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Abstract: Traditional exploration techniques usually rely on extensive field work supported by
geophysical ground surveying. However, this approach can be limited by several factors such as
field accessibility, financial cost, area size, climate, and public disapproval. We recommend the use
of multiscale hyperspectral remote sensing to mitigate the disadvantages of traditional exploration
techniques. The proposed workflow analyzes a possible target at different levels of spatial detail.
This method is particularly beneficial in inaccessible and remote areas with little infrastructure,
because it allows for a systematic, dense and generally noninvasive surveying. After a satellite
regional reconnaissance, a target is characterized in more detail by plane-based hyperspectral mapping.
Subsequently, Remotely Piloted Aircraft System (RPAS)-mounted hyperspectral sensors are deployed
on selected regions of interest to provide a higher level of spatial detail. All hyperspectral data
are corrected for radiometric and geometric distortions. End-member modeling and classification
techniques are used for rapid and accurate lithological mapping. Validation is performed via field
spectroscopy and portable XRF as well as laboratory geochemical and spectral analyses. The resulting
spectral data products quickly provide relevant information on outcropping lithologies for the field
teams. We show that the multiscale approach allows defining the promising areas that are further
refined using RPAS-based hyperspectral imaging. We further argue that the addition of RPAS-based
hyperspectral data can improve the detail of field mapping in mineral exploration, by bridging the
resolution gap between airplane- and ground-based data. RPAS-based measurements can supplement
and direct geological observation rapidly in the field and therefore allow better integration with
in situ ground investigations. We demonstrate the efficiency of the proposed approach at the
Lofdal Carbonatite Complex in Namibia, which has been previously subjected to rare earth elements
exploration. The deposit is located in a remote environment and characterized by difficult terrain
which limits ground surveys.

Keywords: mineral exploration; Remotely Piloted Aircraft System; hyperspectral sensors; multiscale;
carbonatite complex; Namibia

1. Introduction

The increasing demand for raw materials worldwide conflicts, with the growing difficulties
to find new mineral deposits, outlines the need for innovative approaches in mineral exploration.
Technological advancements, such as green technologies and smart devices, have led in particular to an
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increased demand for Rare Earth Elements (REEs). As a result, the exploration of new and promising
REE deposits is of economic importance in view of the current dependence of the world market on
imports from a limited number of countries.

Carbonatites, rocks comprising more than 50 modal-% carbonate minerals, are the main source
of REEs [1]. The typical ore minerals for light rare earth elements (LREEs) are monazite, bastnaesite,
and parisite, and for the heavy rare earth elements (HREEs), is xenotime [1]. Hyperspectral remote
sensing has been recently suggested to detect and identify carbonatites as potential REE deposits [2–4],
due to the distinctive absorption feature of carbonates (CO3) around 2300 to 2350 nm [5]. At a sufficient
grade, REEs can be detected directly due to their characteristic narrow absorption features in the VNIR
and SWIR [3,6]. Neodymium (Nd) is a key element that can be used as a pathfinder for other REEs,
on account of its particularly prominent absorption features at 580, 740, and 800 nm [3]. However,
a very good signal-to-noise ratio and high spectral and spatial resolution are necessary to detect
the characteristic absorption features of REE compounds [7]. So far, only close-range hyperspectral
imaging (up to 10 m sensor-target distance) has allowed in situ detection of REEs [2].

For some time, remote sensing exploration has centered on the use of low-spatial-resolution,
inexpensive satellite data, and costly airborne surveys. The overall mineral exploration scheme usually
starts with mapping alteration zones and lithology using space and airborne remote sensing techniques.
However, REE-bearing carbonatites usually occur as small structures, such as dykes and plugs, thus a
sufficient spatial resolution is imperative for their identification. Satellite sensors can image large areas,
but freely available data have limited spatial resolutions, typically 10–30 m. The spectral bands of
multispectral satellite-based sensors, such as ASTER, are broad and noncontiguous. Even the carbonate
features cannot be accurately detected by the low spectral and spatial resolutions of ASTER, unless the
exposures are relatively large and thickly bedded [8]. Hyperion, the only hyperspectral civil satellite
with global coverage currently available, has a poor signal-to-noise ratio, other artifacts in the data
and has limited coverage [9,10]. Additionally, the spatial resolution of Hyperion archived data is not
adequate in detecting the small REE features. Even other planned satellite missions, such as EnMAP,
HyspIRI, HISUI, and PRISM, with improved SNR, have a too coarse spatial resolution of between 20
and 30 m, and will not solve this problem.

Aircraft-based systems usually achieve finer spatial resolutions, but only cover intermediate areas
and are costly to deploy. Plane-based hyperspectral data publicly available in Namibia (HyMap) have
relatively coarse spectral bands (~15 nm) [11]. REE absorptions features are typically very narrow and
thus cannot be detected by these data. In addition, the available HyMap data features a spatial sampling
distance of 4.5 m, which does not allow detection of very small geological structures, such as the typical
dykes, or lenses known to host REE deposits. A preliminary study demonstrated these difficulties to
successfully delineate rather small dykes enriched in REEs using airborne sensors [12]. One way to
tackle this problem is through the integration of different sensors at different resolution levels. Recent
work aims at improving the identification of targets for mineral exploration by combining information
from multisensor sources as well as geomorphological data in the spectral mapping scheme [13,14].

A way to mitigate the problem is potentially provided by the development of Remotely Piloted
Airborne Systems (RPAS). Imaging spectroscopy (IS) using RPAS represents a novel, still developing
field in modern remote sensing technologies. Compared to airborne remote sensing, RPAS offer
cost-effective image data collection at significantly finer spatial resolution, but smaller spatial coverage.
An important advantage of the RPAS-based technologies is that optical image data can be collected even
under nonoptimal weather conditions such as partial or full cloud cover [15]. This difference makes
RPAS-based technologies potentially truly operational for a wide range of environmental applications,
especially those focusing on diverse dynamic phenomena.

The first lightweight optical RPAS systems used commercial video cameras or cameras operating in
three broad-bandwidths (RGB) and/or near-infrared spectral regions [16]. Contrary to those broad-band
visible-spectrum cameras, which have reached weights of hundreds of grams and resolution of tens of
megapixels, the miniaturization of multi- and hyperspectral cameras is still challenging in terms of optics
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and sensor calibration [17]. However, there have recently been some multi- and hyperspectral cameras
made available for the scientific community [17–19]. These multi- and hyperspectral lightweight
sensors cover the visible to near-infrared (VNIR) spectral range (400–1000 nm) with tens of narrow
bands and provide images with high radiometric quality [18–20]. So far, these cutting edge technologies
and methods have been used primarily for analyzing vegetation, such as crop monitoring [19,21],
forest fire monitoring [22], vegetation indices [23], and analysis of Antarctic moss bends [18]. Aside
vegetation, the VNIR spectral range can bring valuable information on other objects of the interest
such as Fe3+-bearing minerals [20], alteration minerals [24], rare earths [6], organic component [25]
and optically active water substances [26]. Because of a relatively unstable platform and extremely
challenging acquisition geometries with respect to sun illumination, very minute corrections are
required [27,28].

