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Abstract: Airborne Laser Scanning (ALS) has been considered as a primary source to model the
structure and function of a forest canopy through the indicators leaf area index (LAI) and vertical
canopy profiles of leaf area density (LAD). However, little is known about the effects of the laser pulse
density and the grain size (horizontal binning resolution) of the laser point cloud on the estimation of
LAD profiles and their associated LAIs. Our objective was to determine the optimal values for reliable
and stable estimates of LAD profiles from ALS data obtained over a dense tropical forest. Profiles
were compared using three methods: Destructive field sampling, Portable Canopy profiling Lidar
(PCL) and ALS. Stable LAD profiles from ALS, concordant with the other two analytical methods,
were obtained when the grain size was less than 10 m and pulse density was high (>15 pulses m−2).
Lower pulse densities also provided stable and reliable LAD profiles when using an appropriate
adjustment (coefficient K). We also discuss how LAD profiles might be corrected throughout the
landscape when using ALS surveys of lower density, by calibrating with LAI measurements in the
field or from PCL. Appropriate choices of grain size, pulse density and K provide reliable estimates
of LAD and associated tree plot demography and biomass in dense forest ecosystems.
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1. Introduction

Measuring the density and distribution of leaves in forest canopies is key to understanding
ecological and microclimate processes that drive forest functions [1–6]. The spatial structure of a leaf
area influences or is influenced by light transmittance and absorbance, biodiversity conservation,
carbon fluxes, ecophysiology, leaf phenology, disturbances, and water and climate interactions [2].
Advances in laser remote sensing have transformed the way forest canopies are measured, allowing a
detailed inference about a canopy’s spatial structure with increasing application to leaf area estimation
per se. Airborne Laser Scanning (ALS)—i.e., scanning lidar (Light Detection and Ranging)—has
been used to model the leaf environment, obtaining attributes such as Leaf Area Index (LAI) and
its decomposition into Leaf Area Density (LAD) distribution within the vertical canopy profile [4].
While lidar has proven its reliability and accuracy for canopy height and above-ground biomass
estimation at different spatial scales [7,8], previous studies have also detected considerable sensitivity to
laser acquisition parameters (e.g., pulse density) and processing methods (e.g., binning resolution) [9,10].
Yet, to date, little is known about how these factors alter the estimation of a leaf area and of LAD
profiles specifically [11]. Thus, the stability and robustness of estimates of leaf area attributes from
lidar require further investigation.

LAI represents the area of leaves per unit of ground area (m2·m−2). In the field, LAI can be
estimated indirectly by raising a pole through the canopy and counting how many times the pole
touches a leaf along the vertical profile [12]. The frequency of leaves in units along the vertical
profile yields the LAD distribution, expressed as the leaf area at each height interval per volume
of canopy (m2·m−3). LAD values are, thus, the partial volumetric components of LAI. Measuring
LAD and LAI by destructively harvesting and scanning leaf area in a fixed footprint may be the most
accurate approach for LAD profile quantification, but it is very difficult and laborious, especially in
dense tropical forests [13,14]. Non-destructive, indirect techniques, such as vegetation indices from
orbital sensors, the canopy gap area assessed through hemispherical photographs, and light intensity
attenuation from paired above/below canopy light sensors, are commonly employed to estimate LAI.
However, all three techniques have critical limitations. Vegetation indices are saturated in dense forests
where LAI generally exceeds 4.0 [15,16]. The use of hemispherical photographs should be restricted to
narrow time windows near dawn and dusk. Light sensors require a large open area or tower for an
above-canopy measurement of light intensity close to each simultaneous understory measurement [17].
The signal of light sensors also becomes saturated in dense forests [18]. Alternatively, lidar systems are
active sensors potentially free of these limitations—if they can effectively penetrate the full canopy
depth. Indeed, lidar-derived estimates have revealed ecologically relevant differences in LAD profiles
for different dense rainforest types, including those with LAI above 5.0 [4,5,19].

The MacArthur–Horn equation is commonly used for estimating LAI and LAD from discrete
return lidar data [3–5,11,20–22]. This model follows the principle of the Beer–Lambert Law, which
estimates the concentration of an absorbing compound mixed in a transparent liquid, according to the
fraction of incident light that is transmitted [23]. In the MacArthur–Horn equation the concentration
of the substance is replaced by the density of vegetation within a unit of the canopy volume (voxel).
Here, the incident light intensity is the number of lidar pulses entering each voxel in a stack and the
attenuation of transmittance is caused by the presence of leaves obstructing some of those pulses,
which are then detected by the lidar sensor [21]. Key assumptions of the MacArthur–Horn equation
as applied to LAD estimates are that leaves are distributed randomly inside voxels, that they do not
transmit pulses, and that pulses are parallel and emitted vertically. For estimating a leaf area instead of
a plant area (which includes non-leaf surface areas) with this method, an additional assumption is that
a leaf area is a constant fraction of the plant surface area that determines the lidar pulse transmission
so that a constant can scale profiles to LAD.

From a nadir view of airborne lidar, taller leafy crowns partially occlude lower ones, influencing
the retrieval of information from underneath the topmost parts of the canopy. For this reason,
the quality of the LAD profile estimation might be highly influenced by the lidar pulse density,
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with higher pulse numbers better sampling the lower portion of the canopy. The other factor that
influences the apparent lidar pulse density when sampling LAD profiles is the horizontal binning
resolution (grain size). There is an inherent relationship between lidar pulse returns per voxel and the
horizontal grain size [24]; the larger the grain size, the more pulses within a voxel and in the profile
sample generally. While higher sampling is desirable, increasing grain size may mask effects of low
lidar pulse densities leading to poor sampling low in the canopy (e.g., in the understory). Furthermore,
a leaf area is clumped at multiple spatial scales, and clumping influences the estimation of the leaf area
by optical transmission methods, including the MacArthur–Horn method [25]. Thus, there is a clear
need to assess the accuracy and the scale dependency of the LAD profile estimation as a function of the
lidar pulse density and grain size. However, no previous studies have been devoted to evaluating how
the lidar pulse density and the grain size employed affect estimates of LAD and LAI in tropical forests.

