
remote sensing  

Article

An Automated Python Language-Based Tool for
Creating Absence Samples in Groundwater
Potential Mapping

Omid Rahmati 1,2 , Davoud Davoudi Moghaddam 3, Vahid Moosavi 4 , Zahra Kalantari 5 ,
Mahmood Samadi 6 , Saro Lee 7,* and Dieu Tien Bui 8,*

1 Geographic Information Science Research Group, Ton Duc Thang University,
Ho Chi Minh City 70000, Viet Nam; omid.rahmati@tdtu.edu.vn

2 Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City 70000, Viet Nam
3 Department of Watershed Management, Faculty of Agriculture and Natural Resources, Lorestan University,

Khorramabad 68151-44316, Iran; d.davoudi.m@gmail.com
4 Department of Watershed Management Engineering, Faculty of Natural Resources, Tarbiat Modares

University, Tehran 46417-76489, Iran; moosavi_v66@yahoo.com
5 Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University,

SE-106 91 Stockholm, Sweden; zahra.kalantari@natgeo.su.se
6 Faculty of Natural Resources, University of Tehran, Karaj 31587-77871, Iran; samadi.mahmood@ut.ac.ir
7 Division of Geoscience Research Platform, Korea Institute of Geoscience and Mineral Resources (KIGAM),

124 Gwahang-no, Yuseong-gu, Daejeon 305-350, Korea
8 Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam
* Correspondence: leesaro@kigam.re.kr (S.L.); buitiendieu@gmail.com (D.T.B.)

Received: 2 May 2019; Accepted: 5 June 2019; Published: 9 June 2019
����������
�������

Abstract: Although sampling strategy plays an important role in groundwater potential mapping and
significantly influences model accuracy, researchers often apply a simple random sampling method to
determine absence (non-occurrence) samples. In this study, an automated, user-friendly geographic
information system (GIS)-based tool, selection of absence samples (SAS), was developed using
the Python programming language. The SAS tool takes into account different geospatial concepts,
including nearest neighbor (NN) and hotspot analyses. In a case study, it was successfully applied
to the Bojnourd watershed, Iran, together with two machine learning models (random forest (RF)
and multivariate adaptive regression splines (MARS)) with GIS and remotely sensed data, to model
groundwater potential. Different evaluation criteria (area under the receiver operating characteristic
curve (AUC-ROC), true skill statistic (TSS), efficiency (E), false positive rate (FPR), true positive
rate (TPR), true negative rate (TNR), and false negative rate (FNR)) were used to scrutinize model
performance. Two absence sample types were produced, based on a simple random method and
the SAS tool, and used in the models. The results demonstrated that both RF (AUC-ROC = 0.913,
TSS = 0.72, E = 0.926) and MARS (AUC-ROC = 0.889, TSS = 0.705, E = 0.90) performed better when
using absence samples generated by the SAS tool, indicating that this tool is capable of producing
trustworthy absence samples to improve groundwater potential models.

Keywords: groundwater; spatial modeling; SAS tool; sampling strategy; GIS; LiDAR; remote sensing

1. Introduction

Different approaches such as data-driven, statistical, and machine learning models can be used to
model groundwater potential. They are based on a statistical assumption that the past and present
situations and state of a phenomenon are key to determining and predicting its future situation and state.
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The models use two different data samples as the dependent variable: occurrence samples (also known
as presence or positive samples) and non-occurrence samples (also known as absence or negative
samples) [1,2]. Beside the dependent variable, different geo-environmental factors are considered
as independent variables. In other words, the spatial modeling approach requires an inventory of
occurrences and non-occurrences and a set of geo-environmental attributes related to groundwater
spring [3,4]. Presence samples are usually obtained by conducting field surveys and analyses of
high-quality aerial photographs and satellite images. They are thus usually more reliable than absence
samples, because they are based on proof of existence of the given phenomenon. Absence samples
are typically selected as individual pixels outside the occurrence areas (i.e., spring-free areas), using
a simple random sampling method [5,6]. Therefore, determining absence samples (i.e., non-spring)
is usually a challenging task and can be a key source of model uncertainty, strongly affecting model
performance [7,8].

The quality of both presence and absence samples is extremely important in the modeling process
because any error in selection of these samples can lead to a significant error in the final modeling or
analysis process. Generally, two main errors can arise in the modeling results: Type I error and Type II
error [9]. Considering the example of landslide susceptibility, Type I error, also called ‘false positive’,
indicates areas without risk being classified as unsafe. This error may lead to exclusion of these areas
from development plans and cause many social and economic problems. On the other hand, Type
II errors, called ‘false negative’, involve areas that are unsafe being classified as safe. This error can
cause some severe problems in the real world, such as economic damage and loss of life, since using
maps produced with Type II error can lead to structures or developments being placed in areas that are
unstable or unsafe [9]. Both presence and absence samples strongly influence these error types and,
consequently, the predictive performance of the model [10,11]. A performance improvement of only a
few percent can lead to more efficient water resources and environmental management [12]. Therefore,
powerful standard approaches are required to select absence and presence samples with high accuracy.