We propose an integrated remote sensing approach utilizing all the different levels of data
resolutions to address these challenges; from satellite- to aircraft- to RPAS-based. The multiscale and
multisource data combination entails the full scope of available remote sensing imaging solutions from
space-borne to RPAS-based sensors as well as a dedicated field campaign for training and validation of
the algorithms. We propose to use the advantages of each sensor in an integrated way. We first identify
large structures that potentially encompass areas of interests using satellite-based data. We then focus
on promising sites utilizing the higher spatial and spectral resolutions of plane-based data. Small and
very local geological structures are then mapped at high spatial resolution with RPAS-based sensors.
Through the use of RPAS-based exploration, an extremely high spectral and spatial resolution can be
achieved for the detection and characterization of small-scale structures. Geomorphometric analyses
provide additional contextual information to improve classification accuracies by integrating spectral
and topographical contents. Ground sampling campaigns (field observations and radiometric data)
are used for cross-validation and accuracy assessments of the mineral maps.

The demonstration site, Lofdal Farm, is situated in Northern Namibia, where several REE hosting
structures have been identified and are currently explored [29,30]. Its location in a semi-arid area
and the existence of sufficient in situ data for validation were key in that selection. The Lofdal area
comprises a swarm of small-scale carbonatite dykes. The genesis of the REE mineralization is still
debated however, a late hydrothermal origin of the ore bearing fluids is generally proposed [31]. As the
enrichment of REE minerals in any hydrothermal system is strongly concentrated along localized
weakness zones, a precise structural mapping is required. This study area provides unique conditions to
demonstrate the benefits of RPAS surveys for the remote sensing mapping of fine geological structures
and to evaluate the synergic potential of multisensor techniques.

2. Geological Setting: Demonstration on the Lofdal Deposit

The Lofdal area was chosen as demonstrator, but is only one of the localities identified on remote
sensing data. We focus on Lofdal because it is the area which has been studied most.

The Lofdal Alkaline Carbonatite Complex, aged ~750 Ma [32], is located on the Bergville and
Lofdal farms, 35 km NW from Khorixas in the Kunene region of Namibia. The Paleo-Proterozoic Huab
Basement Complex hosts the alkaline complex and is made up of metasedimentary gneiss and schist.
The geometry is composed of a plug-like syenite–carbonatite intrusion known as the Main intrusion
with a smaller plug-like body, called the Emanya intrusion, 5 km to the SW. The complex contains a
swarm of roughly E–W striking carbonatite dykes as well as smaller plugs of calcite carbonatite [32]
(Figure 1). These carbonatite plugs and dykes combined with the occurrence of phonolite, syenite, and
mafic dykes, and plugs form together the alkaline intrusive complex [33]. Jung et al. [34] has proposed
a two-stage model of emplacement based on isotopic compositions to explain the syenite–carbonatite
suite intrusion. The first stage is partial melting of the upper-mantle followed by the second stage of
differentiation of unexposed alkali-basaltic magma.

The Lofdal Alkaline Carbonatite Complex is unique in its unusually high enrichment of HREEs
compared to the LREEs [35]. Xenotime-(Y) is the principal HREE host mineral and generally occurs in
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the iron-rich calcite carbonatite dykes. The xenotime is associated with iron oxides, thorite, apatite and
synchysite-(Ce) [35]. Although the genesis of REE mineralization at Lofdal is still debated, it has been
suggested lately that HREE enrichment is likely related to hydrothermal processes [36].

Several areas with high potential for REE explorations have been identified by the exploration
team in the past. Such an area, known as Area 4, which lies ~1 km SE from the main intrusion,
has received much attention, and has been studied extensively over the years [29,30]. However, for this
study we focus on Area 1, a relatively understudied area compared with Area 4, but very typical of
the entire site in terms of mineralogy. Area 1 is located North-East of the main intrusion and consists
of dozens of carbonatite dykes, some of which cross-cut each other (Figure 1). The dykes are tens of
meters long and are 0.5 cm to 1 m wide. This characteristic geological setting is used to evaluate the
benefits of RPAS for the geological mapping of complex and small-scaled structures.
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Figure 1. Geological map of the Lofdal Alkaline Carbonatite Complex, including the location of the
dyke swarms. Area 1 is located northeast from the Main intrusion (adapted from the Geological Survey
of Namibia).

3. Methodology and materials

3.1. General Workflow

The proposed approach uses data captured from platforms with decreasing altitudes (Figure 2)
and envisages a holistic workflow taking into account local characteristics, such as vegetation cover
and geology, as well as data availability. This is especially beneficial as the resolution of the data
being captured increases systematically (Figure 3). Dedicated analyses were performed on the data
at varying resolution levels and are summarized in Figure 4. Each analysis is explained in detail in
section “Processing and field validation”.

In the first step, we applied commonly used spectral analyses, known for their versatility and
robustness, on satellite- and aircraft-based imagery. We chose ASTER data for the first level of resolution
and performed lithological mapping and area identification (top section of Figure 4). We mapped
the main lithologies of the region by performing selected band ratios. The next level of resolution is
provided by plane-based imaging. We performed band ratios and minimum wavelength mapping
(MWM) on HyMap imagery and used the results to refine an area of interest (Top section of Figure 4).
Once we chose and refined the area of interest, we moved to the next resolution level using RPAS-based
sensors. RPAS-based sensors can capture the spectral and topographical data needed to study small
scale features (middle and bottom sections of Figure 4).
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the high spatial resolution of RPAS-based sensors.

Field scouting backed by literature show that the REE occurrences are hosted in carbonatite dykes
in the study area [33]. Field observation showed that these structures are topographically elevated in a
relatively flat surrounding terrain. Therefore, the best field approach was to capture RPAS-based data
over the area and to use both spectral and topographic information in parallel. structure-from-motion
multi-vision-stereo (SfM-MVS) photogrammetry was performed on the orthophotos obtained by a
fixed-winged RPAS and a Digital Elevation Model (DEM) was created. The photogrammetry procedure
is explained further in Appendix A. Subsequently, the DEM was used to automatically map the dykes
(Middle section of Figure 4). The structural and textural analyses were performed using TecGEMS,
a Python-based toolbox, which is being developed by Andreani L., Pohl E. and Gloaguen R. [37].

The final level of resolution consists of hyperspectral RPAS-based imagery which was captured
with a hexacopter (Bottom section of Figure 4). The RPAS-based hyperspectral data requires specific
preprocessing steps and is performed with an in-house toolbox called MEPHySTo (See Appendix A) [28].
After the preprocessing of the RPAS-based hyperspectral imagery, we performed a combination of
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spectral analyses on the data to map potential REE zones. Spectral Angle Mapper (SAM), Spectral
Information Divergence (SID), and MWM were used and compared with one another. MWM is usually
preferred as it is fitted to a specific spectral signature. On the other hand, due to the low concentration
of target minerals and limited spatial resolutions and SNR of existing sensors, absorption features
might be difficult to identify. In that case, classification methods, such as SID and SAM, can provide an
indirect tool to identify either the target minerals or proxies. Field work was then performed in the
refined study area and included traditional field exploration techniques, such as field mapping and
representative sampling.

The workflow developed here is versatile as it can easily be adapted to a wide range of commodities
and makes use of commonly available datasets and procedures. The use of airborne data is not required
but provides valuable information if the data are available. The parameters used in the workflow
can easily be tuned by a geologist with some knowledge of remote sensing techniques to adapt the
procedure to the geological conditions and the type of ore deposit targeted.
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Figure 4. The processing workflow of the data captured at Lofdal. The data captured consisted
of satellite, airplane-, and RPAS-based. It indicates the integration of topographic with spectral
information. The top section of the workflow depicts the processing methods performed on the ASTER
and HyMap data while the middle and lower sections show the processing methods performed on the
RPAS-based data.