To address these dependencies in an ALS-based LAD profile estimation, a comparison
approach is needed. Comparison possibilities include other very high-density lidar-based approaches,
and destructive surveys. Recent studies have estimated the LAD profiles using a very high pulse density
system, known as Portable Canopy profiling Lidar (PCL) which operates from the ground by emitting
pulses skyward through the canopy [19,21,26,27]. The vegetation profiles obtained by PCL can be used
to validate vegetation profiles derived from lower pulse density airborne systems [4]. Where PCL
measurements overlap with independent measurements of LAI, the system can be calibrated to
estimate a leaf area (not plant area), and where destructive sampling exists, a more complete validation
is possible [4].

Our objective in this study was to determine the optimal parameters for reliably estimating LAD
profiles from ALS data in dense tropical forests. We assessed LAD profile stability and accuracy
associated with changes in (i) laser pulse density and (ii) grain size (voxel horizontal binning
resolution). The ALS-derived LAD profiles were compared to those from destructive field sampling
(from Reference [13]) and from the PCL.

2. Material and Methods

Lidar data were collected at the Ducke Forest Reserve (DFR; Figure 1). (02◦55′S, 59◦59′W). The DFR
covers 10,000 ha of dense upland (terra firme) tropical forest. It has a mean LAI of 5.7, 790 trees ha−1

(DBH > 10 cm), ~300 Mg ha−1 of above-ground biomass [13,28] and ~1170 tree species [29]. The Köppen
climate type is Af, mean annual temperature is 26 ◦C and the mean annual rainfall ranges between
2400 and 2700 mm. The drier months are typically August and September, with less than 100 mm
of rainfall per month. The ALS data covered 12.5% of the total area of the Reserve, in three strips
(Figure 1). Elevation above sea level of the area covered by ALS scanning varies from 30 to 90 m.
Mean canopy height is 27 m, with the tallest trees reaching up to 55 m (as measured in the canopy
height model derived from ALS).
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Figure 1. Location of the Ducke Forest Reserve (DFR) and study sampling design. Bottom-left panel
shows the airborne ALS (Airborne Laser Scanner) strips and the 1-ha ALS plots within (black squares).
Bottom-right panel shows one ALS plot and the 250 m long upward-looking PCL (Portable Canopy
profiling Lidar) transect (dashed black line) crossing the plot.

ALS data were collected in June 2008 using a Leica ALS50 system (Heerbrugg, Switzerland) on
board a Navajo EMB 820C (Embraer Ltd., São José dos Campos, Brazil), operating at a pulse rate of
100 KHz, maximum 5◦ off-nadir view angle, ground beam diameter of 12 cm (a.k.a. lidar footprint),
mean flight altitude of 816 m above ground level (providing overlap of 27%), and a Novatel OEMv4
GNSS receiver. Lidar data were georeferenced in the Universal Transverse Mercator (UTM) 20S
coordinate system using the WGS84 datum. The acquired ALS point cloud has a mean density of
42 pulses m−2 (considering only the first returns). This high density was crucial for the data thinning
objectives of this paper.

Ground returns were identified using all returns (of which 77% were first returns), using the Kraus
and Pfeifer algorithm [30] implemented in FUSION/LDV [31], using the command “GroundFilter”
with a window size of 8 × 8 m and the default values for all other parameters. This produced a
cloud of ground-returns with a mean density of 0.9 returns m−2. The bare ground elevation was then
interpolated to a 2 m horizontal resolution by simple kriging implemented in the R environment [32]
with the lidR package [33]. This ground elevation was subtracted from the elevation of each ALS return
to obtain its above-ground height, and all analyses were conducted on these ground elevation-corrected
data (a.k.a. normalized cloud).

The next step was to subsample pulse returns to create lidar samples with different rarified pulse
return densities. Considering just first return pulses at a 1 m horizontal resolution (finest grain size
considered), we randomly thinned pulse densities to 30, 25, 20, 15, 10, 5, and 2 pulse returns m−2

(Figure 2). While some thinning algorithms are devoted to reproduce the spatial variation of scanning
patterns, several authors [10,24,34,35] employ thinning methods like ours, which best control the final
density of each simulation. Whenever a cell’s true pulse density was lower than the target rarified
density, all the available pulses were used. The first-return point cloud was then binned into voxels
(canopy volume units) and the number of first returns within each voxel was calculated for LAD
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estimation (next paragraph). We analyzed voxels at seven horizontal grain sizes: 1, 2, 5, 10, 25, 50 and
100 m. The vertical resolution (Delta Z or Dz) was fixed at 1 m (Figure 3) to maximize the potential to
recover vertical forest structural information [5]. ALS data were analyzed for 24 one-hectare field plots
of 100 m × 100 m. Each plot was traversed by an associated 250 m long upward-looking ground PCL
transect (See [4] for additional description).
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Figure 3. Voxel resolution and point cloud binning process for a square field plot clipped from the
ALS data.

For each combination of voxel size and pulse return density, we calculated the number of pulses
that entered each voxel i (pulses.ini) and the number of pulses that passed through that voxel (pulses.outi).
Since we used a maximum of 5◦ off-nadir view in the ALS survey, we could work under the assumption
that each lidar pulse is vertically incident. This means that we could track the passage and reflection
of pulses within voxel columns to calculate the estimated pulses entering the tops of voxels and the
pulses leaving the bottoms of voxels. All entering pulses that were not detected as returns from a voxel
were assumed to pass through and enter the next voxel in a column. The MacArthur–Horn equation
(Equation (1)) was applied for each voxel to compute its Leaf Area Density (LADi) (Figure 4)

LADi = ln(pulses.ini/pulses.outi)×
1

Dz
× 1

K
(1)

Dz is the vertical resolution, fixed at 1 m. The K coefficient performs an inverse linear calibration
of LAD to a known LAI. It can be assumed to be constant if certain factors remain fixed (e.g., lidar
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beam width, pulse intensity, pulse wavelength, distribution of leaf blade angles, degree of clustering of
leaves, contribution of non-leaf area to returns). While the choice of the K coefficient changes the LAD
values, and consequently the derived LAI estimate, the relative LAD proportions found along the
vertical strata are unaffected by K. We fixed K = 1, so we calculated an “effective LAD” and “effective
LAI”. For convenience, these are hereafter referred to as simply LAD and LAI. The K coefficient effect
is addressed in detail in the discussion section. Suffice it to say here that K = 1 does produce an LAI
close to the field measured LAI [13], when the grain size is large.
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Figure 4. LAD (Leaf Area Density) profile and LAI (Leaf Area Index) calculation. Gray voxels indicate
no data captured (coded as NA voxels). This NA value is important so that occluded forest voxels are
not counted as zeros when obtaining mean LAD of a transect or of a plot at each height interval above
the ground.

