Frost Damage Assessment in Wheat Using Spectral Mixture Analysis
"> Figure 1
<p>(<b>a</b>) Fixed EMs used in all libraries. GC = green canopy, GL = green leaf, DL = dead leaf, DS = dry soil, Sen = senescent leaf, Sz = shade (zero). Derived from the PBC2006 data set. See the text for descriptions. (<b>b</b>) Frost and non-frost EMs for field sites. NFr-Kewell, Fr-Kewell = non-frost and frost at Kewell; NFr-PBC2006, Fr-PBC2006 = non-frost and frost, Plant Breeding Center 2006. (<b>c</b>) Non-frost (control) EMs for the 2016 Plant Breeding Center experiment. NFr = non-frosted, 20161103 and 20161111 = measurement dates, C = wheat canopy, H = wheat heads, L = wheat leaves. (<b>d</b>) Frost EMs for the 2016 Plant Breeding Center experiment. Fr = frost, 20161103′H’ = measurement date, ‘H’ = measurements collected on heading experiment. C = wheat canopy, H = wheat heads, L = wheat leaves. (<b>e</b>) Frost EMs for the 2016 Plant Breeding Center experiment. Fr = frost, 20161103′A’ and 20161111′A’ = measurement dates, ‘A’ = measurements collected on anthesis experiment. C = wheat canopy, H = wheat heads, L = wheat leaves. For all data sets, leaf and head data were collected using a spectrometer leaf clamp.</p> "> Figure 2
<p>Workflow for comparison of the 10 spectral libraries across the five target data sets. This figure uses the analysis of the Kewell canopy library (Lib 1) for linear unmixing of the Kewell target data set as one example. The spectral unmixing for each combination of spectral libraries and target data set was performed using two, three, four, five, and six EMs, resulting in 31 fraction sets. After checking that the root-mean-square error (RMSE) met the 0.025 threshold, and that yield was negatively correlated with Fr, all 31 fraction sets for the Kewell data set were used for regression analysis relative to yield. Fraction sets that were within 10% of the highest R<sup>2</sup> to yield (6 of 31 in this case) continued to final analysis.</p> "> Figure 3
<p>Best-fitting Fr fractions for each of the three data sets for yield for fraction sets (<a href="#remotesensing-11-02476-t002" class="html-table">Table 2</a>): (<b>a</b>) 20, (<b>b</b>) 17, (<b>c</b>) 9. See <a href="#remotesensing-11-02476-t003" class="html-table">Table 3</a> for fraction set compositions.</p> "> Figure 4
<p>Fr fractions from fraction sets: Kewell data set, Library 1 (Kewell canopy) (<a href="#remotesensing-11-02476-t002" class="html-table">Table 2</a>). The legend numbers are the individual fraction sets representing the source of the Fr fraction that fit the yield best (top 10%) as described in <a href="#remotesensing-11-02476-t002" class="html-table">Table 2</a>. The line fit is the same as that in <a href="#remotesensing-11-02476-f003" class="html-fig">Figure 3</a>a. Individual EMs in each fraction set are listed in <a href="#remotesensing-11-02476-t003" class="html-table">Table 3</a>.</p> ">
Abstract
:1. Introduction
- Can a core or “fixed” set of endmembers (EMs) be identified that can be used to unmix a range of data sets collected from different sites and times, allowing for assessment of frost damage?
- Can frost fractions derived from spectral mixture analysis be used to map frost damage in wheat using yield as a measure of frost damage?
