A Hybrid Model Integrating Spatial Pattern, Spatial Correlation, and Edge Information for Image Classification
<p>The three images used for experiments: (<b>a</b>,<b>b</b>) The ROSIS image subset and the ground-truth map, (<b>c</b>,<b>d</b>) the IKONOS image subset and the ground-truth map, (<b>e</b>,<b>f</b>) the Landsat image subset and the ground-truth map.</p> "> Figure 2
<p>The flowchart of the contextual classification using an MIX-E model.</p> "> Figure 3
<p>The data template of 3 × 3 pixels with a multi-grid level, <span class="html-italic">L</span>, of 5.</p> "> Figure 4
<p>Classification results using different methods for the ROSIS image: (<b>a</b>) MLC, (<b>b</b>) MLC-SF, (<b>c</b>) MLC-MRF, (<b>d</b>) MLC-MIX, (<b>e</b>) MLC-MIX-E, (<b>f</b>) KNN, (<b>g</b>) KNN-SF, (<b>h</b>) KNN-MRF, (<b>i</b>) KNN-MIX, (<b>j</b>) MLC-MIX-E, (<b>k</b>) SVM, (l) SVM-SF, (<b>m</b>) SVM-MRF, (<b>n</b>) SVM-MIX, (<b>o</b>) SVM-MIX-E, (<b>p</b>) RF, (<b>q</b>) XGBoost, (<b>r</b>) MLP, (<b>s</b>) gKNN, (<b>t</b>) MPKNN, (<b>u</b>) WMV, (<b>v</b>) MMD-E, (<b>w</b>) EPF, and (<b>x</b>) ground-truth.</p> "> Figure 5
<p>Classification results using different methods for the IKONOS image: (<b>a</b>) MLC, (<b>b</b>) MLC-SF, (<b>c</b>) MLC-MRF, (<b>d</b>) MLC-MIX, (<b>e</b>) MLC-MIX-E, (<b>f</b>) KNN, (<b>g</b>) KNN-SF, (<b>h</b>) KNN-MRF, (<b>i</b>) KNN-MIX, (<b>j</b>) MLC-MIX-E, (<b>k</b>) SVM, (l) SVM-SF, (<b>m</b>) SVM-MRF, (<b>n</b>) SVM-MIX, (<b>o</b>) SVM-MIX-E, (<b>p</b>) RF, (<b>q</b>) XGBoost, (<b>r</b>) MLP, (<b>s</b>) gKNN, (<b>t</b>) MPKNN, (<b>u</b>) WMV, (<b>v</b>) MMD-E, (<b>w</b>) EPF, and (<b>x</b>) ground-truth.</p> "> Figure 6
<p>Classification results using different methods for the Landsat image: (<b>a</b>) MLC, (<b>b</b>) MLC-SF, (<b>c</b>) MLC-MRF, (<b>d</b>) MLC-MIX, (<b>e</b>) MLC-MIX-E, (<b>f</b>) KNN, (<b>g</b>) KNN-SF, (<b>h</b>) KNN-MRF, (<b>i</b>) KNN-MIX, (<b>j</b>) MLC-MIX-E, (<b>k</b>) SVM, (l) SVM-SF, (<b>m</b>) SVM-MRF, (<b>n</b>) SVM-MIX, (<b>o</b>) SVM-MIX-E, (<b>p</b>) RF, (<b>q</b>) XGBoost, (<b>r</b>) MLP, (<b>s</b>) gKNN, (<b>t</b>) MPKNN, (<b>u</b>) WMV, (<b>v</b>) MMD-E, (<b>w</b>) EPF, and (<b>x</b>) ground-truth.</p> "> Figure 7
<p>Plots of overall classification accuracies against proportional weighting, <span class="html-italic">w</span>, and smoothing parameter, <span class="html-italic">β</span>, with the maximum value indicated by the red star. (<b>a</b>) The MLC-MIX-E method for the ROSIS image (with maximum accuracy achieved at <span class="html-italic">w</span> = 0.5, <span class="html-italic">β</span> = 4), (<b>b</b>) the SVM-MIX-E method for the IKONOS image (with maximum accuracy achieved at <span class="html-italic">w</span> = 0.8, <span class="html-italic">β</span> = 5), and (<b>c</b>) the MLC-MIX-E method for the Landsat image (with maximum accuracy achieved at <span class="html-italic">w</span> = 0.1, <span class="html-italic">β</span> = 4).</p> "> Figure 8
<p>Spatial pattern in the form of MP probabilities derived from MLC classification results: (<b>a</b>) The ROSIS image, (<b>b</b>) the IKONOS image, and (<b>c</b>) the Landsat image.</p> "> Figure 9