Occluded voxels—those where pulses.out = 0, or pulses.in = 0—were assigned as no-data (NA).
After applying the MacArthur–Horn equation to all voxels, the mean LAD for each one-meter vertical
stratum across a one-hectare field plot was obtained. Note that NA voxels are not considered when
calculating the mean LAD of a stratum; in effect, the horizontal area is renormalized to discount these
areas with NA-values, which have not been sampled by lidar pulses. The mean LAI for the entire plot
was simply the sum of the mean LADs from each stratum (Figure 4).

The PCL data were collected in April 2009 using last returns from an upward-looking Riegl
model LD90-3100VHS-FLP (Horn, Austria), along the 24 transects of 250 m in length. These transects
overlap the 1-ha ALS plots (Figure 1). The locations of the ALS plots were limited to areas with high
and homogeneously distributed return density so that the point clouds could be thinned to target
densities. As a result, ALS plots do not always coincide with the ground lidar transects. Although
some of the 1-ha ALS plots and PCL transects are not spatially paired, care was taken to ensure
similar conditions, particularly the hillslope position (elevation). The PCL instrument operates at a
pulse rate of 1 KHz. Since the lidar survey is a vertical profile of the canopy and the data is acquired
along a transect, the PCL produces a 2-D point cloud (height above ground × along-track distance).
The instrument is attached to a gimbal to maintain a vertical upward aim. A small 12 V battery and
a water-resistant computer complete the system [19]. The operator walks at a constant pace, using
an electronic metronome and field markers spaced every two meters. Walking at a speed of half a
meter per second, the PCL emits a total of 2000 pulses per meter along the transect. For vertical and
horizontal resolutions, the PCL-based LAD profiles used Dz = 1 m and Dx = 2 m, respectively [4,19].
The LAD strata estimated from both ALS and ground lidar were limited to pulse returns above one
meter from the ground. This avoids ground-return interference in the ALS data and is also imposed by
the ground lidar sensor height.

To investigate the effects of pulse density and grain size on the Airborne Laser Scanner LAD
profile estimation, we obtained LAD at each 1 m height interval averaged over the 24 plots. We first
examined the change of the mean LAD profile (average of 24 plots) in absolute values (m2·m−3; K = 1)
with varied grain size and pulse density. We then compared, also as a function of grain size and pulse
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density, the behaviors of (i) the 24-plot mean ALS profile of relative LAD (LAD as % of LAI, which
cancels K); (ii) the 24-transect mean profile of ground lidar-derived relative LAD; and (iii) a mean
profile of directly measured relative LAD, collected from four mature old growth forest plots of 100-m2

close to the Ducke Forest Reserve [13]. Utilizing Reference [13] for comparison, we assume that the
average forest structure is stable through time (see also Reference [4]), and indeed this forest with low
turnover has not been implicated in any major disturbance processes [29]. Finally, we investigated the
stability of the ranking (by Spearman rank correlations) of the 24 plots by their LAI value (using K = 1),
as a function of different grain sizes and pulse densities.

3. Results

Vegetation profiles expressed as absolute LAD (m2·m−3), using fixed K, tended to stabilize
when the grain size reached 10 m, independent of pulse density or when the pulse density reached
15 pulses m−2, regardless of grain size (Figure 5). Within each of the smaller grain sizes (1, 2, and 5 m),
LAD estimations increased logarithmically with pulse density, until saturating at 15 pulses m−2. As the
grain size increased from 1 m to 10 m, understory LAD increased greatly and LAD in the upper canopy
decreased slightly, shifting the overall shape of the profile.
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function of grain size (panels) and pulse density (profile colors).

The 24-hectare mean profile of relative LAD, expressed as a percentage of LAI, was unaffected by
pulse density (Figure 6). Increasing the grain size had the same effect of shifting the profile observed in
the profiles with absolute LAD values; the upper canopy decreased and the lower canopy increased its
leaf density. A stability at large grain size did not lead to improved accuracy—increasing the grain size
also increased the difference between the ALS profile and the profiles derived from field measurements
and ground lidar.
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Figure 6. Behavior of the 24-plot mean LAD profile in relative values (% of LAI), as a function of grain
size (panels). For ALS, different pulse densities are shown as different colored profile lines, but these
overlap to a high degree. The black line is the 24-plot mean relative LAD from the PCL at a fixed, high
pulse density (2000 pulses m−1) and at different grain sizes (panels). Open circles show the four-plot
mean relative LAD profile of destructively measured field data with a fixed grain size of 100 m2 and no
pulse density.

The ranking of the 24 plots by their LAI values was completely stable with respect to pulse density.
Spearman Rank Correlation was 1.0 across all seven classes of pulse density. This was true at all seven
grain sizes (Figure 7). Ranking of plots by their LAI was affected somewhat by different grain sizes:
Rank Correlation was 0.83 across all seven classes of grain size, when evaluated separately for each
pulse density class and then averaged (Figure 8). However, if considering only the four smaller grain
sizes in Figure 8 (1 m, 2 m, 5 m, and 10 m), the ranking of plots by their LAI was very stable as a
function of grain size, with Rank Correlation = 0.95.
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Figure 7. Leaf Area Indices (LAIs) from ALS lidar, one for each of the 24 1-ha plots, as a function
of seven classes of pulse density (x-axis) at each grain size. Colored lines identify plots. Consistent
ordering of colors along each x-axis in the panels indicates stable ranking of plot LAIs, irrespective of
pulse density.
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Figure 8. Leaf Area Indices (LAIs) from ALS lidar, one for each of the 24 1-ha plots, as a function
of seven classes of grain size (x-axis) at each pulse density. Colored lines identify plots. Consistent
ordering of colors along each x-axis in the panels indicates stable ranking of plot LAIs, irrespective of
grain size.