2. Materials and Methods
2.1. Field Experiments
2.2. Reflectance Measurements
2.3. Spectral Libraries and Endmembers
2.4. Spectral Mixture Analysis
3. Results
3.1. Analysis Workflow
3.2. Deriving Fractions
3.3. Multiple Endmember Spectral Mixture Modelling (MESMA)
3.4. Comparison to NDVI
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Duddu, H.S.N.; Pajic, V.; Noble, S.D.; Tanino, K.K.; Shirtliffe, S.J. Image-Based Rapid Estimation of Frost Damage in Canola (Brassica napus L.). Can. J. Remote Sens. 2018, 44, 169–175. [Google Scholar] [CrossRef]
- Maqbool, A.; Shafiq, S.; Lake, L. Radiant frost tolerance in pulse crops—A review. Euphytica 2010, 172, 1–12. [Google Scholar] [CrossRef]
- Martino, D.L.; Abbate, P.E. Frost damage on grain number in wheat at different spike developmental stages and its modelling. Eur. J. Agron. 2019, 103, 13–23. [Google Scholar] [CrossRef]
- Boer, R.; Campbell, L.; Fletcher, D. Characteristics of frost in a major wheat-growing region of Australia. Aust. J. Agric. Res. 1993, 44, 1731–1743. [Google Scholar] [CrossRef] [Green Version]
- Mushtaq, S.; An-Vo, D.-A.; Christopher, M.; Zheng, B.; Chenu, K.; Chapman, S.C.; Christopher, J.T.; Stone, R.C.; Frederiks, T.M.; Alam, G.M.M. Economic assessment of wheat breeding options for potential improved levels of post head-emergence frost tolerance. Field Crops Res. 2017, 213, 75–88. [Google Scholar] [CrossRef]
- Paulsen, G.M.; Heyne, E.G. Grain Production of Winter Wheat after Spring Freeze Injury1. Agron. J. 1983, 75, 705–707. [Google Scholar] [CrossRef]
- March, T.; Knights, S.; Biddulph, B.; Ogbonnaya, F.; Maccallum, R.; Belford, R.K. The GRDC National Frost Initiative. In Proceedings of the GRDC Updates, Adelaide, Australia, 10 February 2015. [Google Scholar]
- Marcellos, H.; Single, W. Temperatures in wheat during radiation frost. Aust. J. Exp. Agric. 1975, 15, 818–822. [Google Scholar] [CrossRef]
- The Intergovernmental Panel on Climate Change; Field, C.B.; Barros, V.; Stocker, T.F.; Dahe, Q. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Fuller, M.P.; Fuller, A.M.; Kaniouras, S.; Christophers, J.; Fredericks, T. The freezing characteristics of wheat at ear emergence. Eur. J. Agron. 2007, 26, 435–441. [Google Scholar] [CrossRef]
- Porter, J.; Gawith, M. Temperatures and the growth and development of wheat: A review. Eur. J. Agron. 1999, 10, 23–36. [Google Scholar] [CrossRef]
- Cromey, M.G.; Wright, D.S.C.; Boddington, H.J. Effects of frost during grain filling on wheat yield and grain structure. N. Z. J. Crop Hortic. Sci. 1998, 26, 279–290. [Google Scholar] [CrossRef]
- Al-Issawi, M.; Rihan, H.Z.; El-Sarkassy, N.; Fuller, M.P. Frost Hardiness Expression and Characterisation in Wheat at Ear Emergence. J. Agron. Crop Sci. 2013, 199, 66–74. [Google Scholar] [CrossRef]
- Marcellos, H.; Single, W. Frost Injury in Wheat Ears After Ear Emergence. Funct. Plant Biol. 1984, 11, 7–15. [Google Scholar] [CrossRef]