<p>Spatial correlation in the form of spatial covariance derived from MLC classification results: (<b>a</b>) The ROSIS image, (<b>b</b>) the IKONOS image, and (<b>c</b>) the Landsat image.</p> "> Figure 10
<p>Contextual classification results based on the MLC for the ROSIS image: (<b>a</b>) MRF result and zoomed image, (<b>b</b>) MRF + Cor result and zoomed image, (<b>c</b>) MRF + Pat result and zoomed image.</p> "> Figure 11
<p>Contextual classification results based on the MLC for the Landsat image: (<b>a</b>) MRF result and zoomed image, (<b>b</b>) MRF + Cor and zoomed image, (<b>c</b>) MRF + Pat and zoomed image.</p> "> Figure 12
<p>Classification results using the MLC-MIX-E method for the Landsat image based on different TIs. (<b>a</b>) The KNN classification result used as TI and the classification result, (<b>b</b>) the MLC-MIX-E classification result used as TI and the classification result, (<b>c</b>) the simulation image with the proper class proportions used as TI and the classification result, (<b>d</b>) the simulation image with the improper class proportions used as TI and the classification result, (<b>e</b>) the stripes pattern with the proper class proportions used as TI and the classification result, (<b>f</b>) the stripes pattern with the improper class proportions used as TI and the classification result, (<b>g</b>) the random noise pattern with the proper class proportions used as TI and the classification result, (<b>h</b>) the random noise pattern with the improper class proportions used as TI and the classification result.</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Datasets and Study Areas
2.2. Methods
2.2.1. Multi-Grid Template
2.2.2. Extraction of Spatial Pattern
2.2.3. Estimation of Spatial Correlation
2.2.4. Extraction of Edge Information
2.2.5. The MIX-E Model
2.3. Classification
3. Results and Analysis
3.1. Classification Results
3.2. Parameter Analysis
3.3. Spatial Pattern vs. Spatial Correlation
4. Discussion
4.1. Training Image Selection
4.2. Pros and Cons
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shekhar, S.; Schrater, P.; Vatsavai, R.R.; Weili, W.; Chawla, S. Spatial contextual classification and prediction models for mining geospatial data. IEEE Trans. Multimedia 2002, 4, 174–188. [Google Scholar] [CrossRef]
- Osaku, D.; Nakamura, R.Y.M.; Pereira, L.A.M.; Pisani, R.J.; Levada, A.L.M.; Cappabianco, F.A.M.; Falcão, A.X.; Papa, J.P. Improving land cover classification through contextual-based optimum-path forest. Inf. Sci. 2015, 324, 60–87. [Google Scholar] [CrossRef] [Green Version]
- Tobler, W.R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Atkinson, P.M.; Lewis, P. Geostatistical classification for remote sensing: An introduction. Comput. Geosci. 2000, 26, 361–371. [Google Scholar] [CrossRef]
- Griffith, D.A.; Fellows, P.L. Pixels and eigenvectors: Classification of Landsat TM imagery using spectral and locational information. In Spatial Accuracy Assessment: Land Information Uncertainty in Natural Resources; CRC: Kim Lowell, Annick Jaton, 2000; pp. 309–317. [Google Scholar]
