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Abstract: The recent droughts that have occurred in different parts of Ethiopia are generally linked
to fluctuations in atmospheric and ocean circulations. Understanding these large-scale phenomena
that play a crucial role in vegetation productivity in Ethiopia is important. In view of this, several
techniques and datasets were analyzed to study the spatio–temporal variability of vegetation in
response to a changing climate. In this study, 18 years (2001–2018) of Moderate Resolution Imaging
Spectroscopy (MODIS) Terra/Aqua, normalized difference vegetation index (NDVI), land surface
temperature (LST), Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) daily
precipitation, and the Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation
System (FLDAS) soil moisture datasets were processed. Pixel-based Mann–Kendall trend analysis
and the Vegetation Condition Index (VCI) were used to assess the drought patterns during the
cropping season. Results indicate that the central highlands and northwestern part of Ethiopia, which
have land cover dominated by cropland, had experienced decreasing precipitation and NDVI trends.
About 52.8% of the pixels showed a decreasing precipitation trend, of which the significant decreasing
trends focused on the central and low land areas. Also, 41.67% of the pixels showed a decreasing
NDVI trend, especially in major parts of the northwestern region of Ethiopia. Based on the trend
test and VCI analysis, significant countrywide droughts occurred during the El Niño 2009 and 2015
years. Furthermore, the Pearson correlation coefficient analysis assures that the low NDVI was mainly
attributed to the low precipitation and water availability in the soils. This study provides valuable
information in identifying the locations with the potential concern of drought and planning for
immediate action of relief measures. Furthermore, this paper presents the results of the first attempt
to apply a recently developed index, the Normalized Difference Latent Heat Index (NDLI), to monitor
drought conditions. The results show that the NDLI has a high correlation with NDVI (r = 0.96),
precipitation (r = 0.81), soil moisture (r = 0.73), and LST (r = −0.67). NDLI successfully captures the
historical droughts and shows a notable correlation with the climatic variables. The analysis shows
that using the radiances of green, red, and short wave infrared (SWIR), a simplified crop monitoring
model with satisfactory accuracy and easiness can be developed.

Keywords: drought; NDVI; NDLI; VCI; ENSO; time series analysis

1. Introduction

In the era of climate change, there is a continuous need to thoroughly assess vulnerabilities
caused by complex environmental, ecological, and anthropogenic factors. Drought, as a natural
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phenomenon, creates numerous multidimensional effects on agriculture, human health, and disease
prevalence [1]. Various drought management and vulnerability schemes were thus developed to
mitigate the influences of natural and human-made disturbances at regional [2,3] and global scales [4,5].
Vulnerability assessment of natural disasters has become a necessity for policy-makers and practitioners
in reducing the impacts associated with them [6,7].

Drought is dryness due to an acute shortage of water, which lasts for several months or years.
Drought considerably endangers food and water security. As a complex natural event, it stems from a
lack of precipitation over a prolonged period of time, and its effect can be only witnessed slowly over a
period of time [8,9]. Besides the shortages of precipitation, droughts are associated with differences
between actual and potential evapotranspiration, soil moisture deficits, and reduced groundwater
or reservoir levels. These characteristics make the definition of drought complex and, thus, there is
no single universally accepted definition. Owing to the lack of comprehensiveness of a single agreed
definition, the identification and monitoring of key characteristics of drought is difficult.

Several studies have provided comprehensive reports on indices that are used to monitor
the impacts of droughts [10–15]. Generally, a variety of drought indices were developed from
climatic and satellite data. The most widely used indexes include the Palmer Drought Severity
Index (PDSI), Standardized Precipitation Index (SPI) [16], normalized difference vegetation index
(NDVI) [17], Normalized Difference Water Index (NDWI) [18], Vegetation Condition Index (VCI), and
Temperature Condition Index (TCI) [13]. Remote sensing data-based indices have been widely used
and compared with the other approaches for assessing drought, as they are among the best in detecting
the onset of drought and measuring the intensity, duration, and impact of drought globally [19].
The remote-sensing based indices for quantifying the state of vegetation, namely the combination
of visible and infrared bands, provide unique characterization for the vegetative area, including
biomass, growth status, and leaf area coverage, and serve as a basis for the estimation of vegetation
condition [20]. Surface temperature may serve as a basis for the estimation of vegetation condition and
evapotranspiration [21]. The performance of drought indices generated based on MODIS reflectance
and land surface temperature (LST), in association with the standardized precipitation index (SPI),
were extensively investigated to assess drought conditions on a global scale to regional scale in the
southern Great Plains, USA [22], China [23], in eastern Africa, and in southern and southeastern
Africa [24–28].

Ethiopia faces drought conditions every eight–ten years [29]. The country has been facing drought
at a growing incidence throughout the past many decades [30]. Among these, the 1984–1985 drought
affected the lives of more than two hundred thousand people and millions of livestock [31]. The climate
in Ethiopia is changing, even though significant trends are not clear [32]. OXFAM reports that according
to the survey made questioning local people in Ethiopia, the climate is experiencing an increase in
the rate of drought [33]. The farmers report that good harvests are less common due to an extended
extreme dry season and strong rain in the wet season, followed by a prolonged absence of precipitation,
which is likely due to a manifestation of global warming. Both the rise in temperature and the long
absence of precipitation are major factors for causing droughts. The projected increase of weather
events such as droughts due to climate change derails the availability of water and will lead to a cut in
agricultural production.

Ethiopia’s economy is essentially dependent on rain-fed agriculture, which is vulnerable to climate
change [34]. 2015 was one of the driest years in large parts of Ethiopia [35]. The main rain season, locally
called ‘kiremt’, was late and below normal conditions [36]. Consequently, the government called for
emergency assistance for 10.2 million people [37]. The ultimate causes of this drought event originated
from great distances, through atmospheric and oceanic circulations. The El Niño–Southern Oscillation
(ENSO) phenomenon hugely impacts Ethiopian rainfall [38]. In particular, the warm-phase El Niño is
closely linked with reserved rains during kiremt, over northern and central Ethiopia [39]. Under these
circumstances, the evapotranspiration needs of plants were not met, leading to an intense reduction
in vegetative production. Thus, the need to assess long-term vegetation trends and investigate the
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relationship between these changes and the variability in climatic conditions is increasingly important
in Ethiopia.