Because of lack of reasonable and trustworthy techniques, most spatial modeling studies
reported in the literature use a simple random method to select absence samples in different fields,
for example, groundwater potential [3,5,10,13–16], landslide susceptibility [1,17–21], gully erosion
susceptibility [22–25], land subsidence susceptibility [26–31], and flood susceptibility [18,32–37].
However, the random sampling method has some drawbacks. First, this method does not pay
attention to the distribution pattern of absence samples, and therefore the absence samples generated
are sometimes significantly clustered and do not provide overall information on the entire study
area [34,38]. Second, absence samples may be very close to presence locations, resulting in confusion in
the model and also increasing an error in the final output [39]. It is important that absence samples are
selected from areas that are reasonably far from the area of the presence samples. Therefore, studies
should seek to systematically reduce uncertainties associated with absence samples.

In light of these problems, it is necessary to develop a robust novel tool for selecting absence
samples with high accuracy and precision. The main objectives of the present study were thus
to: (1) develop an automated, user-friendly tool for selection of absence samples using the Python
programming language to select absence samples; (2) apply the selected absence samples in two
different machine learning models, random forest (RF) and multivariate adaptive regression splines
(MARS), to analyze groundwater potential; (3) evaluate the model accuracy using two common
statistical methods; and (4) compare the results of models using absence samples generated by the SAS
tool and by a simple random method. The RF and MARS models were chosen because they have been
commonly used by different scholars for groundwater potential mapping and their capabilities have
been proven [3,10,15,40,41]. This allowed us to investigate only the efficiency of the developed tool,
selection of absence samples (SAS). Another reason for selecting these two models is that in terms
of model structure they are very different. It should be pointed out that there are a number of other
machine learning models, but comparison of their performance was outside the scope of this paper.
The novel feature of this study was to develop a suitable framework for selecting absence samples
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and statistically comparing their performances against those of the ordinary random methods used by
previous researchers.

2. Development of the SAS Tool

2.1. Technical Background

In order to create a robust absence sample dataset, different precondition analyses were considered.
The conceptual architecture of our approach for selection of absence samples (the SAS tool) is illustrated
in Figure 1. In the following subsections, the three-step process is explained in detail.
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Step 1: Determining a buffer for presence samples

One of the main problems with selecting absence samples based on a random paradigm is that
the absence samples selected may be at or very close to presence samples, which can cause different
errors in the model results. In the random sampling method, absence and presence samples may be
selected from regions with completely similar properties in which the triggering factors are in a similar
condition. Consequently, the modeling approach may encounter a serious misunderstanding about the
related process. Therefore, the first step in the SAS tool is to create a buffer zone around the presence
samples. This method has been used previously to define absence samples for landslide susceptibility
mapping by extracting absence samples from randomly distributed circles [7]. This buffer causes the
absence and presence samples to be selected reasonably far from each other. In the SAS tool, the radius
of the buffer can be determined by the user and depends on the nature of the phenomenon under study.



Remote Sens. 2019, 11, 1375 4 of 22

Step 2: Average nearest neighbor

Another important issue in absence sample selection is their distribution in the study area.
An efficient method for determining the distribution pattern of samples is the average nearest neighbor
(NN) approach [42,43]. This algorithm measures the distance between the centroid of each object and
the centroid of its nearest neighbor using a nearest neighbor index. The average of all these nearest
neighbor distances is then calculated. An average nearest neighbor ratio less than 1 indicates that the
samples are clustered, while an average nearest neighbor ratio greater than 1 indicates dispersion of
samples [44,45]. This algorithm compares average distance with average distance for a hypothetical
random distribution. The nearest neighbor (NN) index is calculated as [41]:

NN =
DO

DE
(1)

where DO is the observed mean distance between each feature and its nearest neighbor, calculated
using Equation (2), and DE is the expected mean distance for a hypothetical random distribution,
calculated using Equation (3) [41]:

DO =

∑n
i=1 di

n
(2)

DE =
0.5√

n
A

(3)

where di equals the distance between feature i and its nearest neighboring feature, n corresponds to the
total number of features, and A is the area of a minimum enclosing rectangle around all features or a
user-specified area value. The average nearest neighbor z-score can be also calculated as:

z =
DO −DE

SE
(4)

where SE =
0.26136√

n2

A

(5)

Figure 2 shows a schematic illustration of the relationship between distribution pattern of samples
and NN index. As can be seen, low values of NN index correspond to a clustered distribution and
high values of NN index correspond to a dispersed distribution of samples [46,47].
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Step 3: Hotspot analysis (Getis-Ord Gi*)