- Magnussen, S.; Boudewyn, P.; Wulder, M. Contextual classification of Landsat TM images to forest inventory cover types. Int. J. Remote Sens. 2004, 25, 2421–2440. [Google Scholar] [CrossRef]
- Ghimire, B.; Rogan, J.; Miller, J. Contextual land-cover classification: Incorporating spatial dependence in land-cover classification models using random forests and the Getis statistic. Remote Sens. Lett. 2010, 1, 45–54. [Google Scholar] [CrossRef]
- Negri, R.G.; Dutra, L.V.; Sant’Anna, S.J.S. An innovative support vector machine based method for contextual image classification. ISPRS J. Photogramm. Remote Sens. 2014, 87, 241–248. [Google Scholar] [CrossRef]
- Pasolli, E.; Melgani, F.; Tuia, D.; Pacifici, F.; Emery, W.J. SVM active learning approach for image classification using spatial information. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2217–2233. [Google Scholar] [CrossRef]
- Pereira, D.R.; Papa, J.P. A new approach to contextual learning using interval arithmetic and its applications for land-use classification. Pattern Recognit. Lett. 2016, 83, 188–194. [Google Scholar] [CrossRef]
- Ma, L.; Ma, A.; Ju, C.; Li, X. Graph-based semi-supervised learning for spectral-spatial hyperspectral image classification. Pattern Recognit. Lett. 2016, 83, 133–142. [Google Scholar] [CrossRef]
- Zhao, W.; Du, S.; Wang, Q.; Emery, W.J. Contextually guided very-high-resolution imagery classification with semantic segments. ISPRS J. Photogramm. Remote Sens. 2017, 132, 48–60. [Google Scholar] [CrossRef]
- Tang, Y.; Jing, L.; Li, H.; Atkinson, P.M. A multiple-point spatially weighted k-NN method for object-based classification. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 263–274. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Lu, Q.; Zhang, L.; Plaza, A. New postprocessing methods for remote sensing image classification: A systematic study. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7140–7159. [Google Scholar] [CrossRef]
- Wang, L.; Huang, X.; Zheng, C.; Zhang, Y. A Markov random field integrating spectral dissimilarity and class co-occurrence dependency for remote sensing image classification optimization. ISPRS J. Photogramm. Remote Sens. 2017, 128, 223–239. [Google Scholar] [CrossRef]
- Tomasi, C.; Manduchi, R. Bilateral filtering for gray and color images. In Proceedings of the Sixth International Conference on Computer Vision, Bombay, India, 7 January 1998. [Google Scholar]
- Perona, P.; Malik, J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 1990, 12, 629–639. [Google Scholar] [CrossRef] [Green Version]
- Büschenfeld, T.; Ostermann, J. Edge preserving land cover classification refinement using mean shift segmentation. In Proceedings of the GEOBIA 2012: 4th International Conference on Geographic Object-Based Image Analysis, Rio de Janeiro, Brazil, 7–9 May 2012. [Google Scholar]
