InSAR Time Series Analysis of L-Band Data for Understanding Tropical Peatland Degradation and Restoration
"> Figure 1
<p>The location of this study area and distribution of land uses. Pink boxes denote the coverage of ALOS PALSAR images (Tracks 422 and 421). The four blocks of area (A–D) are indicated by light blue outlines. Land use information in this diagram is taken from Kementerian Kehutanan Republik Indonesia [<a href="#B34-remotesensing-11-02592" class="html-bibr">34</a>]. The red square in the top right corner is the location of this study area.</p> "> Figure 2
<p>Small baseline interferograms generated from ALOS PALSAR Tracks 421 (<b>a</b>) and 422 (<b>b</b>) respectively. Each black triangle denotes one SAR image, and black solid lines between two black triangles represent interferograms. The red square marks the reference date for time series analysis.</p> "> Figure 3
<p>Mean height change rate map and correlation analyses: (<b>a</b>) mean velocity map between 2006 and 2010, light blue curves represent block boundaries and solid blue lines represent channels; negative value means subsidence and positive value means increase in height; dots CL, FS, RF and SF are four time series analysis sites, other triangles and square dots in Block A and C are dams; (<b>b</b>) The average coherence of 27 interferograms from Track T421, a pixel with coherence great than 0.3 presents a stable signal; (<b>c</b>) correlation of the mean velocities over the overlapping area between the two adjacent tracks 422 and 421 (<a href="#remotesensing-11-02592-f001" class="html-fig">Figure 1</a>): the gray dash line indicates the 1:1 line and the black dash line indicates the best fitted line; and (<b>d</b>) the RMS histogram of the mean velocity map.</p> "> Figure 4
<p>The location of Dams (<b>a</b>) and their corresponding mean velocity statistics analysis (<b>b</b>) in Blocks A and C. In (<b>b</b>), for each box, the central red line is the median, the edges of the box are the 25th and 75th percentiles, and whiskers represent the minimum and maximum values. Different construction dates of dams are denoted by different codes. Successful damming is considered to raise the ground water level and decrease the velocity of loss of surface heights. Each value corresponds to the mean velocity of 9 points within a 270 m by 270 m window.</p> "> Figure 5
<p>Time series of four points (CL, FS, RF and SF) located in areas with different land uses: (<b>a</b>) for CL point in cleared area, (<b>b</b>) for FS point in fire scar area, (<b>c</b>) for RF point in rice field area and (<b>d</b>) for SF point in secondary swamp forest area. Each point presents one SAR image acquisition date. Each value corresponds to the mean of points within a 270 m by 270 m window and the error bars represent the associated standard deviation. Note the scales in the Y-axis are not identical; the zero value corresponds to the reference image, which is acquired on 9th September 2008.</p> "> Figure 6
<p>LOS surface displacement time series for (<b>a</b>) 7 dams constructed during the period from December 2006 to May 2007, (<b>b</b>) 4 dams constructed during the period from April to June 2008, and (<b>c</b>) the corresponding TRMM precipitation records (red dots). In <a href="#remotesensing-11-02592-f006" class="html-fig">Figure 6</a>a,b, for each box, the central line is the median, the edges of the box are the 25th and 75th percentiles, and whiskers represent the minimum and maximum values. In <a href="#remotesensing-11-02592-f006" class="html-fig">Figure 6</a>c, the blue dots present the TRMM record for Block C, while the light blue dots present for Black A. Note: (1) LOS surface displacements correspond to the mean LOS surface displacement of all the points within a 270 m by 270 m window, and (2) the reference date is 9 September 2008.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. InSAR Interferometric Processing and Time Series Analysis