4. Discussion

4.1. Grain Size and Pulse Density Effects on LAD and LAI

To the best of our knowledge, this is the first study to assess the impacts of ALS pulse density
and voxel resolution on the estimation of LAD profiles and LAI, using the MacArthur–Horn equation
(Beer–Lambert Law) applied to small-footprint ALS lidar in a tropical forest. In general, the LAD
and LAI estimates tended to stabilize with an increasing grain size and increasing ALS pulse density.
At small grain sizes of 1 m, 2 m, and 5 m, absolute LAD profiles became stable at respective pulse
densities of 15, 15, and 10 pulses m−2. At grain sizes of 10 m or larger, pulse density can be as low as
2 pulses m−2 and still provide a LAD profile very similar to those obtained at higher pulse density
(Figure 5).

The ideal combination in the trade-off between pulse density and grain size hinges on accuracy.
Smaller ALS grain sizes (≤5 m) showed better agreement with the vegetation profiles from destructive
field measurements and from PCL ground lidar (Figure 6). This is particularly evident when comparing
ALS results to those obtained by field measurements in the portion of the vegetation profile below
~4 m height. Grain sizes ≥ 10 m will overestimate vegetation in this portion of the profile, particularly
when pulse density is high. For lidar surveys with lower pulse density, a grain size of 10 m may be
effective, and may mitigate some of the unwanted artificial shift in vertical LAD distributions observed
at larger spatial scales. Increasing the grain size to the point that it approximates the length scales of
branches or whole trees—primary elements of leaf architectural support—might create strong leaf
clumping and thus violate the MacArthur–Horn assumption of random leaf distribution. This could
may explain the increasing LAD profile errors that we observed with the increasing grain size.

An LAD estimation based on multitemporal ALS data [11] included a correction to enhance
inter-comparability across multiple laser sensors. The pulse return density had little appreciable bias
impact above 20 returns m−2 using a grain size of 2 m for plots with 0.25 ha.

Our results show that a very consistent LAI ranking of different sites can be obtained independent
of pulse density. Relative LAD values were useful for assessing potential scale dependencies in the
shape of LAD profiles and have the advantage of cancelling the effects of the K coefficient. But this
comes at the cost of removing LAI as an attribute. LAI is a critical site descriptor for the study of
canopy structure and function.

Less expensive, low pulse density ALS contracts may be able to provide consistent discrimination
of sites based on density and distribution of leaves. We caution, however, that the lower accuracy
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particularly of the LAD profile estimation at a coarse grain size or at low pulse densities may be
unacceptable for some applications, particularly in models and methods that rely on the fine scale
vertical and horizontal heterogeneity of the canopy structure to make ecological inferences. Examples
include the estimation of timber stock or demographic structure [5] or light interception and absorption
(if the methods of Reference [6] were applied to ALS data). For these applications our results suggest
that pulse densities of 20 pulses m−2 or greater and grain sizes between 2 and 5 m, which maximize
accuracy and stability, should be utilized.

Our results agree with classic ‘optical probe’ based investigations of leaf area estimation.
One study [36], using the MacArthur–Horn equation and point-quadrat sampling [12,37], also found
a positive relation between LAI estimates and sample size, analogous to our Figure 7. They showed
that, despite a sample size effect impacting absolute LAD values and LAI, the fraction of LAI in each
vertical stratum was nearly constant over different sample sizes. In apparent agreement, we found
that for small grain sizes, the vegetation profile shapes are stable with respect to pulse density if LAD
is expressed in relative units (% of LAI), while absolute LAD profiles converged to a stable shape (and
LAI) only with high pulse density (≥15 pulses m−2) (Figures 5 and 6).

4.2. Tackling Occluded Voxels

At small grain sizes, the number of occluded voxels (no-data voxels) increases and one must
take care to avoid their influence on the mean plot-wide LAD profile shape and mean plot-wide
LAI (or transect mean LAI, in the case of ground lidar). No-data voxels do not affect the mean LAD
obtained across all voxels at the same above-ground height across a plot. Plot-scale mean LAI obtained
from the sum of these stratum means will be a proper estimate [4,5,19]. However, if one sums the
LAD values in each voxel column to obtain the LAI at each horizontal grid footprint in the forest, each
of these sums will be affected by the number of no-data voxels in their respective columns. A mean
plot-wide LAI from these column LAIs will be incorrect. Such a column-level LAI mapping must
consider columns with any no-data voxels to have no LAI data as well. In a Swiss deciduous forest,
with a pulse density of 11 pulses m−2 and grain size of 1 m, it was found that at least 25% of the forest
canopy volume remains occluded in the ALS data [38]. Here we found a similar result, with 29, 23,
10 and 3% occluded when grain size is, respectively, 1-, 2-, 5- and 10-m and pulse density is fixed at
10 pulses m−2. In this sense, larger grain sizes effectively mask areas that are occluded in the canopy
that fall within voxels with varied pulse sampling. Furthermore, the spatial structure of occluded areas
may create apparent leaf area clumping that influences leaf area estimation. Our expectation is that the
same grain sizes that produce maximal correspondence with PCL and destructive LAD profile data
(i.e., ≤5 m) also optimize LAI estimation accuracy for comparisons.

We here assume that the LAD of a visible voxel at any given height provides an unbiased estimate
of the LAD of occluded voxels at that height. In forests with many gaps, the upper canopy surface,
which is never occluded to the ALS, frequently dips to lower heights. The canopy surface generally
has high LAD as it is well illuminated by the sun, so these always visible voxels of low height in gaps
could have higher LAD than occluded voxels in the dark understory at the same height. Therefore,
though forests with a lot of gaps should have a high mode of LAD in the lower mid-canopy, this mode
may be exaggerated. The PCL provides a test of this bias because the LAD in shaded understory is
not occluded from the perspective of the PCL. Whether using upward looking PCL or downward
looking ALS, in gap-rich forest one observes an LAD profile of the same shape with mode in the same
position [4]. This suggests that no significant bias is present.