- Blaschke, T.; Hay, G.J.; Kelly, M.; Lang, S.; Hofmann, P.; Addink, E.; Feitosa, R.Q.; van der Meer, F.; van der Werff, H.; van Coillie, F.; et al. Geographic object-based image analysis—Towards a new paradigm. ISPRS J. Photogramm. Remote Sens. 2014, 87, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Voltersen, M.; Berger, C.; Hese, S.; Schmullius, C. Object-based land cover mapping and comprehensive feature calculation for an automated derivation of urban structure types at block level. Remote Sens. Environ. 2014, 154, 192–201. [Google Scholar] [CrossRef]
- Chen, G.; Weng, Q.; Hay, G.J.; He, Y. Geographic object-based image analysis (GEOBIA): Emerging trends and future opportunities. GISci. Remote Sens. 2018, 55, 159–182. [Google Scholar] [CrossRef]
- Aksoy, S.; Yalniz, I.Z.; Tasdemir, K. Automatic detection and segmentation of orchards using very high resolution imagery. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3117–3131. [Google Scholar] [CrossRef]
- Atkinson, P.M.; Naser, D.K. A geostatistically weighted K-NN classifier for remotely sensed imagery. Geograph. Anal. 2010, 42, 204–225. [Google Scholar] [CrossRef]
- Adjorlolo, C.; Mutanga, O. Integrating remote sensing and geostatistics to estimate woody vegetation in an African savanna. J. Spatial Sci. 2013, 58, 305–322. [Google Scholar] [CrossRef]
- Van der Meer, F. Remote-sensing image analysis and geostatistics. Int. J. Remote Sens. 2012, 33, 5644–5676. [Google Scholar] [CrossRef]
- Strebelle, S. Conditional simulation of complex geological structures using multiple-point statistics. Math. Geol. 2002, 34, 1–21. [Google Scholar] [CrossRef]
- Ge, Y.; Bai, H. Multiple-point simulation-based method for extraction of objects with spatial structure from remotely sensed imagery. Int. J. Remote Sens. 2011, 32, 2311–2335. [Google Scholar] [CrossRef]
- Tang, Y.; Jing, L.; Atkinson, P.M.; Li, H. A multiple-point spatially weighted k-NN classifier for remote sensing. Int. J. Remote Sens. 2016, 37, 4441–4459. [Google Scholar] [CrossRef]
- Tang, Y.; Atkinson, P.M.; Wardrop, N.A.; Zhang, J. Multiple-point geostatistical simulation for post-processing a remotely sensed land cover classification. Spat. Stat. 2013, 5, 69–84. [Google Scholar] [CrossRef]
- Solberg, A.H.S.; Taxt, T.; Jain, A.K. A Markov random field model for classification of multisource satellite imagery. IEEE Trans. Geosci. Remote Sens. 1996, 34, 100–113. [Google Scholar] [CrossRef]
- Sun, S.; Zhong, P.; Xiao, H.; Wang, R. Spatial contextual classification of remote sensing images using a Gaussian process. Remote Sens. Lett. 2016, 7, 131–140. [Google Scholar] [CrossRef]
- Sun, L.; Wu, Z.; Liu, J.; Xiao, L.; Wei, Z. Supervised spectral-spatial hyperspectral image classification with weighted Markov random fields. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1490–1503. [Google Scholar] [CrossRef]
- Khodadadzadeh, M.; Li, J.; Plaza, A.; Ghassemian, H.; Bioucas-Dias, J.; Li, X. Spectral-spatial classification of hyperspectral data using local and global probabilities for mixed pixel characterization. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6298–6314. [Google Scholar] [CrossRef]