3. Results
3.1. Mean Height Change Results of the Whole Study Area
3.2. Peatland Height Changes in Area with Restoration
3.3. Peatland Height Changes in Area without Restoration
4. Discussions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yu, Z.; Loisel, J.; Brosseau, D.P.; Beilman, D.W.; Hunt, S.J. Global peatland dynamics since the last glacial maximum. Geophys. Res. Lett. 2010, 37, L13402. [Google Scholar] [CrossRef]
- Grace, J. Understanding and managing the global carbon cycle. J. Ecol. 2004, 92, 189–202. [Google Scholar] [CrossRef]
- Page, S.E.; Baird, A.J. Peatlands and global change: Response and resilience. Annu. Rev. Environ. Resour. 2016, 41, 35–57. [Google Scholar] [CrossRef]
- Jukka, M.; Aljosja, H.; Ronald, V.; Soo Chin, L.; Susan, E.P. From carbon sink to carbon source: Extensive peat oxidation in insular southeast asia since 1990. Environ. Res. Lett. 2017, 12, 024014. [Google Scholar]
- Page, S.E.; Rieley, J.O.; Banks, C.J. Global and regional importance of the tropical peatland carbon pool. Glob. Chang. Biol. 2011, 17, 798–818. [Google Scholar] [CrossRef] [Green Version]
- Dohong, A.; Aziz, A.A.; Dargusch, P. A review of the drivers of tropical peatland degradation in south-east asia. Land Use Policy 2017, 69, 349–360. [Google Scholar] [CrossRef]
- Austin, K.G.; Schwantes, A.; Gu, Y.; Kasibhatla, P.S. What causes deforestation in indonesia? Environ. Res. Lett. 2019, 14, 024007. [Google Scholar] [CrossRef]
- Stibig, H.J.; Achard, F.; Carboni, S.; Raši, R.; Miettinen, J. Change in tropical forest cover of southeast asia from 1990 to 2010. Biogeosciences 2014, 11, 247–258. [Google Scholar] [CrossRef]
- Lawrence, D.; Vandecar, K. Effects of tropical deforestation on climate and agriculture. Nat. Clim. Chang. 2014, 5, 27. [Google Scholar] [CrossRef]
- Wösten, J.H.M.; Ismail, A.B.; van Wijk, A.L.M. Peat subsidence and its practical implications: A case study in malaysia. Geoderma 1997, 78, 25–36. [Google Scholar] [CrossRef]
- Couwenberg, J.; Dommain, R.; Joosten, H. Greenhouse gas fluxes from tropical peatlands in south-east asia. Glob. Chang. Biol. 2010, 16, 1715–1732. [Google Scholar] [CrossRef]
- Page, S.; Siegert, F.; Rieley, J.O.; Boehm, H.-D.V.; Jaya, A.; Limin, S. The amount of carbon released from peat and forest fires in indonesia during 1997. Nature 2002, 420, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Sasha, A.; Cara, R.N.; James, A.; David, L.; An, C.; Kevin, L.E.; Finlayson, C.M.; Rudolf, S.d.G.; Jim, A.H.; Eric, S.H.; et al. Opportunities and challenges for ecological restoration within redd+. Restor. Ecol. 2011, 19, 683–689. [Google Scholar]
- Wösten, J.H.M.; Clymans, E.; Page, S.E.; Rieley, J.O.; Limin, S.H. Peat–water interrelationships in a tropical peatland ecosystem in southeast asia. CATENA 2008, 73, 212–224. [Google Scholar] [CrossRef]
- Jaenicke, J.; Englhart, S.; Siegert, F. Monitoring the effect of restoration measures in indonesian peatlands by radar satellite imagery. J. Environ. Manag. 2011, 92, 630–638. [Google Scholar] [CrossRef] [PubMed]
- CKPP. Provisional Report of theCentral Kalimantan Peatland Project; CKPP Consortium: Palangka Raya, Indonesia, 2008; p. 70. [Google Scholar]
- Hanssen, R.F. Radar Interferometry:Data Interpretation and Error Analysis; Kluwer Academic Plublishers: Dordrecht, The Netherland, 2001. [Google Scholar]
