An Improved Generalized Chirp Scaling Algorithm Based on Lagrange Inversion Theorem for High-Resolution Low Frequency Synthetic Aperture Radar Imaging
"> Figure 1
<p>Phase errors of 2nd to 6th order Taylor series approximation. The point target at a range of 12 km with a center frequency of 600 MHz, a bandwidth of 300 MHz and a beamwidth of 29°.</p> "> Figure 2
<p>Range migrations of point target at a range of 12 km after RCMC. (<b>a</b>) Algorithm in Reference [<a href="#B26-remotesensing-11-01874" class="html-bibr">26</a>] (6th order model). (<b>b</b>) Algorithm in Reference [<a href="#B26-remotesensing-11-01874" class="html-bibr">26</a>] (7th order model).</p> "> Figure 3
<p>Range-dependent coupling phase errors of 2nd to 6th order Taylor series approximation. The point target at the slant range 12 km with a center frequency of 600 MHz, a bandwidth of 300 MHz, a beamwidth of 29° and the reference slant range of 10 km.</p> "> Figure 4
<p>An example of the required order of different beamwidth and fractional bandwidth in a P-band synthetic aperture radar (SAR) system.</p> "> Figure 5
<p>The flow chart of the proposed algorithm.</p> "> Figure 6
<p>Focused results by different algorithm for P-band SAR data with a center frequency of 600 MHz. (<b>a</b>–<b>c</b>) Conventional generalized chirp scaling algorithm (GCSA). (<b>d</b>–<b>f</b>) Conventional GCSA with Lagrange inversion. (<b>g</b>–<b>i</b>) Proposed algorithm. The three subgraphs of each row correspond to contours of the targets located at <math display="inline"><semantics> <msub> <mi>R</mi> <mi>c</mi> </msub> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mi>c</mi> </msub> <mo>+</mo> <mn>800</mn> </mrow> </semantics></math> m and <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mi>c</mi> </msub> <mo>+</mo> <mn>1600</mn> </mrow> </semantics></math> m, respectively. The dynamic range of contour is −35 dB∼0 dB.</p> "> Figure 7
<p>Resolutions (Res) and differential resolutions (DRES) in azimuth and range given by different algorithm, where the resolutions obtained by <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>−</mo> <mi>k</mi> </mrow> </semantics></math> algorithm are references. The DRES presents the loss in spatial resolutions. Nine targets are arranged in the illuminated scene along the azimuth center at different distances form the reference range with an interval of 200 m. (<b>a</b>) Azimuth Res. (<b>b</b>) Range Res. (<b>c</b>) Azimuth DRES. (<b>d</b>) Range DRES.</p> "> Figure 8
<p>Resolutions (Res) and differential resolutions (DRES) in azimuth and range given by the generalized chirp scaling algorithm (GCSA) and proposed algorithm, where the resolutions obtained by <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>−</mo> <mi>k</mi> </mrow> </semantics></math> algorithm are references. (<b>a</b>) Azimuth Res. (<b>b</b>) Range Res. (<b>c</b>) Azimuth DRES. (<b>d</b>) Range DRES.</p> "> Figure 9
<p>Focused results of point scatterers for L-band SAR data at 80% fractional bandwidth, using the generalized chirp scaling algorithm (GCSA) and proposed algorithm. (<b>a</b>–<b>c</b>) Conventional GCSA. (<b>d</b>–<b>f</b>) Proposed algorithm. The three subgraphs of each row correspond to the contour maps, range profiles and azimuth profiles, respectively. The dynamic range of contour is −35 dB∼0 dB.</p> "> Figure 10
<p>Comparison of imaging results of real data processed by different algorithms. (<b>a</b>) Conventional generalized chirp scaling algorithm (GCSA). (<b>b</b>) Proposed algorithm.</p> "> Figure 11