- Lu, Q.; Huang, X.; Li, J.; Zhang, L. A novel MRF-based multifeature fusion for classification of remote sensing images. IEEE Geosci. Remote Sens. Lett. 2016, 13, 515–519. [Google Scholar] [CrossRef]
- Tarabalka, Y.; Fauvel, M.; Chanussot, J.; Benediktsson, J.A. SVM-and MRF-based method for accurate classification of hyperspectral images. IEEE Geosci. Remote Sens. Lett. 2010, 7, 736–740. [Google Scholar] [CrossRef]
- Noda, H.; Shirazi, M.N.; Kawuguchi, E. MRF-based texture segmentation using wavelet decomposed images. Pattern Recognit. 2002, 35, 771–782. [Google Scholar] [CrossRef] [Green Version]
- Zheng, C.; Qin, Q.; Liu, G.; Hu, Y. Image segmentation based on multiresolution Markov random field with fuzzy constraint in wavelet domain. IET Image Process. 2012, 6, 213–221. [Google Scholar] [CrossRef]
- Zheng, C.; Zhang, Y.; Wang, L. Semantic segmentation of remote sensing imagery using an object-based Markov random field model with auxiliary label fields. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3015–3028. [Google Scholar] [CrossRef]
- Luo, H.; Wang, C.; Wen, C.; Chen, Y.; Zai, D.; Yu, Y.; Li, J. Semantic labeling of mobile LiDAR point clouds via active learning and higher order MRF. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3631–3644. [Google Scholar] [CrossRef]
- Zhao, W.; Emery, W.J.; Bo, Y.; Chen, J. Land cover mapping with higher order graph-based co-occurrence model. Remote Sens. 2018, 10, 1713. [Google Scholar] [CrossRef]
- Okabe, H.; Blunt, M.J. Pore space reconstruction using multiple-point statistics. J. Pet. Sci. Eng. 2005, 46, 121–137. [Google Scholar] [CrossRef]
- Remy, N. Geostatistical Earth Modeling Software: User’s Manual; Stanford University: Stanford, CA, USA, 2004; pp. 69–85. [Google Scholar]
- Tran, T. Improving variogram reproduction on dense simulation grids. Comput. Geosci. 1994, 20, 1161–1168. [Google Scholar] [CrossRef]
- Gonzalez, R.; Woods, R. Digital Image Processing, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2002; pp. 167–187. [Google Scholar]
- Tarabalka, Y.; Chanussot, J.; Benediktsson, J. Segmentation and classification of hyperspectral images using watershed transformation. Pattern Recognit. 2010, 43, 2367–2379. [Google Scholar] [CrossRef] [Green Version]
- Li, S.Z. Markov Random Field Modeling in Image Analysis, 3rd ed.; Springer: London, UK, 2009; pp. 13–17. [Google Scholar]
- Li, S.; Zhang, B.; Chen, D.; Gao, L.; Peng, M. Errata: Adaptive support vector machine and Markov random field model for classifying hyperspectral imagery. J. Appl. Remote Sens. 2011, 5, 053538. [Google Scholar] [CrossRef]
- Moser, G.; Serpico, S.B. Combining support vector machines and Markov random fields in an integrated framework for contextual image classification. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2734–2752. [Google Scholar] [CrossRef]
- Wu, T.-F.; Lin, C.-J.; Weng, R.C. Probability estimates for multiclass classification by pairwise coupling. J. Mach. Learn. Res. 2004, 5, 975–1005. [Google Scholar]
- Dudani, S.A. The distance weighted k-nearest neighbour rule. IEEE Trans. Syst. Man Cybern. 1976, SMC-6, 325–327. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; p. 785. [Google Scholar]