- Osmanoğlu, B.; Sunar, F.; Wdowinski, S.; Cabral-Cano, E. Time series analysis of insar data: Methods and trends. Isprs J. Photogramm. Remote Sens. 2016, 115, 90–102. [Google Scholar] [CrossRef]
- Massonnet, D.; Feigl, K.L. Radar interferometry and its application to changes in the earth’s surface. Rev. Geophys. 1998, 36, 441–500. [Google Scholar] [CrossRef]
- Cigna, F.; Sowter, A.; Jordan, C.J.; Rawlins, B.G. ntermittent small baseline subset (ISBAS) monitoring of land covers unfavourable for conventional C-band InSAR: Proof-of-concept for peatland environments in North Wales, UK. In Proceedings of the SPIE—The International Society for Optical Engineering, Amsterdam, The Netherlands, 22 September 2014; pp. 924305–924306. [Google Scholar]
- Dahdal, B. The Use of Interferometric Spaceborne Radar and GIS to Measure Peat Subsidence in Indonesia. Ph.D. Thesis, University of Leicester, Leicester, UK, 2011. [Google Scholar]
- Zhou, Z.; Waldron, S.; Li, Z. Quantifying Changes in Land-Surface Height in Bioenergy Palm Oil Plantations (Sumatra) Using Insar Time Series; EGU: Vienna, Austria, 2013; Volume 15, p. 13128. [Google Scholar]
- Zhou, Z. The Applications of Insar Time Series Analysis for Monitoring Long-Term Surface Change in Peatlands. Ph.D. Thesis, University of Glasgow, Glasgow, UK, 2013. [Google Scholar]
- Marshall, C.; Large, D.J.; Athab, A.; Evers, S.L.; Sowter, A.; Marsh, S.; Sjögersten, S. Monitoring tropical peat related settlement using isbas insar, kuala lumpur international airport (klia). Eng. Geol. 2018, 244, 57–65. [Google Scholar] [CrossRef]
- Alshammari, L.; Large, J.D.; Boyd, S.D.; Sowter, A.; Anderson, R.; Andersen, R.; Marsh, S. Long-term peatland condition assessment via surface motion monitoring using the isbas dinsar technique over the flow country, scotland. Remote Sens. 2018, 10, 1102–1125. [Google Scholar] [CrossRef]
- Chaussard, E.; Hoyt, A.; Harvey, C. Bridging earth systems sciences with insar: From quantifying land subsidence to estimating the CO2 emissions associated with peatlands oxidation following deforestation in southeast asia. In AGU Fall Meeting Abstracts; AGU: Washington, DC, USA, 2018; p. G53B-07. [Google Scholar]
- Susanti, R.D.; Anjasmara, I.M. Analysing peatland subsidence in pelalawan regency, riau using dinsar method. Iptek J. Proc. Ser. 2019, 2, 60–64. [Google Scholar] [CrossRef]
- Meng, W.; Sandwell, D.T. Decorrelation of l-band and c-band interferometry over vegetated areas in california. Geosci. Remote Sens. IEEE Trans. 2010, 48, 2942–2952. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in sar interferometry. Geosci. Remote Sens. IEEE Trans. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential sar interferograms. Geosci. Remote Sens. IEEE Trans. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A new algorithm for processing interferometric data-stacks: Squeesar. Geosci. Remote Sens. IEEE Trans. 2011, 49, 1–11. [Google Scholar] [CrossRef]
- Fiaschi, S.; Holohan, P.E.; Sheehy, M.; Floris, M. Ps-insar analysis of sentinel-1 data for detecting ground motion in temperate oceanic climate zones: A case study in the republic of ireland. Remote Sens. 2019, 11, 347–376. [Google Scholar] [CrossRef]
- Jaenicke, J.; Wösten, H.; Budiman, A.; Siegert, F. Planning hydrological restoration of peatlands in indonesia to mitigate carbon dioxide emissions. Mitig Adapt. Strat. Glob. Chang. 2010, 15, 223–239. [Google Scholar] [CrossRef]
- Kementerian Kehutanan Republik Indonesia. WebGIS Kehutanan. Available online: http://appgis.dephut.go.id/appgis/kml.aspx (accessed on 3 February 2012).