4.3. Calibrating the K Coefficient

In the absence of a known calibration LAI from a reference site, some authors have used K = 1 [19,22].
However, for accurate values of absolute LAI, particularly at low pulse densities for which lower
portions of the canopy will have many no-data voxels, the coefficient K should be adjusted to calibrate
estimated LAI to a correct, independently measured LAI (Equation (2)). An alternative is to calibrate
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K with a given lidar system at a reference LAI site and then estimate LAI with that same system for
another site with unknown LAI, under the assumption that leaf properties such as clumping and leaf
angles that could affect K-calibration are constant (see Reference [25]). Calibrated K is obtained as the
ratio between the mean LAI derived from lidar (LAIK=1) and the correct mean LAI of the reference
site (LAISite):

K =
LAIK=1

LAISite
(2)

Figure 9 shows the appropriate K values for maintaining agreement between ALS-derived LAI
and a field-measured mean LAI of 5.7 (field measurements from Reference [13]). For large grain
sizes, a K value close to 1.0 gives the expected field-derived LAI value, independent of pulse density.
Calibrated K is clearly sensitive to both grain size and pulse density and much more so at lower grain
sizes and lower pulse densities. It tends to stabilize as pulse density increases but remains sensitive to
grain size even at high pulse densities. The robustness of the K-curves in Figure 9 is still unknown.
Different forest types with different species composition, leaf orientation and leaf clumping may
produce varied relations between grain size, pulse density and the K coefficient. Probably forest types
with lower LAI present better results with lower pulse densities, since obstruction is also reduced.
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Figure 9. Appropriate values for K coefficient to obtain a constant target LAI from MacArthur–Horn
equation, as function of pulse density (x-axis) and grain size (line colors). The target LAI value was
derived from direct destructive measurement (LAIsite = 5.7; [13]).

4.4. Limitations of This Study

We found a discrepancy between PCL and ALS profiles at 1–4 m (low-canopy) height,
which should not be considered when evaluating ALS accuracy in tropical forests with dense
understory vegetation (Figure 6). This is attributable to removing some of the understory, mainly
palm fronds, to allow passage of the ground lidar operator at a constant walking speed. Although
the ALS LAD profiles (using grain size of 1 and 2 m) at the lowest portion of the canopy are very
similar to those from field destructive samples, and the Ducke site is characterized by dense understory
vegetation (particularly palms; [29]), it is possible that this increase of LAD at low-canopy height is
an effect of ground estimation errors (ground returns not classified as ground points). The lowest
pulse penetration and highest error is expected in the understory with ALS data. Future work should
take care to exclude low positions from analysis (or explore corrections) when appropriate. We also
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note that ground estimation errors will increase as sampling density decreases over ALS collections,
particularly in heterogeneous terrain [39], a factor that was not considered in our analysis since ground
surfaces were estimated prior to pulse rarefactions.

We used four profiles of field collected LAD from small patches of dense forest as our “gold
standard”. However, the true mean profile of LAD across a larger landscape will include forest
gaps. These should affect the shape of the mean profile of LAD, increasing LAD in the lower half of
the profile.

Many other factors (e.g., instrument type, beam divergence, scan angle, flight altitude, along-track
and cross-track footprint spacing) could influence relationships between grain size, pulses density
and the estimation of LAD profiles. For example, our study used a maximum of 5◦ off-nadir scan
angle; higher scan angles may introduce biases in LAD profiles since one of the key assumptions of
the MacArthur–Horn equation is that pulses are parallel and emitted vertically. Higher flight altitude
would increase ground footprint size, which could decrease penetration rates and increase occlusion
problems, all else being fixed [40].

In practice, low pulse densities, shown in our study to be sufficient for obtaining LAD profiles,
may be associated with high altitude flights and wide scan angle collections, to maximize coverage at
low cost. The effects of wide angles (e.g., +/− 30 degrees), and the larger pulse footprints expected from
greater beam divergences, on estimates of LAD profiles still require study. To improve comparability
with our study, LAD profiles could be extracted from only near vertical angles found closer to the flight
track, where the MacArthur–Horn equation assumption of vertical pulse transmission is better satisfied.

5. Conclusions and Implications for Future Research

For an accurate and stable estimation of LAD profiles and of LAI from ALS data in tropical
rainforests, we recommend voxels with a small grain size (<10 m) only when pulse density is
greater than 15 pulses m−2. For pulse densities less than 15 pulses m−2 we recommend a 10 m
grain size. We also highlight the importance of using a calibrated K coefficient in the MacArthur–Horn
equation, particularly so when using small grain size (1–5 m) with low pulse densities. For stable
ranking/discrimination of sites by their LAI values using fixed K, pulse density had no effect, and grain
size had almost no effect for dimensions ≤10 m.

However, it is important to highlight that our results were obtained with a specific ALS instrument,
forest type, and survey configuration. Thus, we have isolated pulse density effects per se. More field
collected reference plots in different forest types (with different LAI values), and lidar data sets that
include repeated collections with survey parameters systematically varied to explore not just pulse
density but also scan angle, pulse footprint, and other factors’ effects, are recommended to improve
understanding of LAD and LAI estimation from lidar. A recent study [11] found that flight parameters
with different lidar sensors can affect LAD estimates differently. They developed a correction method to
enhance inter comparability over multiple sensors. However, the individual effects of each parameter,
such as the scan angle, still need to be better understood.

New lidar technologies, such as Geiger mode lidar (GML) and single photon lidar (SPL) [41],
have the potential to generate a denser point cloud from a less powerful laser source obtained at an
increased altitude, compared to the traditional “linear-mode lidar” (LML). Thus, it may be possible
to estimate LAD at high horizontal resolution (~1 m) and lower costs. However, critics have found
some cons about the new lidar technologies, such as the absence of the intensity image and a greater
susceptibility to solar noise [41,42]. GML has the drawback of an inferior penetration in forested areas,
while SPL is slightly better (similar to LML) [42].

Some studies have efficiently used full waveform lidar for LAI estimation from orbital
platforms [43,44]. This technology will soon cover large areas of the Amazon and other tropical
forests with resolution of approximately 25 m [45].

We also examined how analysis grain (as in Figure 5) impacts the vegetation profile estimation
when we included all returns, not just the 77% which are first returns (Supplementary Materials
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Figures S1 and S2). The effect is to decrease the estimated upper canopy LAD values. This may be
an artifact, however, since the MacArthur–Horn approach assumes that each pulse represents an
independent canopy probe, while in fact second returns are effectively only possible after first returns
(below first returns for airborne lidar) and so forth, for third and fourth returns. Thus, additional
algorithm development and validation could lead to more accurate MacArthur–Horn LAD estimation
from multiple return lidar data.