Hotspot analysis is an efficient way to calculate the Getis-Ord Gi* statistic, which indicates where
features cluster spatially [48]. This algorithm considers an object or feature related to its neighboring
features. A feature is only considered a significant hotspot when it has a high value and is also
surrounded by other features with high values [49]. In this way, the local sum for each feature and
its neighbors is calculated. This local sum is then compared against the sum of all features. If the
local sum is considerably greater than the estimated local sum and cannot have resulted from random
chance, it can be considered a significant hotspot [46,50]. In this study, hotspot analysis was carried
out using the Getis-Ord Gi* statistic for each sample in the presence inventory, calculated as [51]:

G∗i =

∑n
j=1 wi, jx j −X

∑n
j=1 wi, j

S

√ [
n
∑n

j=1 w2
i, j−

(∑n
j=1 wi, j

)2
]

n−1

(6)

where xj is the attribute value for feature j, wi,j is the spatial weight between feature i and j, n is equal
to the total number of features, and:

X =

∑n
j=1 x j

n
(7)

S =

√∑n
j=1 x2

j

n
−

(
X
)2

(8)

Figure 3 shows a schematic diagram of hotspot analysis. As can be seen in the diagram, there are
some points with high values that are not considered hotspots, because the surrounding features have
low values [20]. Hotspot areas not only include presence samples with high values, but all samples
in these areas are also characterized by high values. Hotspot samples with high values, where the
surrounding objects also have high values, are shown in red in Figure 3.
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2.2. Designing the SAS Tool

The SAS tool was developed using Python, a powerful, high-level, object-oriented, and structured
general-purpose programming language. The ArcPy library, which builds on the successful ArcGIS
scripting module, was used in this study. Using this programming language, an extension was
provided that can be added to the Arctoolbox in the ArcGIS software. The main SAS tool coding and
structure design tasks were to develop an automated procedure for generating absence samples that
met the three technical conditions described in Section 2.1.

A view of the SAS tool and its components is presented in Figure 4. As can be seen, this tool has
several different parts, including inputs and outputs. Table 1 lists the SAS input parameters and files.
In the first part, the presence samples layer is imported by the user. These presence samples (positive
points) are the location of occurrences for a given phenomenon in shape file format. This layer can be
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produced using inventory maps, aerial photographs, satellite images, or field surveys. An example is
the location of springs in a specific region. The next part is to assign a value (weight) to the presence
samples. Here, the user must define the field that includes values related to the presence samples.
For example, the amount of discharge from springs can be imported in this input parameter. Another
input parameter in the SAS tool is the radius of circles or the buffer for presence samples. This radius
value determines the buffer zone in which absence samples cannot be created. After hotspot samples
are calculated, hotspot buffers should be produced for each. As done for the presence samples, the user
must determine a buffer zone for the hotspot points. Number of absence samples can be determined in
the next field. Generally, the number of absence samples should be equal to the number of presence
samples. Finally, the SAS tool needs a boundary of the study area. This boundary helps the tool to
determine the permitted sites for producing absence samples.
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Table 1. Input parameters and files for the Selection of Absence Samples (SAS) tool.

ID Setting Description

1 Input a layer of
presence samples

The layer of presence samples (positive points) showing the location of
occurrences for a given phenomenon should be input in this field.
For example, a spring file (include locations and groundwater
discharge) should be introduced here.

2 Weight of presence samples Each presence sample has a value or weight. For example, springs have
groundwater discharge.

3 Radius of circles (Buffer for
presence samples)

Buffer for presence samples should be determined. These buffer/circles
do not allow random absence samples to be placed inside them.
Therefore, absence samples are placed in an area that is free of the given
phenomenon (e.g., landslide-free area, spring-free area).

4 Hotspot circles (buffer
for hotspots)

After determining hotspot locations, users should determine a buffer for
them that does not allow absence samples to be placed there.

5 Number of absence samples In general, the number of absence samples is equal to the number of
presence samples. The number of absence samples usually influences
the model output.

6 Boundary of the study area The SAS tool needs a specific area such as a study area to determine the
permitted sites for producing absence samples. Users can introduce the
study area file for this field.
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The SAS tool provides three main outputs, which are listed in Table 2. The first output is the
absence samples layer, which contains the locations of the absence samples. These samples are
selected according to the buffer of presence samples, average nearest neighbor, and hotspot analyses.
The second main output of the SAS tool is the ‘hotspot and coldspot’ layer, where SAS classifies the
presence samples into three classes, namely coldspot, medium, and hotspot, according to their values.
The final output is the significance information from hotspot analysis, which shows presence samples
that are significant hotspots in comparison with other presence samples. It is worth mentioning that
the aim of the SAS tool is simply to produce an absence sample layer. However, the results of hotspot
analysis on presence samples can provide useful information, and therefore we retain them as one of
the main model outputs.