- Page, S.; Hosciło, A.; Wösten, H.; Jauhiainen, J.; Silvius, M.; Rieley, J.; Ritzema, H.; Tansey, K.; Graham, L.; Vasander, H.; et al. Restoration ecology of lowland tropical peatlands in southeast asia: Current knowledge and future research directions. Ecosystems 2009, 12, 888–905. [Google Scholar] [CrossRef]
- Hoekman, D.H. Monitoring Tropical Peat Swamp Deforestation and Hydrological Dynamics by ASAR and PALSAR; InTech: London, UK, 2009; pp. 257–275. [Google Scholar]
- Hoekman, D.H. Satellite radar observation of tropical peat swamp forest as a tool for hydrological modelling and environmental protection. Aquat. Conserv. Mar. Freshw. Ecosyst. 2007, 17, 265–275. [Google Scholar] [CrossRef]
- Rosen, P.A.; Hensley, S.; Peltzer, G.; Simons, M. Updated repeat orbit interferometry package released. Eos. Trans. Agu. 2004, 85, 47. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef]
- Chen, C.W.; Zebker, H.A. Phase unwrapping for large sar interferograms: Statistical segmentation and generalized network models. Geosci. Remote Sens. IEEE Trans. 2002, 40, 1709–1719. [Google Scholar] [CrossRef]
- Biggs, J.; Wright, T.; Lu, Z.; Parsons, B. Multi-interferogram method for measuring interseismic deformation: Denali fault, alaska. Geophys. J. Int. 2007, 170, 1165–1179. [Google Scholar] [CrossRef]
- Hooper, A.; Segall, P.; Zebker, H. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to volcán alcedo, galápagos. J. Geophys. Res. 2007, 112, B07407. [Google Scholar] [CrossRef]
- Doin, M.-P.; Guillaso, S.; Jolivet, R.; Lasserre, C.; Lodge, F.; Ducret, G.; Grandin, R. Presentation of the Small-Baseline NSBAS Processing Chain on a Case Example: The ETNA Deformation Monitoring from 2003 to 2010 Using Envisat Data; ESA: Paris, France, 2011; pp. 303–304. [Google Scholar]
- Li, Z.; Fielding, E.J.; Cross, P. Integration of insar time-series analysis and water-vapor correction for mapping postseismic motion after the 2003 bam (iran) earthquake. Geosci. Remote Sens. IEEE Trans. 2009, 47, 3220–3230. [Google Scholar]
- Zhang, L.; Ding, X.; Lu, Z. Ground settlement monitoring based on temporarily coherent points between two sar acquisitions. Isprs J. Photogramm. Remote Sens. 2011, 66, 146–152. [Google Scholar] [CrossRef]
- Sowter, A.; Bateson, L.; Strange, P.; Ambrose, K.; Syafiudin, M.F. Dinsar estimation of land motion using intermittent coherence with application to the south derbyshire and leicestershire coalfields. Remote Sens. Lett. 2013, 4, 979–987. [Google Scholar] [CrossRef]
- Li, Z.; Fielding, E.J.; Cross, P.; Muller, J.-P. Interferometric synthetic aperture radar atmospheric correction: Gps topography-dependent turbulence model. J. Geophys. Res. Solid Earth 2006, 111, B02404. [Google Scholar] [CrossRef]
- Williams, S.; Bock, Y.; Fang, P. Integrated satellite interferometry: Tropospheric noise, gps estimates and implications for interferometric synthetic aperture radar products. J. Geophys. Res. Solid Earth 1998, 103, 27051–27067. [Google Scholar] [CrossRef]
- Hammond, W.C.; Blewitt, G.; Li, Z.; Plag, H.P.; Kreemer, C. Contemporary uplift of the sierra nevada, western united states, from gps and insar measurements. Geology 2012, 40, 667–670. [Google Scholar] [CrossRef]
- Treuhaft, R.N.; Gonçalves, F.G.; Drake, J.B.; Chapman, B.D.; dos Santos, J.R.; Dutra, L.V.; Graça, P.M.L.A.; Purcell, G.H. Biomass estimation in a tropical wet forest using fourier transforms of profiles from lidar or interferometric sar. Geophys. Res. Lett. 2010, 37, L23403. [Google Scholar] [CrossRef]
- Imhoff, M.L. Radar backscatter/biomass saturation: Observations and implications for global biomass assessment. In Proceedings of the IGARSS’93—IEEE International Geoscience and Remote Sensing Symposium, Tokyo, Japan, 18–21 August 1993; pp. 43–45. [Google Scholar]
- Luckman, A.; Baker, J.; Honzák, M.; Lucas, R. Tropical forest biomass density estimation using jers-1 sar: Seasonal variation, confidence limits, and application to image mosaics. Remote Sens. Environ. 1998, 63, 126–139. [Google Scholar] [CrossRef]
- Bamler, R.; Hartl, P. Synthetic aperture radar interferometry. Inverse Probl. 1998, 14, 1–54. [Google Scholar] [CrossRef]
- Zhou, W.; Li, S.; Zhou, Z.; Chang, X. Remote sensing of deformation of a high concrete-faced rockfill dam using insar: A study of the shuibuya dam, china. Remote Sens. 2016, 8, 255–269. [Google Scholar] [CrossRef]
- Hooijer, A.; Page, S.; Jauhiainen, J.; Lee, W.A.; Lu, X.X.; Idris, A.; Anshari, G. Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 2012, 9, 1053–1071. [Google Scholar] [CrossRef] [Green Version]
- TRMM. InTropical Rainfall Measuring Mission. Available online: http://disc.gsfc.nasa.gov/datacollection/TRMM_3B43_V7.shtml (accessed on 5 June 2015).