<p>Zoom images. (<b>a</b>–<b>c</b>) Zoom images of subregions extracted from <a href="#remotesensing-11-01874-f010" class="html-fig">Figure 10</a>a. (<b>d</b>–<b>f</b>) Zoom images of subregions extracted from <a href="#remotesensing-11-01874-f010" class="html-fig">Figure 10</a>b.</p> "> Figure 12
<p>Parameters G and quadratic phase error (QPE). (<b>a</b>) Parameter G when <math display="inline"><semantics> <msub> <mi>T</mi> <mi>r</mi> </msub> </semantics></math> = 2 us (TBP = 400). (<b>b</b>) Parameter G when <math display="inline"><semantics> <msub> <mi>T</mi> <mi>r</mi> </msub> </semantics></math> = 10 us (TBP = 2000). (<b>c</b>–<b>e</b>) QPEs of zero-order, 1st-order and 2nd-order approximations corresponding to (<b>a</b>). (<b>f</b>–<b>h</b>) QPEs of zero-order, 1st-order and 2nd-order approximations corresponding to (<b>b</b>).</p> ">
Abstract
:1. Introduction
2. Background and Problem Statement
2.1. Signal Model
2.2. The Limitations of the Conventional GCSA
2.3. New Principle to Determine the Required Order of Range Frequency
3. The Improved GCSA Based on Lagrange Inversion Theorem
3.1. Procedure of Algorithm
3.2. Theoretical Formulation
4. Experiment Results and Analysis
5. Discussion
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
References
- Reigber, A.; Scheiber, R.; Jager, M. Very-High-Resolution Airborne Synthetic Aperture Radar Imaging: Signal Processing and Applications. Proc. IEEE 2013, 101, 759–783. [Google Scholar] [CrossRef]
- Xie, H.; An, D.; Huang, X. Spatial resolution analysis of low frequency ultrawidebeam-ultrawideband synthetic aperture radar based on wavenumber domain support of echo data. J. Appl. Remote Sens. 2015, 9, 095033. [Google Scholar] [CrossRef]
- Moore, R.K. Microwave Remote Sensing; Advanced Book Program; Addison-Wesley Pub. Co.: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Schlund, M.; Davidson, M.W.J. Aboveground Forest Biomass Estimation Combining L- and P-Band SAR Acquisitions. Remote Sens. 2018, 10, 1151. [Google Scholar] [CrossRef]
- Taylor, J.D. Ultrawideband Radar: Applications and Design; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Mokole, E.L.; Sabath, F. Examples of Ultrawideband Definitions and Waveforms. In Principles of Waveform Diversity and Design; Wicks, M.C., Ed.; Scitech Publishing: Raleigh, NC, USA, 2010. [Google Scholar]
- Rau, R.; Mcclellan, J.H. Analytic models and postprocessing techniques for UWB SAR. IEEE Trans. Aerosp. Electron. Syst. 2002, 36, 1058–1074. [Google Scholar]
- Immoreev, I.Y. Ultrawideband radars: Features and capabilities. J. Commun. Technol. Electron. 2009, 54, 1–26. [Google Scholar] [CrossRef]
- Potsis, A.; Reigber, A.; Mittermayer, J. Improving the Focusing Properties of SAR Processors for Wide-band and Wide-beam Low Frequency Imaging. In Proceedings of the IEEE 2001 International Geoscience and Remote Sensing Symposium, Sydney, NSW, Australia, 9–13 July 2001; pp. 3047–3049. [Google Scholar]
- Vu, V.T.; Sjogren, T.K.; Pettersson, M.I. Detection of Moving Targets by Focusing in UWB SAR—Theory and Experimental Results. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3799–3815. [Google Scholar] [CrossRef]
- Ressler, M.; Happ, L.; Nguyen, L. The Army Research Laboratory ultra-wide band testbed radars. In Proceedings of the IEEE International Radar Conference, Alexandria, VA, USA, 8–11 May 1995. [Google Scholar]
- Hellsten, H. CARABAS-an UWB low frequency SAR. In Proceedings of the IEE MTT-S International Microwave Symposium Digest, Albuquerque, NM, USA, 1–5 June 1992; pp. 1495–1498. [Google Scholar]
- Davidson, G.W.; Cumming, I.G.; Ito, M.R. A chirp scaling approach for processing squint mode SAR data. IEEE Trans. Aerosp. Electron. Syst. 1996, 32, 121–133. [Google Scholar] [CrossRef]