The specific objectives of this research are: (i) to detect any long-term hydro-meteorological trends
using the Mann–Kendall statistical test; (ii) to assess the drought patterns using the vegetation condition
index; and (iii) to identify the main causes of NDVI change in relation to rainfall, soil moisture, LST, and
ENSO. Additionally, this paper will be the first to attempt to incorporate the Normalized Difference
Latent Heat Index (NDLI) as a proxy to evapotranspiration needs of the plant. NDLI, a combination of
the green, red, and SWIR channels of the electromagnetic spectrum, has been found to be useful for
the detection of plant water content [40]. It is highlighted that a better analysis of drought allows for
the development and implementation of successful policies to better understand disruptive climate
change in the region, to improve food security and strengthen climate resilience.

2. Study Area and Data

2.1. Study Area

The study area, Ethiopia, is located between 3◦00′ to 15◦00′N and 32◦00′ to 48◦00′E in the
inner part of the Horn of Africa, as shown in Figure 1. The country has a total area of 1.1 million
square kilometers, is landlocked, and has the second largest population in Africa, second to Nigeria.
The elevation ranges from 194 to 4539 m above mean sea level. The highland, with an altitude of
1500 m or above, is located at the central and northern parts of the country and constitutes roughly
35% of the country [41]. In a traditional way, based on elevation, at least three climatic zones are
identified—the tropical (lowland zone), which is below 1830 m in elevation and has mean annual
temperatures of 20–28 ◦C; the subtropical zone, which includes the highland areas of 1830–2440 m in
elevation and with mean annual temperatures of 16–20 ◦C; and the cool zone, which is above 2440 m
in elevation and with mean annual temperatures of 6–16 ◦C [42].
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Figure 1. Location of the study area: the administrative boundary of Ethiopia, constituting the nine
regional states, with a background showing an Advanced Spaceborne Thermal Emission and Reflection
Radiometer digital elevation model of 30 m resolution.

Due to its complex topographical and geographical features, the climate of Ethiopia exhibits
strong spatial variation and different rainfall regimes [43]. Thus, rainfall shows considerable spatial
heterogeneity in Ethiopia [44]. Much of the region is generally bimodal, with long rains in JJAS
(June–September) and short rains during OND (October–December). The meridional translation of the
Intertropical Convergence Zone (ITCZ) across the equator is the main factor of the MAM (March–May)
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and OND seasons [45]. Topography also plays a role in affecting the annual cycle of precipitation.
The highland areas receive an annual rainfall of about 1200 mm, with the least temperature variation,
whereas the lowland areas (Afar and Somali regions) receive an annual rainfall of less than 500 mm
with larger temperature variations [41]. The spatial distribution of Ethiopian drought indicates that
most of the drought and food crises events are concentrated in the central and northern highlands,
extending from North Shewa through Wollo to Tigray [46].

Based on the Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) daily
precipitation data obtained from the Climate Hazards Group at the University of California, Santa
Barbara (UCSB) [35], the main rainfall season from June to September, locally called kiremt, accounts
for 60–80% of the annual rainfall, with the remaining falling in the dry season, from October to May,
Figure 2.
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Figure 2. Long-term seasonal average of rainfall (mm), land surface temperature (LST, ◦C), normalized
difference vegetation index (NDVI), and soil moisture (m3m−3) for the period from 2001 to 2018.

The rainfall significantly varies between the northeastern and the western highlands of Ethiopia,
where orographic rainfall is substantial. Figure 2 additionally depicts that an average seasonal LST
of the land derived from the solar radiation (MOD11A2 Terra v.006 product) of Ethiopia is between
10 ◦C and 54 ◦C, with maximum temperatures concentrated on the lowland areas. Similarly, the soil
moisture (derived from the FLDAS Noah Land Surface Model L4) distribution for the top 0–10 cm
layer increases in the western and northern parts of the country. Moreover, NDVI distributions derived
from the MOD13Q1 Terra v.006 product confirm healthy vegetation and forests, mainly located in the
western parts of Ethiopia, which match with the rainfall, LST, and soil moisture patterns.

The land cover types for Ethiopia extracted from the European Space Agency (2016) Global Land
Cover map are shown in Figure 3. The most dominant cover types are grassland, cropland, and shrubs,
covering 29%, 26%, and 21% of the whole study area, respectively. The land cover in the highlands
continually changes because of the persistent agricultural activities and higher population density as
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compared to the lowlands [47]. Large areas of agricultural farms, where people largely depend on the
rain-fed farms, are of major concern due to recurrent drought incidents.
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2.2. Datasets