Table 2. Output files of the Selection of Absence Samples (SAS) tool.

ID Setting Description

1 Absence samples layer This file is the main output of the SAS tool, and explains the location of
absence samples in the study area. These absence samples are produced
based on average nearest neighbor and hotspot analyses. This approach
for producing absence samples is better than the simple
random method.

2 Hotspot and coldspot layer This file shows the result of hotspot analysis. It classifies presence
samples into three groups: coldspot, medium, and hotspot. This type of
classification is based on the value of presence samples
(e.g., groundwater discharge) and their distance from each other.

3 Significant hotspot samples This layer explains which presence samples are significant hotspots in
comparison with other presence samples. The selection of hotspot
samples depends on both z-score and p-value in hotspot analysis based
on the Gi

* metric.

3. Case Study

In a case study, the SAS tool was applied to generate an absence sample layer for the Bojnourd
watershed, North Khorasan province, Iran (37◦15′–37◦35′ N, 57◦03′–57◦40′ E) (Figure 5). The aim in
the case study was to model groundwater potential, and an absence sample layer was needed, while
presence samples (i.e., groundwater springs) were readily available, as shown in Figure 5. The elevation
of the study area ranges between 875 and 2968 m, mean annual precipitation is 272 mm, and mean
annual temperature is 13 ◦C (Khorasan Shomali Meteorological Organization). Groundwater is one of
the main water resources in the area. From a geomorphological viewpoint, the region is classified as
mountainous and there are several faults and folds that play a significant role in the development of
springs. North Khorasan province has around 17,000 km2 of karst masses, which supply around 88%
of the water demand in the province.

3.1. Application of the SAS Tool

Both the simple random sampling method and the newly developed SAS tool were used to
produce absence samples in order to model groundwater potential in the study area. The absence
samples generated using the common random method are shown in Figure 6a, and those produced
using the SAS tool are shown in Figure 6b. In order to highlight the difference between the random
method and the SAS tool, the absence samples they produced are overlaid (Figure 6). In the diagrams,
blue circles represent the hotspot buffers and red points the absence samples. As can be seen in the
zoomed-in parts of the map, the simple random method created several absence samples that were
very close to each other (i.e., had a clustered distribution pattern) and also fell within the hotspot
buffers (i.e., blue circles). In contrast, the SAS method created absence samples that were reasonably
far from each other (i.e., had a dispersed distribution pattern) and, more importantly, that did not
fall within the hotspot buffers. Moreover, with the use of the random method, several parts of the
study area had no absence samples, while numerous absence samples were unreasonably concentrated
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in some other parts. In contrast, the SAS tool met all three preconditions (no absence samples on or
near presence samples, dispersed absence samples, no absence samples in hotspot buffers). Therefore,
the method used for selection of absence samples had a considerable influence on the absence samples.Remote Sens. 2019, 11, x FOR PEER REVIEW 
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3.2. Groundwater-Affecting Factors

Groundwater-affecting factors (GAFs) contribute in the modeling process as independent variables.
Since there are no universal guidelines for selecting GAFs, previous studies have considered different
geo-environmental and topo-hydrological factors [43,52,53]. Based on the literature, sixteen GAFs
were selected in the present study to spatially predict groundwater spring potential. These were
altitude, slope, aspect, profile curvature, plan curvature, land use/cover, lithology, soil, distance from
fault, distance from stream, stream density, relative slope position (RSP), topographic wetness index
(TWI), topographic position index (TPI), terrain roughness index (TRI), and convergence index (CI)
(Figures 7 and 8).Remote Sens. 2019, 11, x FOR PEER REVIEW 
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(d) convergence index, (e) distance from fault, and (f) distance from stream (for a detailed description
of lithological classes, see Table 3).

Both remote sensing and geographical information system (GIS) techniques were used to produce
groundwater-affecting factors. First, a digital elevation model (DEM) was produced using the
airborne LIDAR (light detection and ranging) system, which is an effective and reliable means of
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collecting topographical data in large areas. The triangular irregular network (TIN) generated was
converted to an ArcGIS grid of 1 m pixel resolution using a TOPOGRID algorithm. In order to achieve
homogeneity with other predictive maps and to increase efficiency in terms of manipulation and
storage, the high-resolution DEM produced was coarsened to 10 m resolution. This resolution was
considered to create topography-related predictive factors, including altitude, slope, aspect, profile
curvature, plan curvature, distance from fault, distance from stream, stream density, RSP, TWI, TPI,
TRI, and CI. In addition, in order to create an accurate land use map, Landsat-8 Operational Land
Imager (OLI) images in 2018 were used. Atmospheric corrections were performed using the FLAASH
module in ENVI software. Next, the Gram-Schmidt pan-sharpening module was used for the fusion of
panchromatic and multispectral satellite images. In addition, a supervised classification approach with
the maximum likelihood algorithm was carried out. Finally, in accordance with the resolution of other
DEM-extracted factors, the land use map produced was resampled with a spatial resolution of 10 m in
ENVI software.