3.2. Data Acquisition and Preprocessing

Preprocessing of the data, which entails image corrections of multi- and hyperspectral data
sets, is a paramount step for the accurate analyses of spectral information, and is performed before
further analysis such as spectral classifications. Although they are based on the same principles,
the preprocessing steps will differ for each platform according to specific requirements; satellite sensors
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will require atmospheric corrections unlike RPAS-borne sensors which will need corrections such as
lens distortions and band co-registration. The satellite, plane-, and RPAS-based data sets we used have
increasing spectral and spatial resolutions and their spectral ranges are visualized in Figure 5. A list of
all the platforms and sensors used in the workflow is summarized in Table 1 and the spatial footprints
of each data set can be found in Figure 6. Three areas (known as Area 1, Area 4, and Area 5) were
surveyed with RPAS, and Area 1 was chosen as demonstration in this article due to its representative
geology in the complex and its potential of high HREEs concentration.
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multispectral satellite (ASTER) bands, hyperspectral airborne (HyMap) bands, and hyperspectral
RPAS-based bands. The spatial resolution of the various data sets is indicated above each set of bands.

Table 1. Summary of platforms and sensors utilized in this study; the parameters and general use are
listed next to each sensor.

Spectral Sensors

Platforms Sensor Parameters SNR Spatial
Resolution Purpose

Satellite-based
ASTER:
Multispectral
pushbroom sensor

B1 (520–600 nm)
B2 (630–690 nm)
B3 (760–860 nm)
B4 (1600–1700 nm)
B5 (2145–2185 nm)
B6 (2185–2225 nm)
B7 (2235–2285 nm)
B8 (2295–2365 nm)
B9 (2360–2430 nm)

B1–B4: 140 @ 70% albedo
B5–B7 & B9: 54 @
70% albedo
B8: 70 @ 70% albedo

VNIR (B1–B3):
15 m
SWIR (B4–B9):
30 m

Spaceborne
multispectral
imaging

Plane-based

HyMap:
Hyperspectral
whiskbroom
sensors

126 spectral channels
Band width 15–20 nm
Spectral range from
450–2500 nm

All channels: 1000:1 [11] 4.5 m Aerial hyperspectral
imaging

RPAS-based:
Aibotix Aibot
x6v2 (hexacopter)

Rikola
hyperspectral
Imager

50 spectral channels
(in aerial mode)
Band width at ~10 nm
Spectral range from
500 nm–900 nm

All channels: 150:1 [38] 6.5 cm at 100 m
High resolution
aerial hyperspectral
imaging

RPAS-based:
SenseFly eBee
(Fixed-wing)

Canon Powershot
S110 RGB camera Nadir stereo-photos. n/a 4.9 cm at 120 m Photogram-metry
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Figure 6. Geographic map showing the spatial extent covered by each data set including an inset of a
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3.2.1. Satellite and Plane-based Sensors

We favor open source satellite data to ensure availability and decrease costs. ASTER data
was specifically chosen for this project because of its higher amount of SWIR bands compared to
other multispectral satellite sensors such as Landsat. However, Sentinels, SPOT and Landsat data
could also be considered. Geological spectral features are mostly situated in the SWIR region of the
electromagnetic spectrum and thus other studies have proven the effectiveness of lithological mapping
using ASTER imagery [39,40]. The ASTER scene over the study area in Namibia was acquired on
21/09/2006. The sensor parameters are listed in Table 1. The ASTER data was atmospherically corrected
using the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) tool in ENVI.
The FLAASH atmospheric correction tool can be applied to VNIR and SWIR data and is based on the
MODTRAN model [41]. Due to the varying resolutions of the spectral channels of the ASTER data,
the VNIR bands were resampled from 15 m resolution to 30 m to match the SWIR band resolution
before further analyses.

HyMap is an aircraft-mounted hyperspectral sensor operated by the HyVista corporation and
developed by Integrated Spectronics [42]. The sensors parameters are summarized in Table 1. Available
aerial hyperspectral data over Lofdal were processed in order to map relatively small scale geological
features. The HyMap data provided by HyVista were already fully corrected and ready-to-use with
a spatial resolution of 4.5 m. The preprocessing done by the HyVista team consists of radiance and
atmospheric calibration as well as geometric corrections [42].

3.2.2. RPAS-based Sensors

Surveys were performed with two types of RPAS, a fixed-wing system and a multicopter (cf. Table 2).
Selected areas are mapped using hyperspectral imaging (HSI) and SfM-MVS photogrammetry. The two
sensors require specific flight characteristics and acquisition procedures [28]. The frame-based
hyperspectral camera needs a stable platform at the time of image acquisition to allow a sufficient
integration time and low spatial shift between single bands. The fixed-wing RPAS (Sensefly eBee)
has a longer flight time than the multicopter, and can thus cover a larger area size and acquires nadir
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stereo-photos as input for SfM-MVS photogrammetry. The eBee has a maximum flight time of 50 min
and is equipped with a Canon Powershot S110 digital camera with a resolution of 16MP (Table 2).
A predefined flight-route with GPS waypoint is created and uploaded onto the RPAS before take-off.
The flight line spacing is determined in such a way that there is a high overlap of the aerial photographs
(85% forward lap and 70% side lap).

Table 2. RPAS and flight parameters over Area 1, Lofdal.

Information Photogrammetry Hyperspectral Imaging

RPAS Sensefly eBee Aibotix Aibot X6v2
Camera system Canon S110 RGB camera Rikola Hyperspectral Imager
Flight altitude (Above take-off 120 m 50 m
Flight time 35 min, 27 s 9 min, 44 s
Sensor resolution 4608 × 3456 px (15.9 MP) 1011 × 648 px (0.65 MP)
Ground sampling distance (GSD) 4.9 cm/px 3.25 cm/px
Number of Images 215 32
Area covered 0.961 km2 0.0038 km2

3.3. Processing and Field Validation

3.3.1. Satellite and Airborne Approach

Even though it is not possible to directly detect small carbonatite bodies with ASTER imagery
due to its low spatial resolution, we used indicators in the regional geology to locate ideal areas where
they might occur. Normally, carbonatites occur as small bodies within alkalic intrusive complexes, and
the emplacement of carbonatite intrusions are commonly accompanied by hydrothermal alteration of
the country rock [43,44]. The hydrothermal fluids can introduce REEs into the system. Thus, we have
summarized two main indicators to locate possible occurrences of REE-bearing carbonatites. (1) We
identify alkali rocks which can be associated with carbonatites. (2) We locate regions of deformation
which could have facilitated hydrothermal activity (Figure 7A).

With these two indicators in mind, a smaller area of interest was chosen and analyzed using
HyMap data (Figure 7B). However, we were not able to detect REE-rich regions with the HyMap data.
To map REEs, their concentrations within a pixel must be such that absorption features will occur in the
spectra. This is only possible if the pixel size matches the areas of high concentration. REEs are usually
found in small concentrations zones within larger rock formations. A higher ground resolution than
what HyMap (resolution of 4.5 m) can offer is thus required. Thus, we decided on a different indicator
for possible REE-rich areas. A link between the presence of iron and REEs has been suggested by
Salminen et al., (2005). With the HyMap data, we were able to select promising regions containing both
these carbonatite and iron features. We selected three promising regions to demonstrate our field work
approach involving RPAS (Figure 7C,D). One area was specifically chosen because the exploration
company who owns the exploration rights to Lofdal (Namibian Rare Earths) gave us access to the area
(defined by Namibian Rare Earths as Area 1) and provided geochemical analyses of rock samples to
validate our procedure.