The data for this study were acquired from four sources. With extensively high temporal
and spatial resolution as compared to the other satellites, the products of MODIS onboard NASA
Terra and Aqua satellites were suited for this study because of their large geographic coverage.
We used the monthly averaged MODIS Terra 16 day datasets for the period from 2001 to 2018
(18 years) that are archived in the Google Earth Engine (GEE) image collection. Time series NDVI
and LST covering the whole study area at 250 m and 1 km spatial resolution were generated from
MODIS/006/MOD13Q1 and MODIS/006/MOD11A1 version 6 surface reflectance composite, respectively.
Similarly, surface reflectance products of MODIS/006/MOD09GA were generated for computing the
NDWI and NDLI [40]. The data were extracted and processed using the JavaScript code editor in
the GEE platform (https://earthengine.google.com/ Mountain View, CA, USA), which offers a parallel
computing environment for processing large datasets. For monitoring the spatial and temporal
conditions of drought, we chose NDVI, but we also included the other parameters that trigger dry
conditions. NDVI, the most common index for remote sensing of vegetation, is known to be saturated
over areas with high leaf area indexes. Numerous vegetation indexes using the same set of near-infrared
and red channels have been developed, even though these indices do not enjoy the same popularity as
NDVI, which is known for its capability to distinguish vegetation from other types of land cover, but is
not really designed to sense the water content in the vegetation canopy. Nevertheless, remote sensing
of the water content has important implications in agriculture and forestry. For the detection of plant
water content, the near-infrared region (NIR) and shortwave infrared regions (SWIR) have been found
to be useful. Thus, NDWI is defined in a similar way to NDVI but uses the near-infrared channel to
monitor the water content of the vegetation canopy. Fluctuations in the vegetation canopy are indicators
of drought stress [18]. Besides NIR and SWIR, two spectral regions of the electromagnetic spectrum
have been found to be useful for the detection of plant water content: the green and red channels.
Liou et al. [40] recently developed the NDLI, which uses the green, red, and SWIR channels. NDLI is

https://earthengine.google.com/
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sensitive to water availability for different land covers at the land–air interface and outperforms the
different versions of NDWI indexes. The spectral indices are calculated using the following formulas:

NDVI =
NIR−R
NIR + R

NDWI =
NIR− SWIR
NIR + SWIR

NDLI =
G−R

G + R + SWIR

where G, R, NIR, SWIR are the spectral reflectance for MODIS band 4 (545–565 nm), band 1
(620–670 nm), band 2 (841–876 nm), and band 6 (1628–1652 nm), respectively.

The other data source used to generate time series rainfall data for the period from 2001 to 2018
was CHIRPS. CHIRPS is a 30+ year quasi-global rainfall dataset combining satellite observations from
the Climate Prediction Center (CPC) and the National Climate Forecast System version 2 (CFSv2) and
in situ precipitation observations [35,37]. It is widely used in Ethiopia for drought monitoring [38].
It is well demonstrated that CHIRPS can complement the sparse rain gauge network and provide high
spatial and temporal resolution for trend analysis [48,49]. The CHIRPS data were accessed from the ftp
server (ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0).

The monthly soil moisture (0–10 cm) was generated from the Famine Early Warning Systems
Network (FEWS NET) Land Data Assimilation System (FLDAS) dataset, developed to assist food
security assessments in data-sparse developing countries [50]. This is a natural tool to monitor drought
conditions and was accessed from https://earlywarning.usgs.gov/fews/product/308.

In this study, we used the multivariate ENSO index (MEI) and the dipole mode index (DMI) to
observe how vegetation responds to climatic conditions. The monthly mean MEI time series were
retrieved from the National Oceanic and Atmospheric Administration (NOAA) website (https://www.
esrl.noaa.gov/psd/enso/mei/, Washington, DC, USA). The MEI time series was calculated by taking
the leading principal component time series of the empirical orthogonal function of the five variables,
namely the sea level pressure, sea surface temperature, surface zonal winds, surface meridional winds,
and Outgoing Longwave Radiation within the 30◦S–30◦N and 100◦E–70◦W region. Besides this,
the DMI was calculated by taking the differences between the sea surface temperature anomalies in the
western (50◦E–70◦E, 10◦S–10◦N) and eastern (90◦E–110◦E, 10◦S–0◦N) portions of the Indian Ocean [51].
The monthly DMI data was accessed from the Japan Agency for Marine-Earth Science and Technology
(JAMSTEC) website (http://www.jamstec.go.jp/frcgc/research/d1/iod/iod/dipole_mode_index.html).
The data used in these study are summarized on Table 1.

Table 1. Datasets characteristics and source.

Data Source Characteristics

Precipitation CHIRPS Monthly precipitation at 0.05 × 0.05 from Jan. 2001 to Dec. 2018
NDVI MODIS Monthly NDVI at 250 m from Jan. 2001 to Dec. 2018
LST MODIS Monthly LST at 1 km from Jan. 2001 to Dec. 2018

NDWI MODIS Estimated from surface reflectance at 500 m from Jan. 2001 to Dec. 2018
NDLI MODIS Estimated from surface reflectance at 500 m from Jan. 2001 to Dec. 2018

Soil Moisture FLDAS Noah Monthly soil moisture (0–10cm) at 0.10 × 0.10 from Jan. 2001 to Dec. 2018
MEI NOAA Monthly MEI time series from Jan. 2001 to Dec. 2018
DMI JAMSTEC Monthly DMI time series from Jan. 2001 to Dec. 2018

ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0
https://earlywarning.usgs.gov/fews/product/308
https://www.esrl.noaa.gov/psd/enso/mei/
https://www.esrl.noaa.gov/psd/enso/mei/
http://www.jamstec.go.jp/frcgc/research/d1/iod/iod/dipole_mode_index.html
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3. Methodology

3.1. Identification of Drought

A common way to calculate anomalies is to apply the Standardized Anomaly Index (SAI). SAI is a
standardized departure from the long term mean and is calculated as:

SAIi =
xi − x
σ

where xi is the seasonal mean of variable x, x is the long term seasonal mean and σ is the standard
deviation of the seasonal mean of all data. The anomaly maps were created by subtracting the
seasonal climatology mean from the seasonal values and then dividing this by the standard deviation.
The resulting maps depict the intensity of how good or bad the current season is compared with the
average situation. Seasonal anomaly maps of precipitation, NDVI, LST, and soil moisture for the years
2015–2018 from the 2001–2014 climatology were computed to identify and quantitatively measure
which part of Ethiopia was severely affected in the year 2015 and its recovery to normal conditions.