- Frederiks, T.M.; Christopher, J.T.; Sutherland, M.W.; Borrell, A.K. Post-head-emergence frost in wheat and barley: Defining the problem, assessing the damage, and identifying resistance. J. Exp. Bot. 2015, 66, 3487–3498. [Google Scholar] [CrossRef] [PubMed]
- Macedo-Cruz, A.; Pajares, G.; Santos, M.; Villegas-Romero, I. Digital Image Sensor-Based Assessment of the Status of Oat (Avena sativa L.) Crops after Frost Damage. Sensors 2011, 11, 6015–6036. [Google Scholar] [CrossRef]
- Flower, K.; Boruss, B.; Nansen, C.; Jones, H.; Thompson, S.; Lacoste, C.; Murphy, M. Proof of Concept: Remote Sensing Frosted-Induced Stress in Wheat Paddocks; Grains Research and Development Corporation: Canberra, Australia, 2014; p. 36. [Google Scholar]
- Wu, Q.; Zhu, D.; Wang, C.; Ma, Z.; Wang, J. Diagnosis of freezing stress in wheat seedlings using hyperspectral imaging. Biosyst. Eng. 2012, 112, 253–260. [Google Scholar] [CrossRef]
- Nuttall, J.G.; Perry, E.M.; Delahunty, A.J.; O’Leary, G.J.; Barlow, K.M.; Wallace, A.J. Frost response in wheat and early detection using proximal sensors. J. Agron. Crop Sci. 2019, 205, 220–234. [Google Scholar] [CrossRef]
- Perry, E.M.; Nuttall, J.G.; Wallace, A.J.; Fitzgerald, G.J. In-field methods for rapid detection of frost damage in Australian dryland wheat during the reproductive and grain-filling phase. Crop Pasture Sci. 2017, 68, 516–526. [Google Scholar] [CrossRef]
- Stutsel, B. Temperature Dynamics in Wheat (Triticum Aestivum) Canopies during Frost; The University of Western Australia: Perth, Australia, 2019. [Google Scholar]
- Rebbeck, M.; Knell, G.; Hayman, P.; Lynch, C.; Alexander, B.; Faulkner, M.; Gusta, L.; Duffield, T.; Curtin, S.; Falconer, D. Managing Frost Risk: A Guide for Southern Australian Grains; South Australian Research and Development Institure and Grains Research and Development Corporation: Canberra, Australia, 2007; p. 64. [Google Scholar]
- Feng, W.; Yao, X.; Zhu, Y.; Tian, Y.C.; Cao, W.X. Monitoring leaf nitrogen status with hyperspectral reflectance in wheat. Eur. J. Agron. 2008, 28, 394–404. [Google Scholar] [CrossRef]
- Bock, C.H.; Poole, G.H.; Parker, P.E.; Gottwald, T.R. Plant Disease Severity Estimated Visually, by Digital Photography and Image Analysis, and by Hyperspectral Imaging. Crit. Rev. Plant Sci. 2010, 29, 59–107. [Google Scholar] [CrossRef]
- Fitzgerald, G.J.; Maas, S.J.; Detar, W.R. Spider Mite Detection and Canopy Component Mapping in Cotton Using Hyperspectral Imagery and Spectral Mixture Analysis. Precis. Agric. 2004, 5, 275–289. [Google Scholar] [CrossRef]
- Masoni, A.; Ercoli, L.; Mariotti, M. Spectral Properties of Leaves Deficient in Iron, Sulfur, Magnesium, and Manganese. Agron. J. 1996, 88, 937–943. [Google Scholar] [CrossRef]
- Cotrozzi, L.; Townsend, P.A.; Pellegrini, E.; Nali, C.; Couture, J.J. Reflectance spectroscopy: A novel approach to better understand and monitor the impact of air pollution on Mediterranean plants. Environ. Sci. Pollut. Res. 2018, 25, 8249–8267. [Google Scholar] [CrossRef]