RPAS-based data was then used to map the numerous dykes over a given area (Figure 7C) and
characterized with RPAS-based hyperspectral data (Figure 7D). Field measurements with the handheld
XRF and spectrometer indicated that there were primarily two sets of dykes, one set enriched with
iron, and the other set contained very little iron. This allowed us to spectrally differentiate between
the dykes based on chemical composition. Harmer and Nex [45] have noted that the highest REE
concentrations are usually found in iron-rich carbonatites. Therefore, we decided to focus on the
iron-rich dyke to test whether we can map REE-rich zones using RPAS-based sensors.
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Figure 7. Diagram showing the various platforms used for multi- and hyperspectral imaging and the
areas focused on with each platform. (A) False color composite of ASTER data showing lithological
discrimination of the Lofdal area (B4/B7 - B4/B3 - B2/B1). (B) Near-infrared (NIR), green, and blue
HyMap image of Lofdal. (C) Orthophoto of Lofdal. (D) High-resolution RGB image from the Rikola
showing individual dykes.

3.3.2. Spectral Analyses

Band ratios were specifically chosen for their proven robustness and applied to the ASTER
imagery [46]. A combination of SWIR and VNIR bands enhances geological units, making lithological
discrimination possible [47]. The band ratios chosen for this purpose were taken from Abrahams and
Hook [47] and are as follows; B4/B7, B4/B3, and B2/B1 in the R-G-B channels, respectively. Band 7 is used to
distinguish magnesium hydroxide and amphiboles while iron can be detected with the VNIR bands [48].

We performed band ratios and minimum wavelength mapping (MWM) in parallel on the HyMap
data of a given area to investigate the geological features. Numerous studies have established the
potential of band ratios to map iron occurrences, a general feature to distinguish lithologies [49,50]. Thus,
an iron band ratio (769 nm/458 nm) was performed on the HyMap data. MWM is a procedure whereby
the wavelength position of the deepest absorption features is mapped, and has been successfully
used to distinguish minerals with strong spectral features [51]. This works best with hyperspectral
data because of the high spectral resolution and contiguity of the bands allowing it to display narrow
absorption features. This powerful method was used to map the distinct carbonate absorption feature
at 2340 nm [52].

RPAS-based hyperspectral data was used to characterize dykes in a chosen area. We again used
an iron band ratio to map and distinguish dykes in the image; the 760 nm wavelength was divided by
the 880 nm wavelength to enhance the iron feature. We then mapped zones of REE occurrences within
individual dykes using the same hyperspectral data. Pixels outside the analyzed dykes were masked.
Both (1) direct and (2) indirect methods were used to identify zones possibly containing REEs within
a dyke.
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(1) Based on the results of laboratory tests, MWM was used to map the 800 nm absorption feature
of Nd. Spectra measured by the Rikola imager in the laboratory has an approximate 7 nm shift to higher
wavelengths (See Appendix B). Considering this spectral shift, a range was set between wavelengths
795 nm and 820 nm to map the deepest absorption feature within that region. Although it is the most
direct way to map REE absorption features, noise in the spectra made it challenging to confidently
detect minute absorption features.

(2) The spectral matching methods SAM and SID are supervised classification methods. SAM
is a widely deterministic classification method in hyperspectral remote sensing and many studies
have shown its effectiveness in mineral mapping [53,54]. Although SID is not as widely used, it also
determines the similarity between a pair of spectra. SID, however, is a stochastic approach that can
characterize spectral similarities more effectively than SAM [55]. We used the spectrometer to measure
spectra along the dykes and created a library from spectra containing REE absorption features at
580 nm, 740 nm, and 800 nm. Of the in situ spectra collected, two measurement points showed
positive REE absorption features. These spectra were averaged and used as the reference spectra for
both SAM and SID methods. The idea is to find sections which are spectrally similar to host rocks
containing REEs.

3.3.3. Extraction of structural features

The high-resolution DEM (Figure 8) obtained from SfM-MVS photogrammetry allows us to
map linear features such as carbonatite dykes, which form narrow and shallow topographic ridges
as a result of differential erosion. For this purpose, we propose to use a ridge detection algorithm.
The algorithm locates the points of maximum curvature in the DEM which correspond to the surface
trace of dykes. One common approach to analyze the curvature of elevation data is to use an eigenvalue
analysis of the Hessian matrix [56,57]. The Hessian matrix is a 2 × 2 matrix composed of second-order
partial derivatives of the input image, whereas the second-order partial derivatives are defined as a
convolution with derivatives of Gaussian filter at scale σ. The idea behind eigenvalue analysis of the
Hessian matrix is to extract the principal directions and magnitude in which the local second order
structure of the image can be decomposed. Each pixel is associated to a set of eigenvectors |λ1| or |λ2|.
Linear features are characterized by a very small magnitude of λ1 (ideally close to zero) and a large
magnitude of λ2, whereas point features will be characterized by similar magnitudes of λ1 and λ2 and
features without preferential directions will have low magnitudes for both λ1 and λ2.

To apply this technique, we applied a low pass-filter to remove small artifacts such as boulders as
well as accelerate the processing. The eigenvalue analysis was then performed on the resampled DEM
using an initial Gaussian filter. Once the absolute magnitude of eigenvectors is extracted, a threshold
is used in order to remove weak ridges (i.e., associated to a low curvature). This threshold was set to
75% of the maximum magnitude based on previous studies and experimentation. Ridges were then
identified using a local maxima function (i.e., pixels higher than their neighbors along the x or y axis
were tagged as “ridges”). Finally, identified ridges were vectorized by connecting neighboring tagged
pixels. The final step is a simplification of extracted linear features. Segments smaller than 20 pixels
(ca. 4 m) were discarded and the trace of remaining segments is simplified using the approach of
Visvalingam and Whyatt [58]. One drawback of this approach is that other curvilinear features such as
the edges of gullies may be falsely detected as well. For this reason, a manual cleaning is crucial and
was performed in order to discard irrelevant features in a last step.
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Figure 8. High-resolution Digital Elevation Model (DEM) of Area 1 (cf. Figure 6) derived from
Structure-from-motion Multi-Vision-Stereo (SfM-MVS) photogrammetry with a ground resolution of
4.9 cm. Inset A shows a shaded relief section of the DEM where very fine geological structures can be
discerned. Inset B shows a swath profile from points A to B, the black arrows point to possible dykes.

3.3.4. Validation and field procedure

Validation points were measured with a handheld XRF and a portable spectroradiometer, while
their positions were recorded by a handheld GPS. Strike and dip of the outcropping carbonatite dykes
in the study area were also measured. Both methods rapidly provide information about rock chemistry
during field work and allow a better field planning.