Besides the common SAI, another method to compare the current NDVI with historical values
is the Vegetation Condition Index [52]. The VCI has been extensively used to monitor vegetation
conditions [53]. It normalizes NDVI on a pixel-by-pixel basis, scaling between the minimum and
maximum values of NDVI:

VCI = 100 ∗
(

NDVI −NDVImin
NDVImax −NDVImin

)
where NDVI, NDVImin, and NDVImax are the mean seasonal NDVI, and its absolute long-term minimum
and maximum NDVI values, respectively, for each pixel. VCI varies in the range of 0 to 100 percent,
reflecting relative changes in the vegetation condition from extremely low to high VCI [52]. As
proposed by [52] and recently applied by [54], a threshold value of below 35% is used to indicate
drought conditions as shown in Table 2.

Table 2. Drought categories derived from the Vegetation Condition Index (VCI).

VCI Percentage Drought Severity Level

>35 No drought
20–35 Moderate drought
10–20 Severe drought
<10 Extreme drought

3.2. Mann–Kendall Trend Analysis

The Mann–Kendall method is a non-parametric rank-based test method, which is commonly used
to identify a monotonic trend in climate, by using remote sensing and hydro-metrological data [55].
The usefulness of a non-parametric test relies on its resilience to outliers, non-normality, missing values,
and seasonality and, hence, it is necessary for this study [56–58]. The univariate Mann–Kendall statistic
S for time series data (Xk, k = 1, 2, . . . , n) is given as:

S =
n∑

j< 1

sgn
(
Xi −X j

)
where Xi and X j are the seasonal mean values in years i and j, respectively, i > j, and n is the length of
the time series. The sign of all possible differences Xi −X j is computed as:

sgn
(
Xi −X j

)
=


+ 1, i f Xi −X j > 0
0, i f Xi −X j = 0
−1, i f Xi −X j < 0
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When n ≥ 8, the statistic S is approximately normally distributed with mean E[S] = 0, and
variance σ2 given by the following equation:

σ2 =

n(n− 1)(2n + 5) −
p∑

j=1

t j
(
t j − 1

)(
2t j + 5

)/18

where t j is the number of data points in the jth tie group, and p is the number of tie group in the time
series. The test statistics z is computed as:

z =


S−1
σ , i f S > 1
0, i f S = 0

S+1
σ , i f S < 1

Now, Z follows a standard normal distribution whereby its positive (negative) value indicates
an upward (downward) trend. If Z is greater than Zα/2, where α represents the significance level,
the trend is considered as significant. In this regard to the z-transformation, this study is considered
a 9.5% confidence level, where the null hypothesis was no trend was rejected if |z| > 1.96, and the
alternative hypothesis that increasing or decreasing monotonic trend exists in the series was accepted.
The magnitude of the linear trend was then predicted by the Sen’s slope estimator [59], i.e., the change
per unit time of a trend was computed as:

Sen′s slope = Median
{(

xi − x j
)
/(i− j)

}
, i > j,

where xi and x j are the changing values of the variable at time steps i and j, respectively. A value
close to zero means there is not much variation through time. A negative value of the slope depicts a
negative trend, whereas a positive value indicates a positive trend. This method is recommended for
remote sensing time series analysis and has been used for vegetation trend analysis [60]. The trend
analysis described above was applied to the seasonal rainfall, NDVI, LST, and soil moisture values
using the “spatialEco” package in R-project.

3.3. Multiple Linear Regression

Multiple linear regression is an extension of simple linear regression. It is used when to predict
the value of a variable based on the value of two or more other variables. For instance, for analyzing a
dependent variable (in this case NDVI) in light of related independent variables (precipitation, soil
moisture, LST, NDWI, NDLI, MEI, DMI). It allows us to determine the overall fit of the model and
the relative contribution of each of the predictors to the total variance explained. In this paper, we
tried to quantify the susceptibility of NDVI to changes in climatic and hydro-metrological variables.
Mathematically, a multiple linear regression model with k predictor variables x1, x2, . . . , xk and a
response can be written as:

y = β0 + β1x1 + β2x2 + · · ·+ βkxk + ε where i = 1, 2, . . . , k ,

and ε is the residual terms of the model, which tries to minimize, y is the dependent variable in this case
NDVI, xi represents the independent variables (precipitation, soil moisture, LST, NDWI, NDLI, MEI,
DMI), β0 is the intercept, and β1, β2, · · · , βk are the coefficients of xi. Before we chose to analyze our
data using multiple regression, we made sure that assumptions required for multiple regression were
met. We checked the existence of a linear relationship by inspecting the scatter and partial regression
plots between NDVI and each of the independent variables. By using the variance inflation factor (VIF)
values, we further checked whether the explanatory variables were highly correlated with each other
or not. A VIF measures the extent to which multicollinearity has increased the variance of an estimated
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coefficient. It looks at the extent to which an explanatory variable can be explained by all the other
explanatory variables in the equation.