Altitude in the study area varies from 877 to 2967 m. A slope map with range from 1% to 736.3%
was produced using the DEM generated. The slope aspect classes are shown in Figure 7c. The CI
is a terrain parameter that reflects the structure of the relief as a set of divergent areas (ridges) and
convergent areas (channels). If the CI value is positive, then the pixel is defined as divergent, while
convergent pixels have a negative CI [54,55]. In this study, the CI map was produced in SAGA
(System for Automated Geoscientific Analyses) software and the CI value ranged from −99.5 to 99.6
(Figure 7d). The minimum and the maximum ‘distance from fault’ values were calculated to be 0
and 3277 m, respectively (Figure 7e). ‘Distance from streams’ values calculated for the study area
varied between 0 and 2324 m (Figure 7f). To analyze the stream density in the study, the Kernel density
tool was used. The minimum and maximum stream density values in the study area were 0 and 2.8,
respectively (Figure 8a). The RSP map was generated in SAGA software, and its values ranged from
0 to 1 (Figure 8b). TPI measures the difference between elevation at the central point and average
elevation around it within a predetermined radius [11]. Negative TPI values show that the central
point is located lower than its average surroundings, while positive values indicate a position higher
than the average. In this study, TPI values varied between −136.6 and 130.3 (Figure 8c). TRI, produced
in SAGA software, was also used as a measurement of terrain heterogeneity. It ranged from −99.5 to
99.6 in the study area (Figure 8d). TWI is one of the secondary topographic factors and is calculated
based on the specific catchment area and the local slope. TWI is a relative measure of the soil moisture
availability of a given site in the watershed [56]. TWI values ranged from 0.42 to 21.27 in the study area,
which indicates significant variation in spatial patterns of saturated areas (Figure 8e). A lithological
map of the study area was digitized from a geological map of Khorasan province published by the
Geological Survey of Iran (GSI) (Figure 8f). A detailed description of lithological classes can be found
in Table 3.

Table 3. Lithology of the study area.

Era Period Lithology

Cenozoic Quaternary (Q) Low level piedmont fan and valley terrace deposits
Cenozoic Neogene (N) Red marl, gypsiferous marl, sandstone, and conglomerate
Mesozoic Cretaceous (C) Olive green glauconitic sandstone and shale
Mesozoic Early Cretaceous (EC) Ammonite bearing shale with orbitolin limestone
Mesozoic Jurassic-Cretaceous (JC) Pale red argillaceous limestone, sandstone, and conglomerate
Mesozoic Triassic–Jurassic (TJ) Subordinate sandy limestone, dark grey shale, and sandstone
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3.3. Groundwater Potential Modeling

In this study, two state-of-the-art machine learning models, RF and MARS, were used to model
groundwater potential, due to their structural flexibility. In the modeling process, two different absence
sample types were used: (1) those produced by the simple random method, and (2) those produced by
the SAS method (i.e., meeting all three preconditions).

3.3.1. Random Forest (RF)

Random Forest is a non-parametric model introduced as a form of classification and regression
tree method [57]. It consists of a combination of tree classifiers, where each tree is created using a
random vector sampled independently from the input vector. To classify an input vector, each tree also
casts a unit vote for the most popular class. The combination of several classification trees in a forest
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can improve the performance of predictions. In this approach, a randomized subgroup of variables of
interest is used to split the tree, and the average of all tree results is considered the final outcome of the
model [53,58]. The random selection of features at each node reduces the correlation between the trees
in the forest, thus decreasing the forest error rate. In addition to random feature selection, averaging
over numerous trees can also decrease bias and variance [59]. Additionally, RF has vigorous error
estimates and higher prediction performance. Other characteristics of RF are random feature selection
at each node and a no pruning or stopping rule [60]. Through these, overfitting is significantly reduced.
In the RF model, bootstrap samples are used to produce trees. The RF approach rests upon the basic
premise that a set of classification trees has better performance than a stand-alone classifier. It has the
following advantages [40,53,61]:

• it is relatively robust to noise and outliers;
• it provides an internal unbiased estimate of the generalization error through out-of-bag (OOB) error;
• it estimates the importance of variables in the modeling process (i.e., contribution of variables);
• it can handle numerous input variables (i.e., predictive factors) without variable deletion;
• it efficiently handles large databases; and
• it reduces the computational burden and is computationally lighter than other tree-based models.