- Cumming, I.G.; Wong, F.H. Digital Signal Processing of Synthetic Aperture Radar Data: Algorithms and Implementation; Artech House: Norwood, MA, USA, 2005. [Google Scholar]
- Raney, K.; Runge, H.; Bamler, R. Precision SAR Processing Using Chirp Scaling. IEEE Trans. Geosci. Remote Sens. 1994, 32, 786–799. [Google Scholar] [CrossRef]
- Cafforio, C.; Prati, C.; Rocca, F. SAR data focusing using seismic migration techniques. IEEE Trans. Aerosp. Electron. Syst. 1991, 27, 194–207. [Google Scholar] [CrossRef]
- Bamler, R. A Comparison of Range-Doppler and Wavenumber Domain SAR Focussing Algorithms. IEEE Trans. Geosci. Remote Sens. 1992, 30, 706–713. [Google Scholar] [CrossRef]
- Potsis, A.; Reigber, A. Comparison of chirp scaling and wavenumber domain algorithms for airborne low-frequency SAR. In Proceedings of the SPIE—SAR Image Analysis, Modeling, and Techniques V, Silsoe, UK, 19–23 September 2003; pp. 11–19. [Google Scholar]
- Ulander, L.M.H.; Hellsten, H.; Stenstrom, G. Synthetic-aperture radar processing using fast factorized back-projection. IEEE Trans. Aerosp. Electron. Syst. 2003, 39, 760–776. [Google Scholar] [CrossRef] [Green Version]
- Reigber, A.; Alivizatos, E.; Potsis, A. Extended wavenumber-domain synthetic aperture radar focusing with integrated motion compensation. IEE Proc. Radar Sonar Navig. 2006, 153, 301–310. [Google Scholar] [CrossRef]
- Madsen, S.N. Motion compensation for ultra wide band SAR. In Proceedings of the IEEE 2001 International Geoscience and Remote Sensing Symposium, Sydney, NSW, Australia, 9–13 July 2001; pp. 1436–1438. [Google Scholar]
- An, D.; Li, Y.; Huang, X. Performance Evaluation of Frequency-Domain Algorithms for Chirped Low Frequency UWB SAR Data Processing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 678–690. [Google Scholar]
- Chen, L.; An, D.; Huang, X. A NLCS focusing approach for Low Frequency UWB One- Stationary Bistatic SAR. In Proceedings of the 2015 16th International Radar Symposium (IRS), Dresden, Germany, 24–26 June 2015. [Google Scholar]
- Sun, G.; Xing, M.; Liu, Y. Extended NCS Based on Method of Series Reversion for Imaging of Highly Squinted SAR. IEEE Geosci. Remote Sens. Lett. 2011, 8, 446–450. [Google Scholar] [CrossRef]
- Vu, V.T.; Sjogren, T.K.; Pettersson, M.I. A Comparison between Fast Factorized Backprojection and Frequency-Domain Algorithm in UWB Low frequency SAR. In Proceedings of the 2008 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2008), Boston, MA, USA, 7–11 July 2008; pp. 1284–1287. [Google Scholar]
- Zaugg, E.C.; Long, D.G. Generalized Frequency-Domain SAR Processing. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3761–3773. [Google Scholar] [CrossRef]
- Yi, T.; He, Z.; He, F.; Dong, Z.; Wu, M. Generalized Chirp Scaling Combined with Baseband Azimuth Scaling Algorithm for Large Bandwidth Sliding Spotlight SAR Imaging. Sensors 2017, 17, 1237. [Google Scholar] [CrossRef]
- Vu, V.T.; Sjogren, T.K.; Pettersson, M.I. Two-Dimensional Spectrum for BiSAR Derivation Based on Lagrange Inversion Theorem. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1210–1214. [Google Scholar] [CrossRef]
- Gessel, I.M. Lagrange inversion. J. Comb. Theory Ser. A 2016, 144, 212–249. [Google Scholar] [CrossRef] [Green Version]
- Gessel, I.M. A combinatorial proof of the multivariable lagrange inversion formula. J. Comb. Theory Ser. A 1987, 45, 178–195. [Google Scholar] [CrossRef] [Green Version]
- Novelli, J.C.; Thibon, J.Y. Noncommutative Symmetric Functions and Lagrange Inversion. Adv. Appl. Math. 2008, 40, 8–35. [Google Scholar] [CrossRef]