LAD profiles have seen a gamut of applications in recent tropical forest studies: Impact of fire
and sensitivity to fire [19]; estimating tree diameter-class frequencies [5]; forest type discrimination;
and radiative transfer and absorption modeling [3,4,6,46]. ALS-derived estimations of LAD profiles and
of LAI provide unprecedented opportunities for estimating canopy structure and function, including
modeling the leaf environments and forest demographic structure, on a broad spatial scale to address
problems in forest conservation and management.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/1/92/s1,
Figure S1: Changes in the 24-hectare mean ALS profile of LAD (in absolute values; m2·m−3) as a function of grain
size (panels) and pulse density (profile colors). In this figure we added the profile using ALL returns (including
multiple returns) totaling a density of 55 returns m−2; Figure S2: Behavior of the 24-plot mean LAD profile in
relative values (% of LAI), as a function of grain size (panels). For ALS, different pulse densities are shown as
different colored profile lines, but these overlap to a high degree. The black dashed line is the 24-plot mean
relative LAD from the PCL at a fixed, high pulse density (2000 pulses m−1) and at different grain sizes (panels).
Open circles show the four-plot mean relative LAD profile of destructively measured field data with a fixed grain
size of 100 m2 and no pulse density. In this figure we added the profile using ALL returns (including multiple
returns) totalizing a density of 55 returns m−2.

Author Contributions: D.R.A.d.A., S.C.T. and P.H.S.B. conceived and designed the study; D.R.A.d.A. performed
the analysis; J.S. collect the PCL data; all authors contributed in writing the paper.

Funding: This research was funded by São Paulo Research Foundation (#2017/03867-6 and #2016/05219-9).

Acknowledgments: We thank the Sustainable Landscapes Brazil project for providing the ALS data. D. Almeida
was supported by the São Paulo Research Foundation (#2017/03867-6 and #2016/05219-9), P.H.S. Brancalion by
the National Council for Scientific and Technological Development (CNPq—grant #304817/2015-5), S.C. Stark
by NSF (EF-1550686 and EF-1340604) and R. Valbuena by the EU Horizon2020 Marie Sklodowska-Curie Action
LORENZLIDAR (658180).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Putz, F.E. Liana biomass and leaf area of a “Tierra Firme” forest in the Rio Negro Basin, Venezuela. Biotropica
1983, 15, 185–189. [CrossRef]

2. Bréda, N.J.J. Ground-based measurements of leaf area index: A review of methods, instruments and current
controversies. J. Exp. Bot. 2003, 54, 2403–2417. [CrossRef] [PubMed]

3. Tymen, B.; Vincent, G.; Courtois, E.A.; Heurtebize, J.; Dauzat, J.; Marechaux, I.; Chave, J. Quantifying
micro-environmental variation in tropical rainforest understory at landscape scale by combining airborne
LiDAR scanning and a sensor network. Ann. For. Sci. 2017, 74. [CrossRef]

4. Stark, S.C.; Leitold, V.; Wu, J.L.; Hunter, M.O.; de Castilho, C.V.; Costa, F.R.C.; Mcmahon, S.M.; Parker, G.G.;
Shimabukuro, M.T.; Lefsky, M.A.; Keller, M.; Alves, L.F.; Schietti, J.; Shimabukuro, Y.E.; Brandão, D.O.;
Woodcock, T.K.; Higuchi, N.; de Camargo, P.B.; de Oliveira, R.C.; Saleska, S.R. Amazon forest carbon
dynamics predicted by profiles of canopy leaf area and light environment. Ecol. Lett. 2012, 15, 1406–1414.
[CrossRef] [PubMed]

5. Stark, S.C.; Enquist, B.J.; Saleska, S.R.; Leitold, V.; Schietti, J.; Longo, M.; Alves, L.F.; Camargo, P.B.;
Oliveira, R.C. Linking canopy leaf area and light environments with tree size distributions to explain
Amazon forest demography. Ecol. Lett. 2015, 18, 636–645. [CrossRef] [PubMed]

6. Atkins, J.W.; Fahey, R.T.; Hardiman, B.H.; Gough, C.M. Forest canopy structural complexity and light
absorption relationships at the subcontinental scale. J. Geophys. Res. Biogeosci. 2018. [CrossRef]

7. Asner, G.P.; Mascaro, J. Mapping tropical forest carbon: Calibrating plot estimates to a simple LiDAR metric.
Remote Sens. Environ. 2014, 140, 614–624. [CrossRef]

http://www.mdpi.com/2072-4292/11/1/92/s1
http://dx.doi.org/10.2307/2387827
http://dx.doi.org/10.1093/jxb/erg263
http://www.ncbi.nlm.nih.gov/pubmed/14565947
http://dx.doi.org/10.1007/s13595-017-0628-z
http://dx.doi.org/10.1111/j.1461-0248.2012.01864.x
http://www.ncbi.nlm.nih.gov/pubmed/22994288
http://dx.doi.org/10.1111/ele.12440
http://www.ncbi.nlm.nih.gov/pubmed/25963522
http://dx.doi.org/10.1002/2017JG004256
http://dx.doi.org/10.1016/j.rse.2013.09.023


Remote Sens. 2019, 11, 92 14 of 15

8. Longo, M.; Keller, M.; dos-Santos, M.N.; Leitold, V.; Pinagé, E.R.; Baccini, A.; Saatchi, S.; Nogueira, E.M.;
Batistella, M.; Morton, D.C. Aboveground biomass variability across intact and degraded forests in the
Brazilian Amazon. Glob. Biogeochem. Cycles 2016, 30, 1639–1660. [CrossRef]

9. Roussel, J.R.; Caspersen, J.; Béland, M.; Thomas, S.; Achim, A. Removing bias from LiDAR-based estimates
of canopy height: Accounting for the effects of pulse density and footprint size. Remote Sens. Environ. 2017,
198, 1–16. [CrossRef]

10. Silva, C.A.; Hudak, A.T.; Vierling, L.A.; Klauberg, C.; Garcia, M.; Ferraz, A.; Keller, M.; Eitel, J.; Saatchi, S.
Impacts of airborne lidar pulse density on estimating biomass stocks and changes in a selectively logged
tropical forest. Remote Sens. 2017, 9, 68. [CrossRef]