- Adams, J.B.; Gillespie, A.R. Remote Sensing of Landscapes with Spectral Images: A Physical Modeling Approach; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar] [CrossRef]
- Somers, B.; Asner, G.P.; Tits, L.; Coppin, P. Endmember variability in Spectral Mixture Analysis: A review. Remote Sens. Environ. 2011, 115, 1603–1616. [Google Scholar] [CrossRef]
- Nakagawa, S.; Santos, E.S.A. Methodological issues and advances in biological meta-analysis. Evol. Ecol. 2012, 26, 1253–1274. [Google Scholar] [CrossRef]
- Fitzgerald, G.; Rodriguez, D.; O’Leary, G. Measuring and predicting canopy nitrogen nutrition in wheat using a spectral index—The canopy chlorophyll content index (CCCI). Field Crops Res. 2010, 116, 318–324. [Google Scholar] [CrossRef]
- March, T.; Laws, M.; Eckermann, P.; Reinheimer, J.; Biddulph, B.; Eglinton, J. Frost Tolerance: Identifying Robust Varieties; Grains Research Development Corporation: Adelaide, Australia, 2013. [Google Scholar]
- Reinheimer, J.L.; Barr, A.R.; Eglinton, J.K. QTL mapping of chromosomal regions conferring reproductive frost tolerance in barley (Hordeum vulgare L.). Theor. Appl. Genet. 2004, 109, 1267–1274. [Google Scholar] [CrossRef]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Biddulph, B.; Laws, M.; Eckermann, P.; Maccallam, R.; Leske, B.; March, T.; Eglinton, J. Preliminary ratings of wheat varieties for susceptibility to reproductive frost damage. In Proceedings of the GRDC Updates, Murray Bridge, Australia, 12 February 2015. [Google Scholar]
- White, C. Cereals—Frost Identification The Back Pocket Guide. In Bulletin 4375; Grains Research and Development Corporation: Canberra, Australia; Government of Western Australia Dept. of Agriculture: Kensington, Australia, 2000; p. 12. [Google Scholar]
- Stutsel, B.M.; Callow, J.N.; Flower, K.; Biddulph, T.B.; Cohen, B.; Leske, B. An Automated Plot Heater for Field Frost Research in Cereals. Agronomy 2019, 9, 96. [Google Scholar] [CrossRef]
- Roberts, D.A.; Gardner, M.; Church, R.; Ustin, S.; Scheer, G.; Green, R.O. Mapping Chaparral in the Santa Monica Mountains Using Multiple Endmember Spectral Mixture Models. Remote Sens. Environ. 1998, 65, 267–279. [Google Scholar] [CrossRef]
- Smith, M.O.; Ustin, S.L.; Adams, J.B.; Gillespie, A.R. Vegetation in deserts: I. A regional measure of abundance from multispectral images. Remote Sens. Environ. 1990, 31, 1–26. [Google Scholar] [CrossRef]
- Adams, J.B.; Smith, M.O.; Johnson, P.E. Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 Site. J. Geophys. Res. Solid Earth 1986, 91, 8098–8112. [Google Scholar] [CrossRef]
- Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ETRS. In Proceedings of the Third Earth Resources Technology Satellite-1 Symposium, Goddard Space Flight Cent., Washington, DC, USA, 10–14 December 1973; pp. 309–317. [Google Scholar]