In general, design of a tree-based model requires a pruning method and the choice of an attribute
selection measure. The Gini index and the information gain ratio are the most frequently used attribute
selection measures in tree-based models. RF uses the Gini index to measure the impurity of an attribute.
The Gini index allows selection of the split with the lowest impurity at each node [61]. Among the
trees in the forest, the class with the maximum number of votes is the predicted class of an observation.
In this study, the RF model was implemented using the package ‘randomforest’ in R software.

3.3.2. Multivariate Adaptive Regression Splines (MARS)

The MARS model is a non-parametric form of regression analysis [62]. It combines the
mathematical construction of splines, classical linear regression, brute search intelligent algorithms,
and binary recursive partitioning to develop a model capable of predicting a target variable [63].
Since MARS uses piecewise basis functions, it can model complex relationships between variables
without strong model assumptions. MARS considers each sample as a knot and develops a linear
regression model with the candidate feature(s). When implementing a MARS model, knots are selected
automatically in a forward stepwise manner. The knot is a key concept in the MARS model and
characterizes a point where the behavior of the function changes. In order to define a set of piecewise
functions (also known as basic functions, BFs), candidate knots can be placed at any position within
the range of each independent variable. In fact, the beginning and end of each BF is determined by
a knot. The MARS model selects the knot and its corresponding pair of basic functions at each step,
which can significantly decrease the residual sum of squares [64]. The search lasts until all possible BFs
have been found. The least important BF is identified and eliminated. Similar to the RF model, MARS
is able to analyze the importance of variables and this characteristic is very useful, especially when
some potential or new variables are considered. In addition, MARS can save much modeling time
when the dataset is huge, because it does not need a long training process [65,66]. It also searches for
potential interactions between predictive variables, allowing any degree of interaction to be analyzed
in the model building process. Through these characteristics, MARS is able to yield homogeneous
final groups in the terminal nodes and minimize prediction errors [67]. In addition, it allows the
contribution of predictive variables to be assessed using the generalized cross-validation criterion [66].
The MARS model can be described as follows:

Y = β0 +
M∑

m=1

βmhm(x) (9)
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where Y is the value predicted by the model and can be decomposed into a sum of M terms (each of
which is formed by a coefficient βm and BF hm(x)) and an initial constant β0. Detailed background and
characteristics of the MARS model can be found in [62]. Therefore, it has considerable advantages in
modeling natural processes in data-scarce regions. In this study, the MARS model was implemented
using the package ‘earth’ in R software.

3.4. Accuracy Assessment

In order to evaluate the accuracy of the models, a threshold-dependent method (area under the
receiver operating characteristic curve, AUC-ROC) and different threshold-independent methods (false
positive rate (FPR), true positive rate (TPR), true negative rate (TNR), false negative rate (FNR), the true
skill statistic (TSS), and efficiency (E)) [68,69] were used in this study. FPR estimates the probability
of incorrectly predicting a non-occurrence location as an occurrence. TPR, also known as sensitivity,
indicates the probability of correctly predicting the positives as observed in reality. However, FPR
and TPR are insufficient performance metrics, because they ignore false negatives and false positives,
respectively [9]. TNR aims to quantify the probability of correctly predicting the negatives as they
occur in reality. Furthermore, FNR, also termed miss rate, determines the probability of incorrectly
predicting an occurrence location as a non-occurrence. TSS (also called Pierce’s skill score) measures
the ability of a predicted value to discriminate between occurrence and non-occurrence. Although
researchers have used the kappa coefficient to evaluate model performance, it has some drawbacks,
and TSS has been proposed to compensate for these drawbacks while retaining all the advantages
of the kappa coefficient [70]. Efficiency E, also known as accuracy, is able to indicate the overall
success of the predictive model. These evaluation criteria are commonly applied to investigate model
performance [9,70–73]. All of these evaluation criteria are calculated based on a contingency matrix
(Table 4), which includes four components: true positive (TP), true negative (TN), false positive (FP),
and false negative (FN). The evaluation criteria are calculated as Equations (10)–(15):

TPR =
TP

TP + FN
(10)

FPR =
FP

FP + TN
(11)

TNR =
TN

TN + FP
(12)

FNR =
FN

FN + TP
(13)

TSS = TPR− FPR (14)

E =
TP + TN

TP + TN + FP + FN
(15)

Table 4. Contingency matrix used for evaluation of models.

Observed
Predicted

Non-Occurrence Occurrence

Non-occurrence True negative (TN) False positive (FP)

Occurrence False negative (FN) True positive (TP)

The ROC curve is produced by plotting the TPR against the FPR [74–76]. The area under the ROC
curve (AUC-ROC) method is associated with cost/benefit analysis of analytical decision making and
can show model sensitivity as a function of information retrieval. The closer the AUC-ROC value is
to 1, the better the model performance. All evaluation criteria were calculated using the performance
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measure tool (PMT) extension [77], which allows learning capability (also termed goodness-of-fit) and
predictive performance to be determined based on the training and validation datasets, respectively.