11. Shao, G.; Stark, S.C.; de Almeida, D.R.A.; Smith, M.N. Towards high throughput assessment of canopy
dynamics: The estimation of leaf area structure in Amazonian forests with multitemporal multi-sensor
airborne lidar. Remote Sens. Environ. 2019. [CrossRef]

12. Wilson, J.W. Analysis of the spatial distribution of foliage by two-dimensional point-quadrats. New Phytol.
1959, 58, 92–99. [CrossRef]

13. McWilliam, A.-L.C.; Roberts, J.M.; Cabral, O.M.R.; Leitao, M.V.B.R.; de Costa, A.C.L.; Maitelli, G.T.;
Zamparoni, C.A.G.P. Leaf area index and above-ground biomass of terra firme rain forest and adjacent
clearings in Amazonia. Funct. Ecol. 1993, 7, 310. [CrossRef]

14. Clark, D.B.; Olivas, P.C.; Oberbauer, S.F.; Clark, D.A.; Ryan, M.G. First direct landscape-scale measurement of
tropical rain forest Leaf Area Index, a key driver of global primary productivity. Ecol. Lett. 2008, 11, 163–172.
[CrossRef] [PubMed]

15. Turner, D.P.; Cohen, W.B.; Kennedy, R.E.; Fassnacht, K.S.; Briggs, J.M. Relationships between leaf area index
and Landsat TM spectral vegetation indices across three temperate zone sites. Remote Sens. Environ. 1999, 70,
52–68. [CrossRef]

16. Jensen, J.L.R.; Humes, K.S.; Hudak, A.T.; Vierling, L.A.; Delmelle, E. Evaluation of the MODIS LAI product
using independent lidar-derived LAI: A case study in mixed conifer forest. Remote Sens. Environ. 2011, 115,
3625–3639. [CrossRef]

17. Olivas, P.C.; Oberbauer, S.F.; Clark, D.B.; Clark, D.A.; Ryan, M.G.; O’Brien, J.J.; Ordoñez, H. Comparison
of direct and indirect methods for assessing leaf area index across a tropical rain forest landscape.
Agric. For. Meteorol. 2013, 177, 110–116. [CrossRef]

18. Martens, S.N.; Ustin, S.L.; Rousseau, R.A. Estimation of tree canopy leaf area index by gap fraction analysis.
For. Ecol. Manage. 1993, 61, 91–108. [CrossRef]

19. De Almeida, D.R.A.; Nelson, B.W.; Schietti, J.; Gorgens, E.B.; Resende, A.F.; Stark, S.C.; Valbuena, R.
Contrasting fire damage and fire susceptibility between seasonally flooded forest and upland forest in the
Central Amazon using portable profiling LiDAR. Remote Sens. Environ. 2016, 184, 153–160. [CrossRef]

20. MacArthur, R.H.; Horn, H.S. Foliage profile by vertical measurements. Ecology 1969, 50, 802–804. [CrossRef]
21. Parker, G.G.; Harding, D.J.; Berger, M.L. A portable LIDAR system for rapid determination of forest canopy

structure. J. Appl. Ecol. 2004, 41, 755–767. [CrossRef]
22. Sumida, A.; Nakai, T.; Yamada, M.; Ono, K.; Uemura, S.; Hara, T. Ground-based estimation of leaf area

index and vertical distribution of leaf area density in a Betula ermanii forest. Silva Fenn. 2009, 43, 799–816.
[CrossRef]

23. Swinehart, D.F. The Beer-Lambert Law. J. Chem. Educ. 1962, 39, 333. [CrossRef]
24. Adnan, S.; Maltamo, M.; Coomes, D.A.; Valbuena, R. Effects of plot size, stand density, and scan density

on the relationship between airborne laser scanning metrics and the Gini coefficient of tree size inequality.
Can. J. For. Res. 2017, 47, 1590–1602. [CrossRef]

25. Weiss, M.; Baret, F.; Smith, G.J.; Jonckheere, I.; Coppin, P. Review of methods for in situ leaf area index
(LAI) determination Part II. Estimation of LAI, errors and sampling. Agric. For. Meteorol. 2004, 121, 37–53.
[CrossRef]

26. Hardiman, B.S.; Bohrer, G.; Gough, C.M.; Vogel, C.S.; Curtis, P.S. The role of canopy structural complexity
in wood net primary production of a maturing northern deciduous forest. Ecology 2011, 92, 1818–1827.
[CrossRef] [PubMed]

27. Hardiman, B.S.; Gough, C.M.; Halperin, A.; Hofmeister, K.L.; Nave, L.E.; Bohrer, G.; Curtis, P.S. Maintaining
high rates of carbon storage in old forests: A mechanism linking canopy structure to forest function.
For. Ecol. Manag. 2013, 298, 111–119. [CrossRef]

http://dx.doi.org/10.1002/2016GB005465
http://dx.doi.org/10.1016/j.rse.2017.05.032
http://dx.doi.org/10.3390/rs9101068
http://dx.doi.org/10.1016/j.rse.2018.10.035
http://dx.doi.org/10.1111/j.1469-8137.1959.tb05340.x
http://dx.doi.org/10.2307/2390210
http://dx.doi.org/10.1111/j.1461-0248.2007.01134.x
http://www.ncbi.nlm.nih.gov/pubmed/18031553
http://dx.doi.org/10.1016/S0034-4257(99)00057-7
http://dx.doi.org/10.1016/j.rse.2011.08.023
http://dx.doi.org/10.1016/j.agrformet.2013.04.010
http://dx.doi.org/10.1016/0378-1127(93)90192-P
http://dx.doi.org/10.1016/j.rse.2016.06.017
http://dx.doi.org/10.2307/1933693
http://dx.doi.org/10.1111/j.0021-8901.2004.00925.x
http://dx.doi.org/10.14214/sf.174
http://dx.doi.org/10.1021/ed039p333
http://dx.doi.org/10.1139/cjfr-2017-0084
http://dx.doi.org/10.1016/j.agrformet.2003.08.001
http://dx.doi.org/10.1890/10-2192.1
http://www.ncbi.nlm.nih.gov/pubmed/21939078
http://dx.doi.org/10.1016/j.foreco.2013.02.031


Remote Sens. 2019, 11, 92 15 of 15

28. Higuchi, N.; Chambers, J.; Santos, J. Dos Dinâmica e balanço do carbono da vegetação primária da Amazônia
Central. Floresta 2004, 34. [CrossRef]

29. Ribeiro, J.E.L.S.; Hopkins, M.J.G.; Vicentini, A.; Sothers, C.A.; Costa, M.A.S.; Brito, J.M.; Souza, M.A.D.;
Martins, L.H.P.; Lohmann, L.G.; Assunção, P.A.C.L.; et al. Flora da Reserva Ducke: Guia de identificação
das plantas vasculares de uma floresta de terra-firme na Amazônia Central; INPA-DFID: Manaus, Brazil, 1999;
ISBN 8521100116.

