpol-e Zahab (Iran–Iraq Border) Earthquake. Remote Sens. 2018, 10, 1426. [Google Scholar] [CrossRef]
- Spiros, N.; Panagiotis, E.; Issaak, P.; Pierre, B. Deformation estimation of an earth dam and its relation with local earthquakes, by exploiting multitemporal synthetic aperture radar interferometry: Mornos dam case (Central Greece). J. Appl. Remote Sens. 2016, 10, 10–16. [Google Scholar]
- Wasowski, J.; Bovenga, F.; Nutricato, R.; Nitti, D.O.; Chiaradia, M.T. High resolution satellite multi-temporal interferometry for monitoring infrastructure instability hazards. Innov. Infrastruct. Solut. 2017, 27, 1–9. [Google Scholar] [CrossRef]
- Di Martire, D.; Iglesias, R.; Monells, D.; Centolanza, G.; Sica, S.; Ramondini, M.; Pagano, L.; Mallorquí, J.J.; Calcaterra, D. Comparison between Differential SAR interferometry and ground measurements data in the displacement monitoring of the earth-dam of Conza della Campania (Italy). Remote Sens. Environ. 2014, 148, 58–69. [Google Scholar] [CrossRef]
- Emadali, L.; Motagh, M.; Haghighi, M.H. Characterizing post-construction settlement of the Masjed-Soleyman embankment dam, Southwest Iran, using TerraSAR-X SpotLight radar imagery. Eng. Struct. 2017, 143, 261–273. [Google Scholar] [CrossRef] [Green Version]
- Grenerczy, G.; Wegmüller, U. Persistent scatterer interferometry analysis of the embankment failure of a red mud reservoir using ENVISAT ASAR data. Nat. Hazards 2011, 59, 1047–1053. [Google Scholar] [CrossRef]
- Grenerczy, G.; Wegmüller, U. Deformation analysis of a burst red mud reservoir using combined descending and ascending pass ENVISAT ASAR data. Nat. Hazards 2013, 65, 2205–2214. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef] [Green Version]
- Lanari, R.; Mora, O.; Manunta, M.; Mallorquì, J.J.; Berardino, P.; Sansosti, E. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1377–1386. [Google Scholar] [CrossRef]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3460–3470. [Google Scholar] [CrossRef]
- 2018 Laos Dam Collapse. Available online: https://en.wikipedia.org/wiki/2018_Laos_dam_collapse (accessed on 10 November 2018).
- Raska, P.; Emmer, A. The 1916 catastrophic flood following the Bila Desna dam failure: The role of historical data sources in the reconstruction of its geomorphologic and landscape effects. Geomorphology 2014, 226, 135–147. [Google Scholar] [CrossRef]
- Bamler, R.; Eineder, M. The Pyramids of Gizeh Seen by TerraSAR-X—A Prime Example for Unexpected Scattering Mechanisms in SAR. IEEE Geosci. Remote Sens. Lett. 2008, 5, 468–470. [Google Scholar] [CrossRef]
- 2016 Statistic Bulletin on China Water Activities. Available online: http://www.mwr.gov.cn/sj/tjgb/slfztjgb/201710/t20171016_1002400.html (accessed on 25 June 2018).
- Hydraulic Structural Design Volume Six: Earth and Rock Filled Dam, 2nd ed.; China Water & Power Press: Beijing, China, 2014. (In Chinese)
- Curlander, J.C.; McDonough, R.N. Synthetic Aperture RADAR Systems and Signal Processing; Wiley: Hoboken, NJ, USA, 1991; pp. 370–410. [Google Scholar]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2003, 40, 2375–2383. [Google Scholar] [CrossRef]
- Schmidt, D.A. Time-dependent land uplift and subsidence in the Santa Clara valley, California, from a large interferometric synthetic aperture radar data set. J. Geophys. Res. Solid Earth 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Van Zyl, J.; Kim, Y. Synthetic Aperture Radar Polarimetry; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Li, T.; Gong, C.; Xia, M.; Jin, Z. Analysis on coherence changes of dam surface in TerraSAR Strip mode interferograms. Proc. SPIE 2011, 8286, 8. [Google Scholar]
- Meteorological Bureau of Shenzhen Municipality. Available online: http://www.szmb.gov.cn/en/en_shenzhentianqi/ (accessed on 25 February 2018).