4. Results and Discussion

The most recent ENSO, which was developed in 2014 and strengthened in the summer, has
caused global impacts [61]. In Ethiopia, the dry kiremt seasons are closely linked to the significantly
warmer Pacific sea surface temperatures [39]. Figure 4 depicts that the strongest kiremt precipitation
anomalies derived from the CHIRPS datasets are located in the central and northwestern parts of
Ethiopia, with maximum −4.6 standardized deviations anomalies around −460 mm/year in 2015.
Vegetation in Ethiopia is sensitive to water availability and severely affected by low precipitation.
Correspondingly, large area negative NDVI deviations are a result of water stress concentrated in the
western, northern, and central parts of Ethiopia, with maximum NDVI departures by approximately
−2.5 standardized anomalies below average. In the same way, the 10 cm soil moisture and LST follow
the same patterns as those of the precipitation anomalies, by approximately −3 and 3.5 standardized
deviations from their corresponding normal conditions, respectively. During 2016, due to the dry
conditions linked with La Niña, the negative precipitations of the southern and eastern parts of Ethiopia
persisted, with maximum −4.0 standardized deviations anomalies around −305 mm/year. The dry
conditions evolved from the north and central regions to the south and east parts. Across the region,
however, NDVI did not follow the same pattern and the vegetation productivity did not quickly
decline. This may have been due to the extended availability of water stored in soils for growing
crops [62]. Following the return of ENSO to neutral conditions in 2017, the central and northern regions
of Ethiopia become more favorable for crop development. During this period, the cropland areas
experienced enhanced precipitation and vegetation, which was also closely linked to the increase in
soil moisture. The agricultural data obtained from the annual agricultural sample survey of the Central
Statistics Agency indicated increments from 7.32 to 28.93 quintals per hectare for maize, from 5.05 to
26.76 quintals per hectare for Teff, and from 2.28 to 29.67 quintals per hectare for wheat [63].
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While in 2018 the precipitation showed negative anomalies, the maximum soil moisture and
NDVI anomalies were about two standardized deviations above the average conditions. Similarly,
the minimum LST departure was about −3 standardized deviations above the average conditions. It
is worth mentioning that in 2018, compared to 2017, a higher precipitation in the southeast part of
Ethiopia was observed, which was well-matched with increased NDVI.

4.1. Drought Patterns Based on VCI

Figure 5 depicts the spatio–temporal persistence of drought detected by VCI during the growing
season in Ethiopia over the past two decades. It is shown that the growing season signifies the
maximum vegetation growth, and demonstrates the suitability of VCI to detect drought and assist the
measures of vegetation health.
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In this figure, regions which are greener indicate vegetation levels higher than the average
conditions, whereas the red colors indicate poor conditions. Severe to extreme droughts were identified
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in the years 2002, 2003, 2004, 2009, 2010, 2012, and 2015 for the north, central, west, and southwest
parts of the country, where the land is mainly covered by rain-fed agriculture. The results show a
direct influence of ENSO on the vegetation of Ethiopia, especially during the El Niño years 2009–2010
and 2014–2015. During El Niño years, the NDVI values gradually declined and remained marginally
below average. On the other hand, the years 2001, 2005, 2006, 2007, 2013, 2016, and 2018 reflect the
near-normal NDVI throughout most of the rain-fed agriculture regions. In Ethiopia, an El Niño event
would cause suppressed rainfall during the kiremt season, causing serious reductions in cereal yields
and output [64]. On the other hand, when a La Niña event followed on from an El Niño, favorable and
above average vegetation conditions were observed, for instance 2010–2011 and 2016–2017 La Niña
events, which followed on from the 2009–2010 and 2014–2015 El Niño events, respectively.

4.2. Spatial and Temporal Trends

The spatial and temporal variability of the trends, together with the significance of the trends in
precipitation, NDVI, soil moisture, and LST, are presented in Figures 6 and 7. The Mann–Kendall test
was carried out to observe whether the mentioned variables changed over space during the 18 years
period in the country. The areas in green (positive slope value) indicate an increasing monotonic trend
in precipitation, NDVI, soil moisture, and LST, whereas areas in red (negative slope value) indicate a
decreasing monotonic trend in precipitation, NDVI, soil moisture, and LST.

Remote Sens. 2018, 10, x FOR PEER REVIEW 11 of 19 

 

In this figure, regions which are greener indicate vegetation levels higher than the average 
conditions, whereas the red colors indicate poor conditions. Severe to extreme droughts were 
identified in the years 2002, 2003, 2004, 2009, 2010, 2012, and 2015 for the north, central, west, and 
southwest parts of the country, where the land is mainly covered by rain-fed agriculture. The results 
show a direct influence of ENSO on the vegetation of Ethiopia, especially during the El Niño years 
2009–2010 and 2014–2015. During El Niño years, the NDVI values gradually declined and remained 
marginally below average. On the other hand, the years 2001, 2005, 2006, 2007, 2013, 2016, and 2018 
reflect the near-normal NDVI throughout most of the rain-fed agriculture regions. In Ethiopia, an El 
Niño event would cause suppressed rainfall during the kiremt season, causing serious reductions in 
cereal yields and output [64]. On the other hand, when a La Niña event followed on from an El Niño, 
favorable and above average vegetation conditions were observed, for instance 2010–2011 and 2016–
2017 La Niña events, which followed on from the 2009–2010 and 2014–2015 El Niño events, 
respectively.  

4.2. Spatial and Temporal Trends 

The spatial and temporal variability of the trends, together with the significance of the trends in 
precipitation, NDVI, soil moisture, and LST, are presented in Figures 6 and 7. The Mann–Kendall test 
was carried out to observe whether the mentioned variables changed over space during the 18 years 
period in the country. The areas in green (positive slope value) indicate an increasing monotonic 
trend in precipitation, NDVI, soil moisture, and LST, whereas areas in red (negative slope value) 
indicate a decreasing monotonic trend in precipitation, NDVI, soil moisture, and LST. 

 
Figure 6. Spatial and temporal trends of seasonal precipitation, and NDVI in Ethiopia from 2001 to 
2018. Positive slope values indicate an increasing monotonic trend, while negative slope values 
indicate a decreasing monotonic trend. 

Figure 6. Spatial and temporal trends of seasonal precipitation, and NDVI in Ethiopia from 2001 to
2018. Positive slope values indicate an increasing monotonic trend, while negative slope values indicate
a decreasing monotonic trend.



Remote Sens. 2019, 11, 1828 12 of 19
Remote Sens. 2018, 10, x FOR PEER REVIEW 12 of 19 

 

 

Figure 7. Spatial and temporal trends of seasonal LST and soil moisture in Ethiopia from 2001 to 2018. 
Positive slope values indicate an increasing monotonic trend, while negative slope values indicate a 
decreasing monotonic trend. 