30. Kraus, K.; Pfeifer, N. Determination of terrain models in wooded areas with airborne laser scanner data.
ISPRS J. Photogramm. Remote Sens. 1998, 53, 193–203. [CrossRef]

31. McGaughey, R.J. FUSION/LDV: Software for LIDAR Data Analysis and Visualization; US Department of
Agriculture, Forest Service, Pacific Northwest Research Station: Seattle, WA, USA, 2009; Volume 123.

32. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing:
Vienna, Austria, 2017. Available online: http//www.R-project.org/ (accessed on 3 January 2019).

33. Roussel, J.R.; Auty, D. lidR: Airborne LiDAR Data Manipulation and Visualization for Forestry Applications.
2017. Available online: https://rdrr.io/cran/lidR/ (accessed on 9 January 2019).

34. Magnusson, M.; Fransson, J.E.S.; Holmgren, J. Effects on estimation accuracy of forest variables using
different pulse density of laser data. For. Sci. 2007, 53, 619–626. [CrossRef]

35. Strunk, J.; Temesgen, H.; Andersen, H.E.; Flewelling, J.P.; Madsen, L. Effects of lidar pulse density and
sample size on a model-assisted approach to estimate forest inventory variables. Can. J. Remote Sens. 2012,
38, 644–654. [CrossRef]

36. Aber, J.D. A method for estimating foliage-height profiles in broad-leaved forests. J. Ecol. 1979, 67, 35–40.
[CrossRef]

37. Warren Wilson, J. Stand structure and light penetration. I. Analysis by point quadrats. J. Appl. Ecol. 1965, 2,
383–390. [CrossRef]

38. Kükenbrink, D.; Schneider, F.D.; Leiterer, R.; Schaepman, M.E.; Morsdorf, F. Quantification of hidden canopy
volume of airborne laser scanning data using a voxel traversal algorithm. Remote Sens. Environ. 2017, 194,
424–436. [CrossRef]

39. Leitold, V.; Keller, M.; Morton, D.C.; Cook, B.D.; Shimabukuro, Y.E. Airborne lidar-based estimates of tropical
forest structure in complex terrain: Opportunities and trade-offs for REDD+. Carbon Balance Manag. 2014,
10, 3. [CrossRef]

40. Goodwin, N.R.; Coops, N.C.; Culvenor, D.S. Assessment of forest structure with airborne LiDAR and the
effects of platform altitude. Remote Sens. Environ. 2006, 103, 140–152. [CrossRef]

41. Abdullah, Q.A. A star is born: The state of new lidar technologies. Photogramm. Eng. Remote Sens. 2016, 82,
307–312. [CrossRef]

42. Stoker, J.M.; Abdullah, Q.A.; Nayegandhi, A.; Winehouse, J. Evaluation of single photon and Geiger mode
lidar for the 3D Elevation Program. Remote Sens. 2016, 8, 767. [CrossRef]

43. Tang, H.; Dubayah, R. Light-driven growth in Amazon evergreen forests explained by seasonal variations of
vertical canopy structure. Proc. Natl. Acad. Sci. USA 2017, 114, 2640–2644. [CrossRef]

44. Tang, H.; Dubayah, R.; Swatantran, A.; Hofton, M.; Sheldon, S.; Clark, D.B.; Blair, B. Retrieval of vertical LAI
profiles over tropical rain forests using waveform lidar at La Selva, Costa Rica. Remote Sens. Environ. 2012,
124, 242–250. [CrossRef]

45. Silva, C.A.; Saatchi, S.; Garcia, M.; Labriere, N.; Klauberg, C.; Ferraz, A.; Meyer, V.; Jeffery, K.J.; Abernethy, K.;
White, L.; et al. Comparison of Small- and Large-Footprint Lidar Characterization of Tropical Forest
Aboveground Structure and Biomass: A Case Study From Central Gabon. IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens. 2018, 11, 3512–3526. [CrossRef]

46. Wu, J.; Kobayashi, H.; Stark, S.C.; Meng, R.; Guan, K.; Tran, N.N.; Gao, S.; Yang, W.; Restrepo-Coupe, N.;
Miura, T.; et al. Biological processes dominate seasonality of remotely sensed canopy greenness in an
Amazon evergreen forest. New Phytol. 2018, 217, 1507–1520. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.5380/rf.v34i3.2417
http://dx.doi.org/10.1016/S0924-2716(98)00009-4
http//www.R-project.org/
https://rdrr.io/cran/lidR/
http://dx.doi.org/10.1093/forestscience/53.6.619
http://dx.doi.org/10.5589/m12-052
http://dx.doi.org/10.2307/2259335
http://dx.doi.org/10.2307/2401487
http://dx.doi.org/10.1016/j.rse.2016.10.023
http://dx.doi.org/10.1186/s13021-015-0013-x
http://dx.doi.org/10.1016/j.rse.2006.03.003
http://dx.doi.org/10.14358/PERS.82.5.307
http://dx.doi.org/10.3390/rs8090767
http://dx.doi.org/10.1073/pnas.1616943114
http://dx.doi.org/10.1016/j.rse.2012.05.005
http://dx.doi.org/10.1109/JSTARS.2018.2816962
http://dx.doi.org/10.1111/nph.14939
http://www.ncbi.nlm.nih.gov/pubmed/29274288
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Material and Methods 
	Results 
	Discussion 
	Grain Size and Pulse Density Effects on LAD and LAI 
	Tackling Occluded Voxels 
	Calibrating the K Coefficient 
	Limitations of This Study 

	Conclusions and Implications for Future Research 
	References