- Kang, X.; Li, S.; Benediktsson, J.A. Spectral-spatial hyperspectral image classification with edge-preserving filtering. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2666–2677. [Google Scholar] [CrossRef]
- Thoonen, G.; Hufkens, K.; Borre, J.V.; Spanhove, T.; Scheunders, P. Accuracy assessment of contextual classification results for vegetation mapping. Int. J. Appl. Earth Observ. Geoinf. 2012, 15, 7–15. [Google Scholar] [CrossRef]
- Xia, J.; Chanussot, J.; Du, P.; He, X. Spectral-spatial classification for hyperspectral data using rotation forests with local feature extraction and Markov random fields. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2532–2546. [Google Scholar] [CrossRef]
- Li, F.; Clausi, D.A.; Xu, L.; Wong, A. ST-IRGS: A region-based self-training algorithm applied to hyperspectral image classification and segmentation. IEEE Trans. Geosci. Remote Sens. 2017, 56, 3–16. [Google Scholar] [CrossRef]
- Strebelle, S. Sequential Simulation Drawing Structures from Training Images. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 2000. [Google Scholar]
- Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Kabos, S.; Csillag, F. The analysis of spatial association on a regular lattice by join-count statistics without the assumption of first-order homogeneity. Comput. Geosci. 2002, 28, 901–910. [Google Scholar] [CrossRef]
- Bai, H.; Ge, Y.; Mariethoz, G. Utilizing spatial association analysis to determine the number of multiple grids for multiple-point statistics. Spat. Stat. 2016, 17, 83–104. [Google Scholar] [CrossRef]
- Han, M.; Cong, R.; Li, X.; Fu, H.; Lei, J. Joint spatial-spectral hyperspectral image classification based on convolutional neural network. Pattern Recognit. Lett. 2018. [Google Scholar] [CrossRef]
- Cao, X.; Zhou, F.; Xu, L.; Meng, D.; Xu, Z.; Paisley, J. Hyperspectral image classification with Markov random fields and a convolutional neural network. IEEE Trans. Image Process. 2018, 27, 2354–2367. [Google Scholar] [CrossRef] [PubMed]
ROSIS | IKONOS | Landsat | ||||||
---|---|---|---|---|---|---|---|---|
Class | Training | Testing | Class | Training | Testing | Class | Training | Testing |
Asphalt | 45 | 6586 | Building | 57 | 15,956 | Bare land | 24 | 2298 |
Bare soil | 16 | 5013 | Grass | 17 | 1315 | Building | 35 | 1626 |
Bitumen | 18 | 1312 | Road | 33 | 6962 | Farmland | 38 | 6742 |
Gravel | 24 | 2075 | Shadow | 38 | 6184 | Lake | 20 | 2764 |
Meadows | 39 | 18,610 | Soil | 30 | 1612 | River | 11 | 2103 |
Painted metal sheets | 14 | 1331 | Tree | 61 | 3445 | Road | 27 | 1750 |
Self-blocking bricks | 68 | 3614 | Vegetation | 17 | 1329 | |||
Shadows | 44 | 903 | ||||||
Trees | 80 | 2984 | ||||||
Total | 348 | 42,428 | Total | 236 | 35,474 | Total | 172 | 18,612 |
Classifier | Algorithm | Edge | Accuracy | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Total | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |||
MLC | MLC | 2.6 | 83.0 * | 0.89 | 0.67 | 0.8 | 0.65 | 0.87 | 0.99 | 0.81 | 0.99 | 0.76 |
SF | 0.8 | 90.7 * | 0.94 | 0.84 | 0.89 | 0.82 | 0.93 | 0.99 | 0.91 | 0.97 | 0.8 | |