The pixel-based trend analysis shows the growing season trend values of precipitation range 
from −26 to 11 mm, with significant changes occurring in the central and northern parts of the 
country. Specifically, the northern, central, and rift valley regions of Ethiopia experienced a 
decreasing rainfall trend, whereas western Benshangul and the highlands of the central Amhara 
region show an increasing trend. On the other hand, the lowland pastoral regions of Somali region 
did not show a significant trend. Generally speaking, 52.8% of all pixels in the country show a 
decreasing trend and significant trends concentrate on the central and lowlands regions of the 
country. 

With respect to the NDVI trend, the northern and northwestern areas of the Tigrai and Amhara 
region, as well as the southern region, showed a decreasing trend during the study period. The 
growing season NDVI values ranged from −0.0142 to 0.0213, and overall 41.67% of the country 
indicated a decreasing trend. The significant decreasing trends were located in the northwestern part. 
Similar pixel-based trend analysis for LST depicted in Figure 7 showed that LST increased for the 
northwestern, central highland, and southern parts of the country, whereas there was an estimated 
11% significance decrease concentrated on the western parts of the Gambella region. These results 
are in agreement with the recent findings of Workie et al. [65], who used a linear regression approach 
to detect trends. Similar procedures performed for soil moisture convey that decreasing significant 
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Positive slope values indicate an increasing monotonic trend, while negative slope values indicate a
decreasing monotonic trend.

The pixel-based trend analysis shows the growing season trend values of precipitation range from
−26 to 11 mm, with significant changes occurring in the central and northern parts of the country.
Specifically, the northern, central, and rift valley regions of Ethiopia experienced a decreasing rainfall
trend, whereas western Benshangul and the highlands of the central Amhara region show an increasing
trend. On the other hand, the lowland pastoral regions of Somali region did not show a significant
trend. Generally speaking, 52.8% of all pixels in the country show a decreasing trend and significant
trends concentrate on the central and lowlands regions of the country.

With respect to the NDVI trend, the northern and northwestern areas of the Tigrai and Amhara
region, as well as the southern region, showed a decreasing trend during the study period. The growing
season NDVI values ranged from −0.0142 to 0.0213, and overall 41.67% of the country indicated a
decreasing trend. The significant decreasing trends were located in the northwestern part. Similar
pixel-based trend analysis for LST depicted in Figure 7 showed that LST increased for the northwestern,
central highland, and southern parts of the country, whereas there was an estimated 11% significance
decrease concentrated on the western parts of the Gambella region. These results are in agreement with
the recent findings of Workie et al. [65], who used a linear regression approach to detect trends. Similar
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procedures performed for soil moisture convey that decreasing significant trends can be observed in the
central and lowland areas of Afar and Somali regions, whereas the southwestern part of Benshangul
and western part of the Gambela region are experiencing a greening trend.

4.3. Multi Linear Regression and Correlation Statistics

To facilitate relationships between NDVI and other parameters, a small box region (38E–39E,
9N–10N) which experienced significant decreasing trends, presented in Figure 4, Figure 6, and Figure 7
was extracted. Figure 8 shows the monthly anomalies time series plots for NDVI and soil moisture
(Figure 8a), precipitation and LST (Figure 8b), and NDLI and NDWI (Figure 8c). Basically, the anomalies
calculated by subtracting monthly climatology values from each month provide additional information
about the variations present. The periods of severe droughts that resulted in countrywide drought
conditions during the growing seasons are shaded with a box in Figure 8.
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Figure 8. The monthly mean anomaly time series values of (a) NDVI and soil moisture, (b) precipitation
and LST, and (c) NDLI and NDWI for 38E–39E, 9N–10N.

NDVI anomalies in this region were near normal for several years. In contrast, it showed slight
green up in 2010 and late 2016, as conditions translate to weak La Niña. Maximum NDVI departures
were observed in 2009 and 2015, where NDVI gradually decreased and remained slightly below average.
In particular, the 2015 events were accompanied by higher precipitation anomalies of about −100 mm.
There is an exact resemblance between the other parameters, with a clear identification of the drought
and normal years. Considering the spatial drought patterns derived from VCI (Figure 5), the intense
drought years certainly resulted in a decline in soil moisture and water availability. The water stress
situations in the root zone were well captured by soil moisture values. The NDWI and NDLI indicate a
similar pattern to that of NDVI, where they reached peaks in 2010 and 2016.

The Pearson correlation coefficients between NDVI and other factors (precipitation, soil moisture,
LST, NDWI, NDLI, MEI, and DMI) on a seasonal time scale for the whole study record were computed
to assess the relationship between them. The Pearson correlation coefficient was conducted using
the statistics package in R. Figure 9 shows the heatmap, which summarizes the linear relationships
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between the parameters. There was a strong correlation between NDVI and precipitation (r = 0.83)
soil moisture (r = 0.83), NDLI (r = 0.96), and NDWI (r = 0.63). The positive correlation between
precipitation and NDVI implies that an enhanced precipitation supports vegetation growth and vice
versa [66]. On the contrary, a significant negative correlation between NDVI and LST (r = −0.76) was
observed. Furthermore, a less notable negative correlation of (r = −0.43, r = −0.39) was observed
between NDVI and the two climatic indices MEI and DMI, respectively.
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Since there are substantial correlations among NDVI, Precipitation, LST, soil moisture, NDLI,
NDWI, MEI, and DMI (Figure 9), the detection of multicollinearity is crucial before plugging data into
a regression model. Multicollinearity denotes predictors that are correlated with other predictors. The
most widely-used diagnostic for multicollinearity is the VIF. We can see from Table 3 that the VIFs are
all down to satisfactory values; they are all less than 5. Even though there is some multicollinearity in
our data, it is not severe enough to warrant further corrective measures.