A Spectral Evolution PSR-3500 portable spectroradiometer was used to measure the spectra of
rock surfaces and hand samples. Spectra are recorded in the VNIR/SWIR region of the electromagnetic
spectrum (400–2500 nm) using a contact probe (8 mm spot size) with artificial illumination. The spectral
resolution in the VNIR range is 3.5 nm while the spectral resolution is 7 nm in the SWIR range.
A precalibrated PTFE panel (Zenith polymer; >99% reflectance in the VNIR range and >95% in
the SWIR) was used to convert the radiance values to reflectance. Each spectral record consists of
10 individual measurements taken consecutively and averaged.

A Bruker S1 Titan 800 handheld X-ray fluorescence spectrometer was used both in the field and
laboratory, operated in Brukers GeoChem calibration mode. The Bruker features a Rh target X-ray
tube with a maximum acceleration voltage of 50kV at a maximum current of 0.2 mA and a Silicon
Drift Detector (SDD). The X-ray emission in GeoChem mode is recorded between 0 to 45 kV in two
separate phases: the 1st phase includes heavy elements (≥Fe) and is recorded using a TiAl filter and
45 kV acceleration voltage, and the 2nd phase includes the light elements (≤Fe) without a filter and
15 kV. The handheld XRF measured in situ geochemical information of the rock outcrops, giving
us an estimate of iron and, via indicators (i.e., Y or Zr), the REE contents. The rapidly captured
geochemical data roughly indicate REE mineralized areas, which aids us in determining focus areas.
Consecutive XRF and XRD analysis of rock samples were measured in the laboratory to verify the field
measurements as well as to validate spectral field information. Selected samples were sent for whole
rock geochemical assay using ICP-MS fusion for major and selected trace elements.
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4. Results from Lofdal

We performed dedicated band ratios on the ASTER data as mentioned in the section “Spectral
analyses”, to identify areas which may contain carbonatite-hosted REEs and define a region of interest.
The result enabled us to discriminate between the main lithologies of amphiboles, syenites, and gneisses,
and possible alteration zones were highlighted by identifying iron (Figure 9A). The structure of the
region was also discerned from the band ratio result, which were not entirely evident in the plain RGB
image. We were able to map major faults by locating areas with offsets in the lithological layering
(Figure 9A.1). We also detected highly curved structures indicating intense folding in the region
(Figure 9A.2). The faulting and folding show that the area has undergone regional ductile deformation.
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Figure 9. (A) False color composite of the band ratio results on ASTER data showing lithological
discrimination (B4/B7, B4/B3, and B2/B1). (A.1) Major faults depicted. (A.2) Indication of folding.

We selected an area of interest close to alkali rock (the syenite intrusion) showing regional
deformation, as a promising site for the occurrence of carbonatites. This area was investigated in
more detail with HyMap data. The results of the iron band ratio and the regions rich in carbonates
identified using MWM were overlain and the product can be seen in Figure 10. One of the selected
areas containing both iron and carbonatites was used to demonstrate our RPAS-based field surveying.

The selected area contains numerous thin dykes. To map the dykes in this area, a better resolution
than what satellite or plane-based data can offer is needed. The photogrammetric DEM derived from
the eBee over a specific area of interest has a ground resolution of 4.9 cm and covers of approximately
1 km2. Field validation supported by the DEMs to locate structures of interest confirmed that the dykes
are mostly composed of carbonatites. Geological maps and available information provided by local
geologists indicated that the dykes have not been thoroughly mapped in this area.

The dykes are not easily discernible from the DEM alone, and performing solely a manual
extraction would be arduous and subjective. We, therefore, automatically mapped the dykes using
morphological feature extraction (Figure 11A–D). The specific techniques and parameters are outlined
in Table 3. A ridge detection algorithm was performed on elevation data (Figure 11A,B) and lineaments
were automatically extracted (Figure 11C). Automatically extracted features were refined manually
to map dykes in Area 1. We were able to map the dykes rapidly and remotely using this procedure.
Approximately 45 dykes were mapped in the area. Overall, the dykes show a North-easterly trend.
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A small area containing a complex pattern of dykes was selected for precise hyperspectral imaging
with the multicopter mounted Rikola (Figure 11D).Remote Sens. 2019, 11, x FOR PEER REVIEW 15 of 30 
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Figure 11. Flow diagram showing the process of topographical analysis. (A) High-resolution DEM
derived from photogrammetry. (B) Maximum magnitude of eigenvectors (positive for ridges and
negative for valleys). (C) Automatic extracted linear features (after applying a buffer around gullies).
(D) Resulting interpretation of the dykes and directional Rose diagram; encircled area is the focus of
the RPAS-based hyperspectral imaging.
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Table 3. Steps for DEM analyses of feature extraction.

Steps Method Parameters

1: Resampling Spline interpolation Order = 3
Factor = 0.5

2: Eigen Analysis Gaussian Filter Sigma = 10

3: Extraction of ridges Local Maxima Threshold = 75%

4: Vectorization of Ridges Minimum Segment length
Minimum triangles area

Threshold = 20 pixels
Threshold = 2 square pixels

We identified two types of dykes (D1 and D2) in the Rikola scene (Figure 12A), based on geometrical
and compositional characteristics. The high spatial resolution data indicates that the dykes have two
main orientations. One set of dykes strikes at ~35◦ NE (D1), whereas the other trends around 60◦ NE
(D2). D2 cross-cut D1 creating a sinistral offset in D1 by ~2 m. This allows us to establish the age
relationship between the two dykes (i.e., D1 intruded before D2) and thus infer that the area has at
least two generations of dyke intrusions. A band ratio to enhance the iron feature on the hyperspectral
data confirmed the field observation that D1 is relatively enriched in iron compared to D2 (Figure 12B).
An accuracy assessment was performed to quantitatively assess the classification of the iron-rich
dyke on the hyperspectral RPAS-based imagery. The image was grouped into three classes; iron-rich
zones, iron-poor zones, and soil. A confusion matrix shows that the overall accuracy of the dyke
classification with the iron band ratio was 84%. Moreover, the band ratio classified 81.78% of the pixels
correctly and only 3.52% pixels were incorrectly classified as the iron-poor dyke and 11.54% of the
pixels were mistakenly classified as soil. Most of the pixels incorrectly classified using the iron band
ratio can be attributed to the numerous rock pieces and weathered surfaces surrounding the dikes.
Additionally, extended limestone dissolutions and downslope precipitations were identified during
our field observations. However, with these accuracies we are confident in using an iron band ratio to
differentiate the dykes. Moreover, we can use their specific geometry in addition to the iron content
and extend the mapping of these carbonatite dykes over the entire region.
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Figure 12. (A) RGB hyperspectral mosaic showing the two types of dykes. The locations of point
spectra and rock sampling are shown. (B) Image showing the result of band ratio 760/503 enhancing
the iron feature.

The band ratio result was confirmed in situ both with field spectroscopy and a portable XRF.
Determining the precise geometry and relationships of the two sets of dykes is only made possible
with the high spatial resolution hyperspectral RPAS-based images. XRF analyses were taken of rock
samples from both types of dykes to validate the classification. The results of samples taken at the
same point locations where spectral measurements were taken indicate that a representative dyke
from D1 contained 21% iron (Fe) and 0.9% yttrium (Y), whereas a dyke belonging to D2 contained
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2.5% Fe and 0.5% Y. From the in situ portable XRF analyses, we determined that the D1 dyke not only
have higher Fe contents than D2, but also higher amounts of yttrium, a proxy for HREE in rocks [59].
We thus decided that the D1 dykes were promising targets and tested the in situ measurement of REE
from RPAS in operational mode for the first time. A selected area was surveyed and the resulting data
was adequately processed. In order to minimize false positives, the REE mapping was limited to the
dykes and surrounding areas were masked out. The mask was based on the iron band ratio, in which
the “non-iron” pixels are discarded.