MRF | 1.1 | 90.5 * | 0.92 | 0.86 | 0.83 | 0.81 | 0.93 | 1 | 0.9 | 0.99 | 0.8 | |
MIX | 0.6 | 92.9 * | 0.93 | 0.89 | 0.95 | 0.71 | 0.96 | 1 | 0.92 | 0.96 | 0.87 | |
MIX-E | 0.9 | 94.0 | 0.96 | 0.89 | 0.99 | 0.84 | 0.96 | 1 | 0.96 | 1 | 0.87 | |
KNN | KNN | 2.7 | 71.3 † | 0.8 | 0.33 | 0.59 | 0.43 | 0.79 | 0.97 | 0.71 | 1 | 0.69 |
SF | 0.9 | 77.7 † | 0.93 | 0.31 | 0.85 | 0.63 | 0.82 | 0.98 | 0.78 | 0.97 | 0.66 | |
MRF | 1.0 | 76.8 † | 0.92 | 0.27 | 0.79 | 0.55 | 0.82 | 0.98 | 0.76 | 1 | 0.69 | |
MIX | 0.6 | 78.7 † | 0.93 | 0.3 | 0.88 | 0.56 | 0.84 | 1 | 0.76 | 0.97 | 0.65 | |
MIX-E | 0.9 | 80.1 | 0.94 | 0.31 | 0.87 | 0.66 | 0.85 | 0.98 | 0.78 | 0.99 | 0.69 | |
SVM | SVM | 2.8 | 81.3 # | 0.86 | 0.64 | 0.66 | 0.72 | 0.86 | 0.99 | 0.83 | 1 | 0.77 |
SF | 0.9 | 90.2 # | 0.97 | 0.78 | 0.96 | 0.9 | 0.91 | 1 | 0.93 | 0.98 | 0.8 | |
MRF | 1.0 | 89.6 # | 0.96 | 0.78 | 0.91 | 0.88 | 0.9 | 1 | 0.92 | 1 | 0.81 | |
MIX | 0.4 | 93.3 # | 0.97 | 0.89 | 0.99 | 0.93 | 0.94 | 1 | 0.95 | 0.96 | 0.83 | |
MIX-E | 0.7 | 93.8 | 0.98 | 0.89 | 1 | 0.9 | 0.95 | 1 | 0.94 | 0.99 | 0.85 | |
State-of-the-art methods | RF | 2.8 | 77.5 *,† | 0.83 | 0.52 | 0.62 | 0.57 | 0.84 | 1 | 0.77 | 0.93 | 0.71 |
XGBoost | 3.0 | 75.8 *,†,# | 0.81 | 0.5 | 0.55 | 0.56 | 0.83 | 0.83 | 0.77 | 0.99 | 0.72 | |
MLP | 2.6 | 71.1 *,†,# | 0.71 | 0.33 | 0.57 | 0.05 | 0.84 | 0.98 | 0.6 | 0.9 | 0.75 | |
gKNN | 2.8 | 71.4 † | 0.81 | 0.35 | 0.6 | 0.5 | 0.78 | 0.97 | 0.72 | 1 | 0.7 | |
MPKNN | 2.1 | 78.2 † | 0.87 | 0.26 | 0.73 | 0.58 | 0.84 | 0.98 | 0.77 | 0.99 | 0.74 | |
WMV | 1.1 | 89.3 # | 0.94 | 0.76 | 0.93 | 0.91 | 0.91 | 0.98 | 0.9 | 0.93 | 0.81 | |
MMD-E | 1.1 | 90.0 # | 0.97 | 0.79 | 0.92 | 0.88 | 0.91 | 1 | 0.92 | 1 | 0.81 | |
EPF | 1.1 | 93.0 # | 0.98 | 0.83 | 0.99 | 0.88 | 0.94 | 1 | 0.94 | 1 | 0.91 |
Classifier | Algorithm | Edge | Accuracy | ||||||
---|---|---|---|---|---|---|---|---|---|
Total | 1 | 2 | 3 | 4 | 5 | 6 | |||
MLC | MLC | 1.9 | 76.0 * | 0.69 | 0.86 | 0.8 | 0.98 | 0.38 | 0.94 |
SF | 0.8 | 81.0 * | 0.75 | 0.94 | 0.86 | 0.99 | 0.43 | 0.97 | |
MRF | 1.0 | 80.5 * | 0.75 | 0.91 | 0.84 | 0.99 | 0.44 | 0.96 | |
MIX | 0.6 | 82.2 * | 0.77 | 0.94 | 0.88 | 0.99 | 0.44 | 0.96 | |
MIX-E | 0.8 | 83.5 | 0.79 | 0.96 | 0.88 | 0.99 | 0.46 | 0.97 | |
KNN | KNN | 2.3 | 88.7 † | 0.91 | 0.65 | 0.82 | 0.99 | 0.83 | 0.88 |
SF | 0.8 | 93.4 † | 0.95 | 0.65 | 0.9 | 1 | 0.93 | 0.9 | |
MRF | 0.9 | 93.4 † | 0.95 | 0.77 | 0.89 | 1 | 0.89 | 0.93 | |
MIX | 0.4 | 93.6 † | 0.95 | 0.72 | 0.91 | 0.98 | 0.96 | 0.92 | |
MIX-E | 0.7 | 95.2 | 0.96 | 0.81 | 0.92 | 1 | 0.94 | 0.94 | |
SVM | SVM | 1.7 | 91.7 # | 0.93 | 0.87 | 0.85 | 0.99 | 0.84 | 0.95 |
SF | 0.7 | 94.4 # | 0.94 | 0.93 | 0.89 | 1 | 0.9 | 0.97 | |
MRF | 0.7 | 93.7 # | 0.94 | 0.91 | 0.88 | 1 | 0.88 | 0.97 | |
MIX | 0.3 | 93.3 # | 0.93 | 0.98 | 0.88 | 0.96 | 0.9 | 0.99 | |
MIX-E | 0.4 | 95.4 | 0.95 | 0.98 | 0.91 | 1 | 0.91 | 0.99 | |
State-of-the-art methods | RF | 2.5 | 88.7 †,# | 0.91 | 0.72 | 0.81 | 0.98 | 0.81 | 0.88 |
XGBoost | 2.5 | 87.9 †,# | 0.9 | 0.74 | 0.81 | 0.98 | 0.76 | 0.89 | |
MLP | 2.0 | 89.0 †,# | 0.91 | 0.75 | 0.84 | 0.97 | 0.77 | 0.89 | |