- Shamshiri, R.; Motagh, M.; Baes, M.; Sharifi, M.A. Deformation analysis of the Lake Urmia causeway (LUC) embankments in northwest Iran: Insights from multi-sensor interferometry synthetic aperture radar (InSAR) data and finite element modeling (FEM). J. Geod. 2014, 88, 1171–1185. [Google Scholar] [CrossRef]
Orbit | Ascending | Descending | ||
---|---|---|---|---|
Sensors | TSX-SL | CSK-SM | TSX-SL | CSK-SM |
Wavelength | 3.12 cm | 3.12 cm | 3.12 cm | 3.12 cm |
Polarization | VV | HH | VV | HH |
Data sets | 5 | 17 | 5 | 22 |
Period | 27/02/2017– 05/10/2017 | 2016/07/24– 2018/01/22 | 16/06/2017– 31/12/2017 | 06/06/2016– 11/05/2018 |
Heading | 349.8° | 349.3° | 190.1° | 190.8° |
Incidence | 36.4° | 34° | 39.2° | 32.3° |
Range sampling | 0.45 m | 1.18 m | 0.45 m | 1.14 m |
Azimuth sampling | 0.86 m | 2.07 m | 0.86 m | 1.92 m |
acquiring local time | 18:26 pm | 6:12 am + 1 day | 6:22 am + 1 day | 18:09 pm |
Slope Name | Slope Rate | Slope Angle (deg) | Length (m) | Local Incidence Angle (deg) | Radar Coordinate (m) | TSX-SL Pixel | CSK Pixel | N/F | ||
---|---|---|---|---|---|---|---|---|---|---|
TSX-SL | CSK-SM | TSX-SL | CSK-SM | |||||||
A-D | - | 0 | 8 | 36.4 | 34 | 4.7 | 4.5 | 10 | 4 | - |
A-A1 | 1:2.5 | 21.8 | 49.5 | 14.6 | 12.2 | 12.5 | 10.5 | 28 | 9 | N |
B-B1 | 1:2.75 | 20 | 58.5 | 16.4 | 14 | 16.5 | 14.2 | 37 | 12 | N |
C-C1 | 1:1.5 | 33.7 | 14.4 | 2.7 | 0.3 | 0.6 | 0.1 | 1 | <0.1 | N |
D-D1 | 1:3 | 18.4 | 140.1 | 54.8 | 52.4 | 114 | 111 | 253 | 94 | F |
B-A1 | - | 0 | 2 | 36.4 | 34 | 1.2 | 1.1 | 3 | 1 | - |
Number | Ascending | Rainfall (mm) | Descending | Rainfall (mm) |
---|---|---|---|---|
1 | 20170227 | 0 | 20170616 | 73 |
2 | 20170526 | 0 | 20170810 | 8 |
3 | 20170709 | 0 | 20171004 | 5 |
4 | 20170822 | 15 | 20171128 | 0 |
5 | 20171005 | 5 | 20171231 | 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Motagh, M.; Wang, M.; Zhang, W.; Gong, C.; Xiong, X.; He, J.; Chen, L.; Liu, J. Earth and Rock-Filled Dam Monitoring by High-Resolution X-Band Interferometry: Gongming Dam Case Study. Remote Sens. 2019, 11, 246. https://doi.org/10.3390/rs11030246
Li T, Motagh M, Wang M, Zhang W, Gong C, Xiong X, He J, Chen L, Liu J. Earth and Rock-Filled Dam Monitoring by High-Resolution X-Band Interferometry: Gongming Dam Case Study. Remote Sensing. 2019; 11(3):246. https://doi.org/10.3390/rs11030246
Chicago/Turabian StyleLi, Tao, Mahdi Motagh, Mingzhou Wang, Wei Zhang, Chunlong Gong, Xunan Xiong, Jinping He, Lulu Chen, and Jingnan Liu. 2019. "Earth and Rock-Filled Dam Monitoring by High-Resolution X-Band Interferometry: Gongming Dam Case Study" Remote Sensing 11, no. 3: 246. https://doi.org/10.3390/rs11030246
APA StyleLi, T., Motagh, M., Wang, M., Zhang, W., Gong, C., Xiong, X., He, J., Chen, L., & Liu, J. (2019). Earth and Rock-Filled Dam Monitoring by High-Resolution X-Band Interferometry: Gongming Dam Case Study. Remote Sensing, 11(3), 246. https://doi.org/10.3390/rs11030246