4. Results and Discussion

4.1. Selection of Absence Samples and Accuracy Assessment

The accuracies of the models in the training step (goodness-of-fit) are summarized in Table 5.
When the RF model used the absence points produced by the SAS method, it had an AUC-ROC value
of 0.944, whereas the AUC-ROC value was lower (0.926) in the simple random sampling method.
Threshold-dependent evaluation metrics shed more light on the learning capability of the RF model in
both sampling strategies and clearly confirmed the higher accuracy of the RF model in the SAS method
(TSS = 0.891, E = 0.946, TPR = 0.938, FPR = 0.046, TNR = 0.953, FNR = 0.061) than in the simple random
sampling method (TSS = 0.852, E = 0.926, TPR = 0.921, FPR = 0.069, TNR = 0.0931, FNR = 0.061).

Table 5. Goodness-of-fit of the random forest (RF) and multivariate adaptive regression splines (MARS)
models in different sampling strategies.

Sampling Strategies Evaluation Criteria
Models

RF MARS

Selection of Absence Samples
(SAS) method

AUC-ROC 1 0.944 0.925
TSS 2 0.891 0.852

Efficiency (E) 0.946 0.926
True positive rate (TPR) 0.938 0.921
False positive rate (FPR) 0.046 0.069
True negative rate (TNR) 0.953 0.931
False negative rate (FNR) 0.061 0.078

Simple random method

AUC-ROC 1 0.926 0.898
TSS 2 0.852 0.789

Efficiency (E) 0.926 0.894
True positive rate (TPR) 0.921 0.892
False positive rate (FPR) 0.069 0.102
True negative rate (TNR) 0.931 0.897
False negative rate (FNR) 0.078 0.107

1 Area under the receiver operating characteristic curve; 2 True skill statistic.

For the MARS model, the SAS method also gave a higher AUC-ROC value (0.925) in comparison
with the simple random method (0.898). In addition, for the simple random method, the accuracy of
the MARS model decreased in comparison with the SAS method based on threshold-dependent criteria
(Table 5). The TSS, E, TPR, FPR, TNR, and FNR values in the SAS method were 0.852, 0.926, 0.921,
0.069, 0.931, and 0.078, respectively, while in the simple random method the corresponding values
were 0.789, 0.894, 0.892, 0.102, 0.897, and 0.107, respectively. Therefore, there was better agreement
between the predictions of both models and reality in the SAS method. However, while goodness-of-fit
shows how well the model fits to the training dataset and also reflects the learning capability of the
model, the prediction performance of the model cannot be judged by goodness-of-fit because it is
measured by the training dataset already used for model calibration [31].

The predictive performances of the RF and MARS models with the different absence sample
selection strategies are shown in Table 6. Both the RF (AUC-ROC = 0.913, TSS = 0.72) and MARS
(AUC-ROC = 0.889 and TSS = 0.705) models showed better performance when absence samples
generated by the SAS tool were used in modeling. When absence samples of the random method
were used, the performances of both models were considerably lower, with the RF model showing an
AUC-ROC of 0.872 and a TSS of 0.681, and the MARS model an AUC-ROC of 0.833 and a TSS of 0.67.

When the simple random method was used to generate absence samples, the RF model gave E =

0.906, TPR = 0.896, FPR = 0.082, TNR = 0.917, and FNR = 0.103, while MARS gave E = 0.86, TPR =
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0.855, FPR = 0.135, TNR = 0.864, and FNR = 0.144. However, when using the SAS method, the RF
(E = 0.926, TPR = 0.921, FPR = 0.067, TNR = 0.932, and FNR = 0.078) and MARS (E = 0.9, TPR = 0.905,
FPR = 0.105, TNR = 0.894, and FNR = 0.094) models showed better predictive performance. Another
important finding in this study was that the RF model outperformed the MARS model, irrespective of
the absence sampling method used (Table 6).

Table 6. Predictive performance of the random forest (RF) and multivariate adaptive regression splines
(MARS) models in different sampling strategies.

Sampling Strategy Evaluation Criteria
Models

RF MARS

Selection of Absence Samples
(SAS) method

AUC-ROC 1 0.913 0.889
TSS 2 0.72 0.705

Efficiency (E) 0.926 0.90
True positive rate (TPR) 0.921 0.905
False positive rate (FPR) 0.067 0.105
True negative rate (TNR) 0.932 0.894
False negative rate (FNR) 0.078 0.094

Simple random method

AUC-ROC 1 0.872 0.833
TSS 2 0.681 0.67

Efficiency (E) 0.906 0.86
True positive rate (TPR) 0.896 0.855
False positive rate (FPR) 0.082 0.135
True negative rate (TNR) 0.917 0.864
False negative rate (FNR) 0.103 0.144