- Bateson, C.A.; Asner, G.P.; Wessman, C.A. Endmember bundles: A new approach to incorporating endmember variability into spectral mixture analysis. IEEE Trans. Geosci. Remote Sens. 2000, 38, 1083–1094. [Google Scholar] [CrossRef]
- Cammarano, D.; Fitzgerald, G.J.; Casa, R.; Basso, B. Assessing the Robustness of Vegetation Indices to Estimate Wheat N in Mediterranean Environments. Remote Sens. 2014, 6, 2827–2844. [Google Scholar] [CrossRef] [Green Version]
- Fitzgerald, G.J.; Pinter, P.J.; Hunsaker, D.J.; Clarke, T.R. Multiple shadow fractions in spectral mixture analysis of a cotton canopy. Remote Sens. Environ. 2005, 97, 526–539. [Google Scholar] [CrossRef]
- Fitzgerald, G.J. Characterizing vegetation indices derived from active and passive sensors. Int. J. Remote Sens. 2010, 31, 4335–4348. [Google Scholar] [CrossRef]
Library Number | Library Name | Data Set with EM Spectra, EM Name (no. Spectra to Create EM) | ||
---|---|---|---|---|
Kewell 2 | PBC2006 3 | PBC2016 4 | ||
1 | Kewell canopy | NFr-K (9), Fr-K (9) | GC (2), Sen (2), DL (2), DS (4) | |
2 | PBC2006 canopy | GC, Sen, DL, DS, NFr-P06 (2), Fr-P06 (2) | ||
3 | Kewell leaf | NFr-K, Fr-K | GL (9), Sen, DL, DS | |
4 | PBC2006 leaf | GL, Sen, DL, DS, NFr-P06, Fr-P06 | ||
5 | PBC2016_’A’ heads | GL, Sen, DL, DS | NFr-P161103_H (20), Fr-P161103′A’_H (5) | |
6 | PBC2016_’A’ leaves | GL, Sen, DL, DS | NFr-P161103_L (20), Fr-P161103′A’_L (5) | |
7 | PBC2016_’A’ canopy | GC, Sen, DL, DS | NFr-P161111_C (20), Fr-P161111′A’_C (5) | |
8 | PBC2016_’H’ canopy | GC, Sen, DL, DS | NFr-P161103_C (12), Fr161103′H’_C (3) | |
9 | PBC2016_’H’ heads | GL, Sen, DL, DS | NFr-P161103_H, Fr-P161103′H’_H | |
10 | PBC2016_’H’ leaves | GL, Sen, DL, DS | NFr-P161103_L, Fr-P161103′H’_L |
Target Data Set | Library # | Library Name | Fraction RMSE Mean | Max R2 | Min R2 | Fraction Set #—Ranked by R2, Max to Min |
---|---|---|---|---|---|---|
Kewell | 1 | Kewell canopy | 0.0051 | 0.75 | 0.69 | 20, 7, 29, 28, 17, 21 |
2 | PBC2006 canopy | 0.0073 | 0.71 | 0.65 | 21, 29, 26, 31, 27, 23, 17, 28 | |
3 | Kewell leaf | 0.0063 | 0.64 | 0.57 | 10, 29, 21, 28, 17, 20, 31 | |
4 | PBC2006 leaf | 0.0071 | 0.70 | 0.58 | 27, 26, 31, 28, 23, 29, 13, 19 | |
PBC2006 | 1 | Kewell canopy | 0.0063 | 0.63 | 0.57 | 8, 7, 20, 17, 10, 2, 21, 29 |
2 | PBC2006 canopy | 0.0042 | 0.68 | 0.62 | 17, 28, 29, 27, 21, 7, 18, 30, 20, 31, 25, 26, 19, 8, 12, 23, 10, 13 | |
3 | Kewell leaf | 0.0151 | 0.57 | 0.52 | 2, 10 | |
4 | PBC2006 leaf | 0.0068 | 0.65 | 0.58 | 12, 25, 18, 23, 30, 7, 13, 20, 16, 22, 5, 10, 9, 28 | |
5 | PBC2016′A’ head | 0.0124 | 0.58 | 0.53 | 28, 9, 27, 18, 30, 22, 19 | |
6 | PBC2016′A’ leaf | 0.0168 | 0.57 | 0.52 | 2, 10 | |
7 | PBC2016′A’ canopy | 0.0074 | 0.58 | 0.53 | 9, 19, 13 | |
8 | PBC2016′H’ canopy | 0.0092 | 0.61 | 0.57 | 13, 5, 2 | |
9 | PBC2016′H’ head | 0.0108 | 0.61 | 0.56 | 19, 9, 2, 18, 28 | |
10 | PBC2016′H’ leaf | 0.0189 | 0.57 | 0.57 | 2 | |
PBC2016 | 1 | Kewell canopy | 0.0126 | 0.41 | 0.41 | 8 |
2 | PBC2006 canopy | 0.0133 | 0.36 | 0.36 | 13 | |
4 | PBC2006 leaf | 0.0127 | 0.38 | 0.36 | 19, 13 | |