In Figure 13, a segment of the iron-rich D1 dyke was chosen to demonstrate the methods we
use to map REEs with hyperspectral RPAS-based imagery (Figure 13A). Overall, the distribution
of pixels positively identified as REEs with MWM are disseminated throughout the dyke segment.
MWM indicated a higher concentration of REEs in the middle (at point A) and upper parts of the
dyke segment (Figure 13A). SAM and SID show pixels in red which are spectrally similar to REE
hosting rocks. The reference spectra for both these methods were taken at points A and B on Dyke 1
and is shown in Figure 13A. The SID result shows positive pixels in the middle of the dyke section
(Figure 13B), which are in the same region as the positive pixels of the MWM result. On the other hand,
the SAM result showed visibly less positive pixels, but still showed a very little amount in the middle
and lower parts of the dyke section (Figure 13C). The combination of all three methods provides us
with possible indications of REE-rich zones within the dyke.
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Figure 13. (A) Result of MWM on a selected section of D1 with an inset of the entire Rikola image
indicating the locations of the two dykes. Pixels in red contain a deep absorption feature at 799 nm
while yellow pixels do not contain an absorption feature. The displayed spectrum shows Nd absorption
features, which is the result of averaging the spectra measured at points A and B and was used as
reference spectra for SAM and SID. (B) SID result, indicating pixels in red as spectrally similar to
REE-hosting rocks. (C) SAM result, indicating pixels in red as spectrally similar to REE-hosting rocks.
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To validate our results, spectra from the hyperspectral images were compared with spectra taken
by the handheld spectroradiometer of each dyke (Figure 14). Both handheld spectra show characteristic
carbonate absorption features at ~2335 nm, whereas only Dyke 1 shows a broad iron charge-transfer
feature in the VNIR (Figure 14A1,B1). This feature characteristically peaks at 780 nm and steeply dips
from 900 nm [60]. The spectra from the Rikola range between 450 nm and 900 nm also show the iron
feature in Dyke 1 (Figure 14A2,B2).
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Figure 14. Diagram showing spectra taken by the portable spectrometer compared with spectra taken
by the Rikola of D1 and D2 at validation points 1 and 2 respectively. (A1) Spectrometer spectrum of
Dyke 1 showing a carbonate absorption feature as well as an iron oxide feature. (A2) Rikola spectrum
of Dyke 1 at the same point also showing an iron oxide feature. (B1) Spectrometer spectrum of Dyke 2
showing a carbonate absorption feature. (B2) Rikola spectrum of Dyke 2 at same point.

XRD revealed that iron is mainly present in the form of goethite (FeOOH) and to lower contents
as hematite (Fe2O3—below 3 wt-% in total). In contrast, no typical Fe-mineral was detected in the
sample of Dyke 2, with the exception of a low content of chlorite. The XRD results also indicated that
the samples from Dyke 1 and Dyke 2 contained 64% and 85% calcite, respectively (Tables 4 and 5),
confirming that both dykes are indeed carbonatites. Both dykes contained REE-bearing minerals such
as apatite and xenotime, whereas the sample from Dyke 1 contained more xenotime, one of the major
REE-bearing minerals. The XRD results also confirms the in situ measurements from the portable XRF.

Table 4. XRD results of field sample taken from D1 at validation point 1 shown in Figure 12A.

Mineral: Sample NA_16-20-RB-1 Sum of Value (wt-%): Total ESD (3sigma)

Quartz 9.4 0.2
Calcite 63.9 0.6
Hematite 2.8 0.3
Goethite 20.0 0.5
Synchysite 1.1 0.2
Thorite 0.9 0.1
Xenotime 2.0 0.2
Sum 100.1 -
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Table 5. XRD results of field sample taken from D2 at validation point 2 shown in Figure 12A.

Mineral: Sample NA_16-20-RB-2 Sum of Value (wt-%): Total ESD (3sigma)

Quartz 1.5 0.1
Calcite 84.9 0.4
Apatite 11.6 0.3
Chlorite <2 -
Xenotime <1 -
Sum 100.0 -

The whole rock geochemical analysis of the two samples shows similar results: Dyke 1 is more
enriched in iron and REEs, especially HREEs, than Dyke 2 (Figures 15 and 16). This verifies the XRD
results (with higher contents of xenotime in Dyke 1) as well as the in situ handheld XRF measurements,
which also indicated that Dyke 1 has a higher amount of Y. The data from geochemical and mineralogical
(XRD) investigation are consistent and support the field work and remote sensing findings.
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Figure 15. ICP-MS results of the rock samples taken in the field from both types of dykes; D1 and D2.
Graph showing the highest amounts of major elements within each rock sample. Dyke 1 contains a
higher amount of iron but less calcium than Dyke 2.
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Figure 16. ICP-MS results of the rock samples taken in the field from both types of dykes; D1 and D2.
Graph showing the amount of REEs within each rock sample. Dyke 1 has a higher concentration of
REEs than Dyke 2.

5. Discussion

The sequence of exploration phases typically progresses from a large area to a small focused
target. The integration of remote sensing data sets from different scales mirrors this fundamental
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process. REE deposits associated with alkaline carbonatite complexes are typically associated with a
particular magmatic or magmatic-hydrothermal phase, which affects a significantly smaller area than
the whole of the complex. The first step is to identify the carbonatite–alkaline complex, where the
final result should reveal a focused target for drilling and detailed sampling prior to the evaluation
of the resource. The aim of an exploration geologist is to have as much information as possible
about the geology of the area before doing the field work, usually in the form of a detailed geological
map. Satellite and aircraft-based remote sensing is usually the first step in any field exploration
endeavor, as it provides basemaps that can be used to improve or generate geological maps. Traditional
geological maps in former years are usually produced through field mapping (e.g., mapping on foot)
and incorporates assumptions to fill in the blanks that were based on the accepted paradigms at the
times of their production. Extensive mapping is usually required in mineral exploration, especially in
remote locations, where existing geological maps are imprecise and in need of upgrading.

The discovery of mineral resources in remote regions and/or without conspicuous surface indicators
presents a challenge for exploration. Rare earth deposits are often associated with small-scale, lithologic
(e.g., carbonatites), and tectonic structures (e.g., shear zones), and are not easily detected by traditional
remote sensing. While remote sensing has been increasingly used in recent years in the field of geology
thanks to the development of better sensors (multi- and hyperspectral, and airborne and satellite-based)
and increased computing power [61], it is not commonly and operatively used in mineral exploration.
In this manuscript we argue that multiscale remote sensing approaches provide a cost effective way of
exploring critical metals hosted in poorly accessible structures. We also demonstrate that field mapping
and sampling with prior remote sensing is often efficient and more lucrative.