The results in Table 3 reveal the statistically significant relationship between NDVI, NDLI, and
NDWI and MEI, with p-values of < 2.00 × 10−16, 2.86 × 10−6, and 0.0576, respectively. The significant
relationships between NDVI, and NDLI and NDWI make it clear that an increase in water availability
causes an upward trend in NDVI, which implies a decline in drought [67]. The results indicate
that water availability in the soil was the main influencing factor on the spatially averaged NDVI.
The significantly negative correlation between MEI and NDVI reaffirms the claim that ENSO variability
plays a major role in the climatic conditions and control vegetation growth conditions of central
and northern parts of Ethiopia [68]. The overall multiple linear regression is significant, with a
multiple R-squared value of 0.978 and adjusted R-squared value of 0.962. However, precipitation,
soil moisture, and LST have insignificant regression coefficients due to their p-values, which are far
greater than 0.05. This is due to the interaction (correlation) between the independent variables, and
often since p-value is a function of sample size, as well as variance, there is no single rule for setting
the “significance” threshold [69]. The insignificant association observed between precipitation and
NDVI could also be due to the delayed response of vegetation to precipitation [70], where a time lag
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effect was not considered in this study. For future prediction, an optimal regression equation (NDVI =

−7.01 × 10−5 + 3.75 × NDLI + 0.518 × NDWI − 1.386 × 10−3
×MEI) was obtained via the backward

elimination procedure in a stepwise regression analysis, which was achieved by dropping the least
significant feature.

Table 3. The output of the multiple linear regression (MLR) model, in which NDVI was the dependent
variable and precipitation, LST, soil moisture, NDWI, NDLI, MEI, and DMI were independent variables.

Variable Estimate Std. Error t-Value p-Value Sig VIF

Precip. −2.215 × 10−5 3.788 × 10−5 −0.585 0.5594 2.387
LST 4.577 × 10−4 6.140 × 10−4 0.745 0.456 3.433
SM 5.505 × 10−2 6.104 × 10−2 0.902 0.368 4.622

NDLI 3.697 1.363 × 10−1 27.125 <2.00 × 10−16 *** 3.407
NDWI 0.528 1.097 × 10−1 4.813 2.86 × 10−6 *** 2.804

MEI −1.470 × 10−3 7.704 × 10−4 −1.909 0.0576 . 1.089
DMI −4.552 × 10−4 5.439 × 10−3 −0.187 0.852 1.099

Significance. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

5. Conclusions

This study assessed the spatio–temporal variability of drought during the growing season in
Ethiopia through VCI, anomaly maps, and trend analysis for the past two decades, from 2001 to 2018.
The VCI results identified that severe to extreme countrywide droughts were identified in 2002, 2003,
2004, 2009, 2012, and 2015. On the other hand, the years 2001, 2005, 2006, 2007, 2013, 2016, and 2018
reflected near-normal NDVI throughout most of the rain-fed agriculture regions. These results are
coherent with the findings of previous studies in indicating the onset, spatial, and temporal dynamics of
agricultural drought in Ethiopia [18]. Pixel-based trend analysis showed that a significant precipitation
decrease in the central areas is accompanied by a significant increase in LST. The increase in temperature
in the growing season is of major concern, as it implies an increase in evapotranspiration and, thus,
affects crop yields. Also, the browning in northwestern parts as estimated from NDVI trends was due
to low rainfall and an increase in soil temperature. Furthermore, the anomaly maps for precipitation,
soil moisture, and LST help us identify the locations and areas of potential concern regarding reduced
crop harvest. We found that large areas of the central highland agricultural farms where people largely
depend on rain-fed farms are of major concern due to recurrent drought incidents. Moreover, NDLI
has a high correlation with NDVI, precipitation, LST, and soil moisture and successfully captured
historical droughts (Figure 8). Additionally, the results of multilinear regression indicate that NDLI,
NDWI, and MEI play a significant role in the variability of vegetation health. The analysis shows that
using the radiances of green, red, and SWIR, a simplified crop monitoring model with satisfactory
accuracy and easiness can be developed. Thus, NDLI can be a tool to help us better understand the
vegetation vigor and moisture availability, and subsequently effectively assess large-scale temporal
and spatial characteristics of drought.

This analysis can serve as an important input for food security studies and the planning of
potential relief measures. However, this approach suffers from the low spatial and temporal resolution
satellite images utilized, as this hugely impacts the quality of the trend analysis. Further research
on detecting and assessing temporal and spatial trends is needed to offer essential information for
planning agencies and government policies to monitor factors that trigger drought and to minimize
their impact.

Author Contributions: G.M.M. and Y.-A.L. conceived the research, make helpful discussions during the conception
of the research. G.M.M. conducted the research, performed analyses, and wrote the first manuscript draft. Y.-A.L.
enhanced and finalized the manuscript for the communication with the journal.

Funding: This work was supported by the Ministry of Science and Technology under Grant MOST
105-2111-M-008-024-MY2 and Grant 105-2221-E-008-056-MY3.



Remote Sens. 2019, 11, 1828 16 of 19

Acknowledgments: The authors would like to thank Ravindra Babu Saginela for the discussion during the
conception of the research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Singh, N.P.; Bantilan, C.; Byjesh, K. Vulnerability and policy relevance to drought in the semi-arid tropics of
Asia—A retrospective analysis. Weather Clim. Extrem. 2014, 3, 54–61. [CrossRef]

2. Nguyen, A.K.; Liou, Y.-A.; Li, M.-H.; Tran, T.A. Zoning eco-environmental vulnerability for environmental
management and protection. Ecol. Indic. 2016, 69, 100–117. [CrossRef]

3. Liou, Y.-A.; Nguyen, A.K.; Li, M.-H. Assessing spatiotemporal eco-environmental vulnerability by Landsat
data. Ecol. Indic. 2017, 80, 52–65. [CrossRef]

4. Nguyen, K.A.; Liou, Y.A. Global mapping of eco-environmental vulnerability from human and nature
disturbances. Sci. Total Environ. 2019, 664, 995–1004. [CrossRef] [PubMed]

5. Nguyen, K.-A.; Liou, Y.-A. Mapping global eco-environment vulnerability due to human and nature
disturbances. Methods X 2019, 6, 862–875. [CrossRef] [PubMed]

6. Nguyen, K.-A.; Liou, Y.-A.; Terry, J.P. Vulnerability of Vietnam to typhoons: A spatial assessment based on
hazards, exposure and adaptive capacity. Sci. Total Environ. 2019, 682, 31–46. [CrossRef] [PubMed]

7. Sitorus, E.; Nguyen, K.A.; Liou, Y.A. Forest fire impact on and vulnerability assessment of eco-environment
in tropical rainforest: A case study of leuser ecosystem-Aceh, Indonesia. In AGU Fall Meeting Abstracts; 2018;
Available online: http://adsabs.harvard.edu/abs/2018AGUFMGH23B1095S (accessed on 12 April 2019).