T421 | T422 | ||||||
---|---|---|---|---|---|---|---|
Image Number | Date | Temporal Baseline (Days) | Perpendicular Baseline (m) | Image Number | Date | Temporal Baseline (Days) | Perpendicular Baseline (m) |
1 | 20061220 | 0 | 139.6 | 1 | 20070709 | 0 | 228.3 |
2 | 20070622 | 184 | 101.1 | 2 | 20070824 | 46 | 307.4 |
3 | 20070807 | 230 | 208.5 | 3 | 20071009 | 92 | 129.4 |
4 | 20070922 | 276 | −245.5 | 4 | 20080526 | 322 | −331.6 |
5 | 20080207 | 414 | −16.1 | 5 | 20080711 | 368 | 0.0 |
6 | 20080809 | 598 | 0.0 | 6 | 20080826 | 414 | −255.8 |
7 | 20080924 | 644 | 494.1 | 7 | 20081011 | 460 | 471.2 |
8 | 20081109 | 690 | 444.7 | 8 | 20090714 | 736 | 638.1 |
9 | 20090627 | 920 | 332.8 | 9 | 20090829 | 782 | 741.1 |
10 | 20090812 | 966 | −27.9 | 10 | 20091014 | 828 | 396.0 |
11 | 20091112 | 1058 | 87.5 | 11 | 20091129 | 874 | 266.3 |
12 | 20100212 | 1150 | 234.9 | 12 | 20100301 | 966 | 136.9 |
13 | 20100717 | 1104 | −45.7 | ||||
14 | 20100901 | 1150 | 59.8 |
Points | Longitude (Degrees) | Latitude (Degrees) | Land Use Type |
---|---|---|---|
CL | 114.2395 | −2.2077 | Cleared |
FS | 114.3467 | −2.5248 | Fire scar (in shrub swamp) |
RF | 114.5186 | 2.6655 | Rice field |
SF | 114.4182 | −2.8581 | Secondary swamp forest |
Dam Location | Dam Completed Date | Minimum Mean Velocities (cm/yr) | Max Mean Velocities (cm/yr) | Mean (cm/yr) | Std (cm/yr) |
---|---|---|---|---|---|
A1 | January 2005 | −0.5 | −0.1 | 0.4 | 0.3 |
A2 | May 2007 | −1.4 | −0.5 | 0.8 | 0.3 |
A3 | June 2008 | −1.7 | −0.6 | −1.2 | 0.6 |
C | September 2005 | −0.25 | 0.75 | 0.2 | 0.5 |
p Value | A1 | A2 | A3 |
---|---|---|---|
A1 | 0.0415 | 0.0465 | |
A2 | 0.0415 | 0.1779 | |
A3 | 0.0465 | 0.1779 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Li, Z.; Waldron, S.; Tanaka, A. InSAR Time Series Analysis of L-Band Data for Understanding Tropical Peatland Degradation and Restoration. Remote Sens. 2019, 11, 2592. https://doi.org/10.3390/rs11212592
Zhou Z, Li Z, Waldron S, Tanaka A. InSAR Time Series Analysis of L-Band Data for Understanding Tropical Peatland Degradation and Restoration. Remote Sensing. 2019; 11(21):2592. https://doi.org/10.3390/rs11212592
Chicago/Turabian StyleZhou, Zhiwei, Zhenhong Li, Susan Waldron, and Akiko Tanaka. 2019. "InSAR Time Series Analysis of L-Band Data for Understanding Tropical Peatland Degradation and Restoration" Remote Sensing 11, no. 21: 2592. https://doi.org/10.3390/rs11212592
APA StyleZhou, Z., Li, Z., Waldron, S., & Tanaka, A. (2019). InSAR Time Series Analysis of L-Band Data for Understanding Tropical Peatland Degradation and Restoration. Remote Sensing, 11(21), 2592. https://doi.org/10.3390/rs11212592