Previously, the use of remote sensing in the field of earth observation has focused more on the
agricultural and environmental sectors. Topics such as precision farming [62,63] and environmental
monitoring [64,65] have long dominated the remote sensing field. Lesser focus has been placed on the
geological application of remote sensing. That being said, a few studies have successfully mapped
large geological features via multispectral and/or hyperspectral satellite sensors, providing large scale
estimates of the area in question [47,61,66]. The challenging aspect for researchers at the moment is
the resolution gap between satellite- or aircraft-based imaging, and ground surveying. To address
this challenge, an innovative approach is taken whereby RPAS are used to bridge the gap in the scale
of data collection. This study not only uses one type of sensor and data scale, but introduces a work
scheme involving various data sources, from satellite- and aircraft-based, to RPAS-based sensors and
ground-based surveys. The work chain is then completed with field validation through geochemical
and spectral analyses.

We used ASTER and HyMap data in combination with existing geological maps to improve field
exploration and rock sampling and identify areas of interest. We were able to map the regional geology
and major structures with band ratios using satellite data. Additionally, ASTER-TIR data can be used
to map felsic rocks, such as the syenites we investigated in this study. Ratios such as a quartz index
have been shown to be valuable tools in determining the locations of felsic rocks covering large area
extents [67]. The major structures we mapped shows that large scale deformation took place and
indicate that the area might have undergone hydrothermal activity. With this information we were able
to locate a promising region of interest for the exploration of REE-hosted carbonatites. The spectrally
and spatially higher resolution HyMap data allowed us to further analyze the area by identifying
regions of overlapping carbonate and iron features and, thus, select a particular region of interest.
Selecting the relevant samples was made possible with an improved geological map and by identifying
the relevant areas anteriorly, decreased the amount of required samples. Ultimately, field work was
improved, accelerated and simplified.

Currently, RPAS are mainly used for SfM-MVS photogrammetry and aerial photography. Studies
such as mine and tailings monitoring [68,69], glaciology, and land slide monitoring [70–72], as well as
topographic mapping [73], have largely used RPAS for SfM-MVS purposes and aerial photography.
Hyperspectral RPAS-based surveying is still a new and developing field, and has almost primarily
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been used in precision agriculture and forestry [17,21,74]. There are however a few studies which uses
hyperspectral RPAS-based surveying for environmental monitoring, such as the impact mining has on
the environment [50]. Nonetheless, the use of RPASs for mineral exploration is an underutilized source
for data acquisition. For this study we attempt to use the full potential of RPAS-based imaging. We not
only use topographic information captured with RPAS, but we integrate it with spectral information
from a hyperspectral RPAS-based sensor. Topographic information from RPAS-based data was used to
automatically map the dykes in the area. This data was obtained through SfM-MVS photogrammetry
using the fixed-winged eBee. As the eBee is able to cover 4 sq.km/hour, the majority of the dykes in
Area 1 could be mapped in 20 min, and the processing time for the data takes a few hours. Traditional
field mapping of the same area would have taken a geologist days. Altogether, this technique is much
faster, safer and the procedure is cheaper than conventional field mapping.

During the field campaign, we selected promising areas and tested the detection of REEs from
RPAS directly in the field for the first time. The RPAS-based Rikola data showed that it is possible to
distinguish different types of dykes based on their iron content. Additionally, the high spatial resolution
of the data made it possible to determine the age relationship between the dykes based on their positions
to each other. Identifying REEs within an individual dyke has proven to be challenging. Ideally, MWM
would have been the most direct method to map REEs, but noise introduced by RPAS-based imaging
created uncertainties. Thus, to tackle this challenge, we used spectral classification methods as well,
and we were able to adequately pinpoint possible REE enriched zones within a dyke by comparing all
three results. Field validation is essential for the study of mineral exploration with remote sensing
data. Each carbonatite body studied by means of satellite-, aircraft-, and RPAS-based surveys required
proper geochemical validation. To validate the remote sensing data, rock samples were collected in
the field for laboratory geochemical and spectral analyses. By determining the iron content of rock
samples from each dyke with whole rock geochemical analyses and XRF, we validated the procedure
to spectrally classify dykes based on iron content. Geochemical analyses also indicated that there were
in fact more HREE in the iron-rich dykes, which focused our attentions on one set of dykes, increasing
the efficiency of our investigations. Being able to successfully validate the remote sensing results
demonstrates that our multisource approach to mineral exploration can easily be extended to other
structurally bound deposits.

This study has integrated and synthesized information from multiple platforms with diverse
sensors to provide improvements to the detection of REE mineralization within structurally bound
carbonatite bodies. Although mapping of wide areas can be done with satellite acquisitions, it lacks
the spatial resolution required to identify small structures. Thus, aircraft- and RPAS-borne sensors are
used additionally to obtain data with an increased spatial resolution over a smaller, more defined area.
Although we focus on the remote sensing aspects, it is not intended to replace traditional exploration
procedures but rather to improve them. When taking costs into consideration, based on our previous
experience, RPAS-based surveys usually become considerably cheaper beyond approximately nine
days of field mapping by a qualified geologist. This calculation is based on logistical (e.g., import/export
and transport) and operational (e.g., processing) factors and might slightly vary depending on the
local conditions (e.g., remoteness and accessibility).

On the other hand, the use of RPASs for mineral exploration purposes does have a few challenging
aspects. Environmental factors such as strong winds and bad weather conditions may prohibit the
RPAS from flying. All these challenges however can be overcome with diligent flight planning.
Hyperspectral RPAS-based surveying is still a developing field. This means that there are no
standardized preprocessing methods universally used for the acquired data. It is, therefore, very
important to practice verified preprocessing procedures to ensure well-corrected, quality data [75].
Furthermore, our data processing workflow can be adapted to other deposits and is not limited to
carbonatite-hosted REEs. It can be adjusted to detect deposits associated with alteration or deposits
characterized by specific structures and geometries.
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This approach can greatly improve exploration targeting for various commodities. By no means
does this technique replace geologists in the field. With this approach we intended to improve
traditional exploration methods by (1) reducing the exploration footprint, (2) increasing personal safety,
as well as (3) accelerating the overall process.

6. Conclusions and Outlook

Multisource and multiscale field exploration integrates the full range of available remote sensing
data sets, from space-borne imaging over airborne data, to high-resolution RPAS-based hyperspectral
data acquisition as well as ground validation. These diverse data sets provide indispensable information
on the relief and mineral contents of the geological formations in areas of interest at different scales.
However, spectral data alone can lack the sufficient discrimination potential either due to spatial
and spectral sensor resolutions or noise produced during acquisition. The integration of geomorphic
data can improve mapping. It is also important to have an accurate preprocessing scheme for the
topographic and spectral data obtained from RPAS platforms. We demonstrated that our correction
methods produced geometrically and spectrally accurate results. The use of RPAS-based exploration
in the chain of multisource and multiscale data acquisition resulted in data with both high spectral
and spatial resolution. Despite the fact that the use of RPAS in the field is not always possible due
to environmental factors, RPAS- and/or ground-based surveying lowers the costs and improves the
accuracy of field data, which shows its high potential in the use of future mineral exploration.

In the case of carbonatite hosted REEs in southern Africa we could demonstrate that:
(1) Multispectral satellite data can be used for regional scale targeting and structural interpretation.
(2) The high spatial resolution from hyperspectral airplane-based data can allow us to locate regions of
interest for further high resolution mapping. (3) High spatial resolution imagery captured with RPAS
allowed us to study and map relatively small sized structures, and (4) by using high spatial resolution
RPAS-based hyperspectral data we could identify promising areas with high REE concentrations.
Based on the above findings, we suggest that a multisource and multiscale approach is beneficial for
the exploration of structurally bound mineral deposits.