gKNN | 2.3 | 88.5 † | 0.9 | 0.69 | 0.81 | 0.99 | 0.8 | 0.89 | |
MPKNN | 1.9 | 92.9 † | 0.95 | 0.7 | 0.9 | 0.98 | 0.92 | 0.9 | |
WMV | 0.8 | 93.1 # | 0.93 | 0.99 | 0.84 | 0.99 | 0.92 | 0.97 | |
MMD-E | 0.8 | 93.9 # | 0.94 | 0.9 | 0.89 | 1 | 0.87 | 0.97 | |
EPF | 0.8 | 95.8 | 0.96 | 0.96 | 0.92 | 1 | 0.94 | 0.99 |
Classifier | Algorithm | Edge | Accuracy | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Total | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |||
MLC | MLC | 1.9 | 87.7 * | 0.93 | 0.8 | 0.89 | 0.99 | 0.95 | 0.84 | 0.61 |
SF | 1.2 | 90.4 * | 0.94 | 0.83 | 0.92 | 0.99 | 0.96 | 0.85 | 0.66 | |
MRF | 0.7 | 90.5 * | 0.93 | 0.82 | 0.93 | 0.99 | 0.95 | 0.84 | 0.69 | |
MIX | 0.4 | 92.3 * | 0.97 | 0.76 | 0.98 | 0.96 | 0.94 | 0.79 | 0.87 | |
MIX-E | 0.5 | 94.7 | 0.96 | 0.86 | 0.98 | 0.98 | 0.97 | 0.86 | 0.87 | |
KNN | KNN | 2.7 | 81.9 † | 0.86 | 0.59 | 0.87 | 1 | 1 | 0.67 | 0.25 |
SF | 1.4 | 84.6 † | 0.87 | 0.57 | 0.9 | 1 | 1 | 0.7 | 0.18 | |
MRF | 0.7 | 84.3 † | 0.9 | 0.58 | 0.9 | 1 | 1 | 0.65 | 0.19 | |
MIX | 0.3 | 85.4 † | 0.97 | 0.58 | 0.92 | 0.98 | 1 | 0.61 | 0.26 | |
MIX-E | 0.5 | 87.4 | 0.96 | 0.7 | 0.91 | 1 | 1 | 0.7 | 0.26 | |
SVM | SVM | 1.7 | 89.5 # | 0.9 | 0.87 | 0.92 | 1 | 1 | 0.82 | 0.55 |
SF | 0.7 | 92.0 # | 0.94 | 0.93 | 0.93 | 1 | 1 | 0.88 | 0.55 | |
MRF | 0.6 | 92.5 # | 0.93 | 0.93 | 0.93 | 1 | 1 | 0.89 | 0.57 | |
MIX | 0.4 | 92.1 # | 0.97 | 0.93 | 0.94 | 0.97 | 1 | 0.81 | 0.6 | |
MIX-E | 0.5 | 93.3 | 0.96 | 0.95 | 0.94 | 1 | 1 | 0.88 | 0.58 | |
State-of-the-art methods | RF | 2.9 | 82.5 *,†,# | 0.88 | 0.67 | 0.84 | 1 | 1 | 0.69 | 0.4 |
XGBoost | 2.9 | 83.5 *,†,# | 0.87 | 0.73 | 0.85 | 0.99 | 0.99 | 0.7 | 0.41 | |
MLP | 2.0 | 82.1 *,†,# | 0.92 | 0.53 | 0.89 | 0.98 | 0.96 | 0.6 | 0.04 | |
gKNN | 2.8 | 81.4 † | 0.87 | 0.59 | 0.85 | 1 | 1 | 0.65 | 0.28 | |
MPKNN | 2.2 | 85.2 † | 0.88 | 0.61 | 0.91 | 1 | 1 | 0.66 | 0.21 | |
WMV | 0.7 | 93.2 | 0.94 | 0.93 | 0.94 | 0.99 | 1 | 0.9 | 0.58 | |
MMD-E | 0.6 | 92.4 # | 0.93 | 0.93 | 0.93 | 1 | 1 | 0.89 | 0.55 | |
EPF | 0.8 | 92.6 # | 0.92 | 0.9 | 0.94 | 1 | 1 | 0.87 | 0.66 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Y.; Jing, L.; Shi, F.; Li, X.; Qiu, F. A Hybrid Model Integrating Spatial Pattern, Spatial Correlation, and Edge Information for Image Classification. Remote Sens. 2019, 11, 1599. https://doi.org/10.3390/rs11131599
Tang Y, Jing L, Shi F, Li X, Qiu F. A Hybrid Model Integrating Spatial Pattern, Spatial Correlation, and Edge Information for Image Classification. Remote Sensing. 2019; 11(13):1599. https://doi.org/10.3390/rs11131599
Chicago/Turabian StyleTang, Yunwei, Linhai Jing, Fan Shi, Xiao Li, and Fang Qiu. 2019. "A Hybrid Model Integrating Spatial Pattern, Spatial Correlation, and Edge Information for Image Classification" Remote Sensing 11, no. 13: 1599. https://doi.org/10.3390/rs11131599
APA StyleTang, Y., Jing, L., Shi, F., Li, X., & Qiu, F. (2019). A Hybrid Model Integrating Spatial Pattern, Spatial Correlation, and Edge Information for Image Classification. Remote Sensing, 11(13), 1599. https://doi.org/10.3390/rs11131599