- Vu, V.T.; Sjogren, T.K. Ultrawideband Chirp Scaling Algorithm. IEEE Geosci. Remote Sens. Lett. 2010, 7, 281–285. [Google Scholar]
- Zeng, T.; Wang, R.; Li, F. SAR Image Autofocus Utilizing Minimum-Entropy Criterion. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1552–1556. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X. SAR Minimum-Entropy Autofocus Using an Adaptive-Order Polynomial Model. IEEE Geosci. Remote Sens. Lett. 2006, 3, 512–513. [Google Scholar] [CrossRef]
- Damini, A.; McDonald, M.; Haslam, G.E. X-band wideband experimental airborne radar for SAR, GMTI and maritime surveillance. IEE Proc. Radar Sonar Navig. 2003, 150, 305–312. [Google Scholar] [CrossRef]
- Ender, J.H.G.; Brenner, A.R. PAMIR—A wideband phased array SAR/MTI system. IEE Proc. Radar Sonar Navig. 2003, 150, 165–172. [Google Scholar] [CrossRef]
Parameters | P-Band | L-Band |
---|---|---|
Center frequency (MHz) | 600 | 1360 |
Bandwidth (MHz) | 300 | 272/544/816/1088 |
Fractional bandwidth (%) | 50 | 20/40/60/80 |
Beamwidth (°) | 29 | 11 |
Azimuth resolution (m) | 0.44 | 0.5 |
PRF (Hz) | 240 | 240 |
Velocity of platform (m/s) | 100 | 100 |
Pulse duration (us) | 10 | 10 |
Center slant range (km) | 10 | 10 |
Method | Azimuth | Range | |||||
---|---|---|---|---|---|---|---|
Res/m | PSLR/dB | ISLR/dB | Res/m | PSLR/dB | ISLR/dB | ||
Conventional GCSA in Reference [26] | 0 | 0.4927 | −16.9620 | −14.2797 | 0.5221 | −14.8340 | −9.9040 |
800 m | 0.5344 | −21.0146 | −15.0018 | 0.5690 | −17.1714 | −11.5202 | |
1600 m | 0.5615 | −20.7017 | −14.6937 | 0.6341 | −16.6871 | −10.2194 | |
Conventional GCSA + Lagrange | 0 | 0.4385 | −15.0555 | −13.7173 | 0.4505 | −12.4212 | −9.7310 |
800 m | 0.4385 | −15.1025 | −13.7213 | 0.4505 | −12.4613 | −9.7596 | |
1600 m | 0.4427 | −14.8451 | −13.2582 | 0.4518 | −12.8161 | −10.1929 | |
Proposed algorithm | 0 | 0.4365 | −15.1755 | −13.9167 | 0.4479 | −12.9714 | −10.2222 |
800 m | 0.4365 | −15.1673 | −13.9233 | 0.4479 | −13.0231 | −10.2356 | |
1600 m | 0.4406 | −15.0641 | −13.5990 | 0.4492 | −13.2844 | −10.5722 |
Method | Azimuth | Range | ||||
---|---|---|---|---|---|---|
Res/m | PSLR/dB | ISLR/dB | Res/m | PSLR/dB | ISLR/dB | |
Conventional GCSA in Reference [26] | 0.6471 | −18.3522 | −12.7106 | 0.1915 | −14.2602 | −9.0208 |
Proposed algorithm | 0.4922 | −18.5128 | −16.9421 | 0.1239 | −12.9655 | −9.5501 |
Method | Region A | Region B | Region C |
---|---|---|---|
Conventional GCSA in Reference [26] | 7.6037 | 7.1572 | 7.6275 |
Proposed algorithm | 7.5957 | 6.9543 | 7.2874 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Yi, T.; He, F.; He, Z.; Dong, Z. An Improved Generalized Chirp Scaling Algorithm Based on Lagrange Inversion Theorem for High-Resolution Low Frequency Synthetic Aperture Radar Imaging. Remote Sens. 2019, 11, 1874. https://doi.org/10.3390/rs11161874
Chen X, Yi T, He F, He Z, Dong Z. An Improved Generalized Chirp Scaling Algorithm Based on Lagrange Inversion Theorem for High-Resolution Low Frequency Synthetic Aperture Radar Imaging. Remote Sensing. 2019; 11(16):1874. https://doi.org/10.3390/rs11161874
Chicago/Turabian StyleChen, Xing, Tianzhu Yi, Feng He, Zhihua He, and Zhen Dong. 2019. "An Improved Generalized Chirp Scaling Algorithm Based on Lagrange Inversion Theorem for High-Resolution Low Frequency Synthetic Aperture Radar Imaging" Remote Sensing 11, no. 16: 1874. https://doi.org/10.3390/rs11161874
APA StyleChen, X., Yi, T., He, F., He, Z., & Dong, Z. (2019). An Improved Generalized Chirp Scaling Algorithm Based on Lagrange Inversion Theorem for High-Resolution Low Frequency Synthetic Aperture Radar Imaging. Remote Sensing, 11(16), 1874. https://doi.org/10.3390/rs11161874