6 | PBC2016′A’ leaf | 0.0241 | 0.31 | 0.31 | 8 | |
8 | PBC2016′H’ canopy | 0.0063 | 0.58 | 0.56 | 9, 19, 13, 8 | |
9 | PBC2016′H’ head | 0.0194 | 0.52 | 0.52 | 19 | |
10 | PBC2016′H’ leaf | 0.0219 | 0.35 | 0.35 | 8 | |
PBC2016Heads | 5 | PBC2016′A’ head | 0.0223 | 0.20 | 0.19 | 12, 16, 25 |
9 | PBC2016′H’ head | 0.0098 | 0.18 | 0.17 | 25, 16, 12 | |
PBC2016Leaves | 6 | PBC2016′A’ leaf | 0.0175 | 0.11 | 0.09 | 25, 22, 12, 16, 20 |
10 | PBC2016′H’ leaf | 0.0084 | 0.10 | 0.10 | 25 |
Fraction Set Number | EM1 | EM2 | EM3 | EM4 | EM5 | EM6 | Best Fit to Yield |
---|---|---|---|---|---|---|---|
1 | Fr | Sz | |||||
2 | GC/GL | Fr | Sz | ||||
3 | SDL | Fr | Sz | ||||
4 | DS | Fr | Sz | ||||
5 | NFr | Fr | Sz | ||||
6 | Sen | Fr | Sz | ||||
7 | GC/GL | DL | Fr | Sz | K, P06 | ||
8 | GC/GL | DS | Fr | Sz | P06, P16 | ||
9 | GC/GL | NFr | Fr | Sz | P16* | ||
10 | GC/GL | Sen | Fr | Sz | P06 | ||
11 | DL | DS | Fr | Sz | |||
12 | DL | NFr | Fr | Sz | P06 | ||
13 | DS | NFr | Fr | Sz | P06, P16 | ||
14 | Sen | DL | Fr | Sz | |||
15 | Sen | DS | Fr | Sz | |||
16 | Sen | NFr | Fr | Sz | |||
17 | GC/GL | DL | DS | Fr | Sz | K, P06* | |
18 | GC/GL | DL | NFr | Fr | Sz | P06 | |
19 | GC/GL | DS | NFr | Fr | Sz | P06, P16 | |
20 | GC/GL | Sen | DL | Fr | Sz | K*, P06 | |
21 | GC/GL | Sen | DS | Fr | Sz | K, P06 | |
22 | GC/GL | Sen | NFr | Fr | Sz | ||
23 | DL | DS | NFr | Fr | Sz | P06 | |
24 | Sen | DL | DS | Fr | Sz | ||
25 | Sen | DL | NFr | Fr | Sz | P06 | |
26 | Sen | DS | NFr | Fr | Sz | P06 | |
27 | GC/GL | Sen | DS | NFr | Fr | Sz | P06 |
28 | GC/GL | DL | DS | NFr | Fr | Sz | K, P06 |
29 | GC/GL | Sen | SDL | DS | Fr | Sz | K, P06 |
30 | GC/GL | Sen | SDL | NFr | Fr | Sz | P06 |
31 | Sen | SDL | DS | NFr | Fr | Sz | P06 |
Data Set. | Yield R2 |
---|---|
PBC2006 | 0.55 |
Kewell | 0.03 |
PBC2016 | 0.34 |
PBC2016Heads | 0.06 |
PBC2016Leaves | 0.08 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fitzgerald, G.J.; Perry, E.M.; Flower, K.C.; Callow, J.N.; Boruff, B.; Delahunty, A.; Wallace, A.; Nuttall, J. Frost Damage Assessment in Wheat Using Spectral Mixture Analysis. Remote Sens. 2019, 11, 2476. https://doi.org/10.3390/rs11212476
Fitzgerald GJ, Perry EM, Flower KC, Callow JN, Boruff B, Delahunty A, Wallace A, Nuttall J. Frost Damage Assessment in Wheat Using Spectral Mixture Analysis. Remote Sensing. 2019; 11(21):2476. https://doi.org/10.3390/rs11212476
Chicago/Turabian StyleFitzgerald, Glenn J., Eileen M. Perry, Ken C. Flower, J. Nikolaus Callow, Bryan Boruff, Audrey Delahunty, Ashley Wallace, and James Nuttall. 2019. "Frost Damage Assessment in Wheat Using Spectral Mixture Analysis" Remote Sensing 11, no. 21: 2476. https://doi.org/10.3390/rs11212476
APA StyleFitzgerald, G. J., Perry, E. M., Flower, K. C., Callow, J. N., Boruff, B., Delahunty, A., Wallace, A., & Nuttall, J. (2019). Frost Damage Assessment in Wheat Using Spectral Mixture Analysis. Remote Sensing, 11(21), 2476. https://doi.org/10.3390/rs11212476