1 Area under the receiver operating characteristic curve; 2 True skill statistic.

In this study, both the RF and MARS models showed better performance when based on the newly
developed SAS tool, because it overcomes all the disadvantages associated with the simple random
method. The results obtained demonstrate that the method and strategy used for production of absence
samples significantly influences model prediction accuracy. The most interesting finding was that
absence samples created by the SAS tool had a dispersed distribution pattern and were far from hotspot
areas. In addition, the average nearest neighbor method resulted in a more even distribution of selected
samples, which were more representative of the overall situation in the study area. Since hotspot
areas are statistically significant, the end visualization is less subjective. Through these advantages,
the SAS tool can enhance the ability of models based on presence–absence samples. However, it is
difficult to directly compare the results of this study with those in previous publications, because there
is no standard method for producing absence samples in the field of groundwater potential mapping.
In landslide susceptibility modeling, a previous study investigated the effects of absence samples on
model prediction and suggested that a buffer around presence samples can efficiently increase the
accuracy of absence samples [7]. In other environmental fields, sampling strategy has been shown to
have a significant influence on model performance [78,79].

Despite this, the simple random method has been widely applied by researchers [24,35,44,80].
Another disadvantage of the simple random method is that each pixel of the study area, even presence
locations, has an equal chance of being selected as an absence sample [51]. Moreover, the distribution
pattern of the absence samples generated by the simple random method is sometimes clustered and
consequently cannot be representative of the population (i.e., pixel values in the study area) [81,82].
When absence samples are not truly representative of the population, the resulting error in the model
output is called a ‘sampling error’ [52,83]. Therefore, although the simple random method is easy to
use, it does not consider any criteria or essential preconditions. These shortcomings prompted us to
develop a new method for creating absence samples based on statistical and spatial analyses.
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4.2. Groundwater Potential Mapping

The groundwater potential maps produced by the RF model based on the simple random method
and the SAS method for producing absence samples are shown in Figure 9, while the corresponding
maps created by the MARS model are shown in Figure 10. The blue color in the maps indicates high
groundwater potential values, while red color indicates low values. All maps show high groundwater
potential in southern parts of the study area. Table 7 shows the statistical characteristics of the
probability values obtained from the RF and MARS models based on the simple random and SAS
methods. As can be seen from the table, the RF method gave higher mean values and lower standard
deviation with both the simple random and the SAS methods. From an aerial viewpoint, southern
parts of the Bojnourd watershed have the highest groundwater potential based on both models. In this
regard, others have reported a similar pattern for groundwater potential in this study area [43,73].
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Table 7. Statistical characteristics of the probability values obtained from the random forest (RF) and
multivariate adaptive regression splines (MARS) models based on the simple random and selection of
absence samples (SAS) methods.

Model
Simple Random Method SAS Method

Minimum Maximum Mean SD Minimum Maximum Mean SD

RF 0.002 0.989 0.339 0.228 0.003 0.994 0.351 0.232

MARS 0.010 1.000 0.309 0.307 0.010 1.000 0.287 0.300

SD: Standard Deviation.

In this study, the RF and MARS methods were used to produce groundwater potential maps.
Both models showed fairly good performance, but RF outperformed MARS based on the AUC-ROC and
TSS evaluation criteria. RF is a powerful predictive model that combines several different decision trees
to build a forest of trees [72]. In our earlier studies in the Mehran region, Iran, RF also demonstrated
excellent performance in predicting groundwater potential [73]. Similar findings have been made in
some other studies [10,15,82]. Appropriate determination of groundwater potential can help decision
makers and stakeholders formulate effective groundwater policies and strategies [84,85].

5. Concluding Remarks

Sampling strategy is of great importance in groundwater potential modeling. However, selecting
appropriate absence samples is a considerable challenge, and researchers often use a simple random
sampling technique to deal with this challenge. The random sampling method can be a significant
source of error in the groundwater modeling process. Hence, in this study, an automated, user-friendly
tool for creating absence samples called selection of absence samples (SAS) was developed using the
Python programming language. The SAS tool uses nearest neighbor index and hotspot analysis to
produce robust and reliable absence samples. In a case study, the SAS tool was successfully applied
to produce absence samples for groundwater potential modeling. The main finding of the study is
that both the RF and MARS models showed better predictive performance when based on absence
samples created by the SAS method rather than the simple random method. These findings improve
understanding of the influence of sampling strategy on model output. Other data obtained in this
study suggest that the SAS not only produces a proper distribution of absence samples, but also
improves the performance of data mining and machine learning models for groundwater potential
mapping. However, further research is needed to identify limitations of the SAS tool. In future
investigations, it might be possible to consider topo-hydrological characteristics for selecting absence
samples that enhance the efficiency of the SAS tool. Another task for future investigations is to
investigate the performance of the SAS tool in a number of spatial modeling sub-fields (e.g., landslide,
land subsidence, flooding).
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