One current limitation is that the spectral range of low-cost, lightweight RPAS-based cameras
only cover the visible and NIR part of the spectrum. This makes it impossible to detect important
absorption features situated in the SWIR portion of the electromagnetic spectrum. However, with the
rapid pace of technological advancements, it is only a matter of time when such a sensor will be
developed. Additionally, RPAS-based magnetometers may offer subsurface solutions which can be
integrated with surficial mineral mapping from hyperspectral RPAS-based data. These technologies
will probably revolutionize the field of remote sensing geology.
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Appendix A. Preprocessing of RPAS-Based Data

SfM-MVS is a low-cost, user-friendly workflow combining photogrammetric techniques,
3D computer vision, and conventional surveying techniques. It solves the equations for camera
pose and scene geometry automatically using a highly redundant bundle adjustment [76,77]. SfM-MVS
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benefits from a moving platform in order to acquire numerous RGB pictures, from varying angles and
with sufficient overlap to compute a digital surface model (DSM). Surface geometry is reconstructed
using a SfM-MVS workflow as outlined in Carrivick et al. [78] and James et al. [79] in Agisoft PhotoScan
Professional 1.2.5. Processing parameters are set to “high quality” for image alignment at reference tie
point selection. Blurred images and those with high residual keypoint errors are excluded from further
dense cloud matching. Prior to dense cloud reconstruction at “high quality” with depth filtering set to
“aggressive”, outlier tie points are removed using the gradual selection tool. The workflow used in this
study consisted of eight steps:

• Step (1): Detection of characteristic image points.
• Step (2): Followed by automatic point matching using a homologous transformation.
• Step (3): Keypoint filtering. This step is crucial for model accuracy and validation for later results.
• Step (4): Iterative bundle adjustment to reconstruct the image acquisition geometry and internal

camera parameters.
• Step (5): Scaling and georeferencing of the intrinsic coordinate system to available reference points

(GCPs) or camera coordinates and optimisation of the resulting sparse cloud.
• Step (6): Applying Multi-View Stereo algorithms (dense matching) to compute the dense cloud.

This resulting dense cloud is basis for the projection of the hyperspectral data into 3D.
• Step (7): Interpolation of the dense cloud by, e.g., either Meshing or Inverse Distance Weighting

(IDW), to retrieve a Digital Surface Model (DSM).
• Step (8): Texturising the 3D model.

RPAS-based hyperspectral data were acquired with an Aibotix Aibot X6v2 hexacopter.
The hexacopter has a maximum flight time of 15 min and a built-in GPS. Hyperspectral data were
captured by the Rikola Hyperspectral Imager. Camera and data parameters are summarized in
Table 2 [80]. A pre-defined flight plan is uploaded to attain a minimum image overlap of 20%. HSI
data receive a position stamp using the built-in navigation GPS receiver and are calibrated using a
relative irradiance sensor.

A specific sequence of preprocessing corrections are required for RPAS-borne hyperspectral
imaging in order to transform the raw data to calibrated and, thus, usable hyperspectral datacubes [28].
The raw data is preprocessed and calibrated using the MEPHySTo toolbox [28]. The preprocessing
workflow is as follows.

1. Conversion to Radiance: The first step in the preprocessing chain is to perform a dark current
subtraction on each image separately; this is done with the software provided by Rikola Ltd.
A dark frame captured by the camera is subtracted from each image frame to correct for the
dark current component of the sensor. With additional vignetting and sensor-specific corrections,
the provided software then converts the raw digital numbers to radiance.

2. Lens correction and co-registration: Image deformations caused by internal camera features such
as characteristic lens distortions need to be corrected. These steps are done with the MEPHySTo
toolbox. The toolbox also co-register the spectral bands with one another. This spatial shift occurs
between single bands due to small temporal gaps that occur during image capturing while the
sensor is moving.

3. Orthorectification and georeferencing: The images can then be automatically orthorectified and
georeferenced by the toolbox. Detection of local features or “keypoints” is performed with a SIFT
algorithm. A point matching algorithm is then used to match points between the hyperspectral
image and a geographically corrected orthophoto produced by SfM-MVS photogrammetry.
In the current study, the hyperspectral images were manually georeferenced instead. The high
abundance of leafless trees in the study area led to notable differences between related image
pairs even at slightly differing viewing angles, which makes the successful matching of key points
extremely difficult and inhibits image pairing. The high similarity of the trees in shape and
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size additionally creates strong geometric patterns and thus impedes the detection of individual
invariants. Therefore, manual georeferencing was applied in QGIS open-source software before
further processing.

4. Topographic correction: The relief of the area, such as slopes in various orientations with respect
with sun incidence, influences the illumination within an image. Different sunlight incidence
angles on the same material cause the radiance of that material to vary. The MEPHySTo toolbox
may be used to perform respective topographic corrections. In this case, topographic correction
was performed but did not provide any additional improvement therefore both corrected and
uncorrected data can be used further. For this study case, uncorrected data was used in preference
as topographic correction can introduce artifacts that affect the spectral content if the noise in the
DEM is large compared to the relief in the scene.

5. Radiometric correction: The hyperspectral radiance images are converted to reflectance using an
empirical line correction. This is done by using known spectra from black, gray, and white PVC
panels placed in the field while the images are being captured.

6. Spectral smoothing: A Savitzky–Golay filter was used to smooth the data to decrease spectral
noise. A successive series of low degree polynoms is fitted to each hyperspectral spectrum using
linear least squares within a defined moving window (Savitzky & Golay 1964). A polynomial
order of 3 was chosen with a window size of 5.

7. Mosaicking: As a last step, the corrected and georeferenced images can be stitched together to
create a mosaic of the entire area.

Appendix B. Suitability of the Rikola Imager

The first question that comes to mind concerning the potential of a lightweight hyperspectral
imager for operational use is if the spectral resolution and SNR of the Rikola imager is sufficient for
the direct detection of REEs. The Rikola imager was thus initially tested in the laboratory to capture
hyperspectral images of cut samples to validate the use of the device in operational conditions.

Cut samples allow the capture of spectra on a clean, unweathered surface to produce accurate
spectral results. We stacked multiple acquisitions and averaged them to eliminate noise without
erasing minute spectral features and thus produce a robust and reliable spectrum. A selected spectrum
was compared with a spectrum taken by a portable spectrometer on the same point on the sample
(Figure A1). Nd absorption features can be seen in the spectrum from the Rikola and from the
spectrometer. The slight shift in the observed Rikola spectrum (~7 nm shift to higher wavelength)
can be attributed to the varying spectral resolutions of the two sensors in the device. This sampling
effect generates a bias in the discrimination on the local minima that can reach up to half the spectral
resolution. It should be noted that the shift might also be attributed to the insufficient spectral
calibration of the sensor. It is also worth noting the section of the Rikola spectrum labeled as sensor
noise in Figure A1 is caused by the internal setup of the camera. The camera consist of 2 sensors,
one captures spectra from 506–636 nm while the other sensor captures the VNIR range from 650 to
900 nm [81]. This causes a spectral jump in the range of ~640 nm (between the spectral ranges of the
two sensors), but does not affect the rest of the spectrum in any way. The laboratory test confirms that
the Rikola camera can detect REEs under laboratory conditions. We, therefore, concluded that it could
be possible to identify REE signatures in field conditions.
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