8. Cheng, C.-H.; Nnadi, F.; Liou, Y.-A. Energy budget on various land use areas using reanalysis data in Florida.
Adv. Meteorol. 2014, 2014, 1–13. [CrossRef]

9. Hayes, M.; Svoboda, M.D.; Wardlow, B.D.; Anderson, M.; Kogan, F. Drought monitoring:Historical and
current perspectives. In Remote Sensing of Drought: Innovative Monitoring Approaches; CRC Press: Boca Raton,
FL, USA, 2012; pp. 1–19.

10. Kuri, F.; Murwira, A.; Murwira, K.S.; Masocha, M. Predicting maize yield in Zimbabwe using dry dekads
derived from remotely sensed Vegetation Condition Index. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 39–46.
[CrossRef]

11. Jiao, W.; Zhang, L.; Chang, Q.; Fu, D.; Cen, Y.; Tong, Q. Evaluating an enhanced vegetation condition index
(VCI) based on VIUPD for drought monitoring in the continental United States. Remote Sens. 2016, 8, 224.
[CrossRef]

12. Townshend, J.R.G.; Justice, C.O. Analysis of the dynamics of African vegetation using the normalized
difference vegetation index. Int. J. Remote Sens. 1986, 7, 1435–1445. [CrossRef]

13. Kogan, F.N. Droughts of the late 1980s in the United States as derived from NOAA polar-orbiting satellite
data. Bull. Am. Meteorol. Soc. 1995, 76, 655–668. [CrossRef]

14. Dorjsuren, M.; Liou, Y.-A.; Cheng, C.-H. Time series MODIS and in situ data analysis for Mongolia drought.
Remote Sens. 2016, 8, 509. [CrossRef]

15. Tadesse, T.; Demisse, G.B.; Zaitchik, B.; Dinku, T. Satellite-based hybrid drought monitoring tool for prediction
of vegetation condition in Eastern Africa: A case study for Ethiopia. Water Resour. Res. 2014, 50, 2176–2190.
[CrossRef]

16. Mckee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales.
In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993;
American Meteorological Society: Boston, MA, USA, 1993; pp. 179–184.

17. Rouse, J., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with
ERTS, Third ERTS Symposium. NASA 1973, 1, 309–317.

18. Gebrehiwot, T.; Van der Veen, A.; Maathuis, B. Governing agricultural drought: Monitoring using the
vegetation condition index. Ethiop. J. Environ. Stud. Manag. 2016, 9, 354. [CrossRef]

19. Cheng, C.-H.; Nnadi, F.; Liou, Y.-A. A Regional Land Use Drought Index for Florida. Remote Sens. 2015, 7,
17149–17167. [CrossRef]

20. Wu, D.; Qu, J.J.; Hao, X. Agricultural drought monitoring using MODIS-based drought indices over the USA
Corn Belt. Int. J. Remote Sens. 2015, 36, 5403–5425. [CrossRef]

http://dx.doi.org/10.1016/j.wace.2014.02.002
http://dx.doi.org/10.1016/j.ecolind.2016.03.026
http://dx.doi.org/10.1016/j.ecolind.2017.04.055
http://dx.doi.org/10.1016/j.scitotenv.2019.01.407
http://www.ncbi.nlm.nih.gov/pubmed/30901788
http://dx.doi.org/10.1016/j.mex.2019.03.023
http://www.ncbi.nlm.nih.gov/pubmed/31065542
http://dx.doi.org/10.1016/j.scitotenv.2019.04.069
http://www.ncbi.nlm.nih.gov/pubmed/31121354
http://adsabs.harvard.edu/abs/2018AGUFMGH23B1095S
http://dx.doi.org/10.1155/2014/232457
http://dx.doi.org/10.1016/j.jag.2014.04.021
http://dx.doi.org/10.3390/rs8030224
http://dx.doi.org/10.1080/01431168608948946
http://dx.doi.org/10.1175/1520-0477(1995)076&lt;0655:DOTLIT&gt;2.0.CO;2
http://dx.doi.org/10.3390/rs8060509
http://dx.doi.org/10.1002/2013WR014281
http://dx.doi.org/10.4314/ejesm.v9i3.9
http://dx.doi.org/10.3390/rs71215879
http://dx.doi.org/10.1080/01431161.2015.1093190


Remote Sens. 2019, 11, 1828 17 of 19

21. Liu, K.; Su, H.; Tian, J.; Li, X.; Wang, W.; Yang, L.; Liang, H. Assessing a scheme of spatial-temporal
thermal remote-sensing sharpening for estimating regional evapotranspiration. Int. J. Remote Sens. 2018, 39,
3111–3137. [CrossRef]

22. Wan, Z.; Wang, P.; Li, X. Using MODIS Land Surface Temperature and Normalized Difference Vegetation
Index products for monitoring drought in the southern Great Plains, USA. Int. J. Remote Sens. 2004, 25, 61–72.
[CrossRef]

23. Du, L.; Tian, Q.; Yu, T.; Meng, Q.; Jancso, T.; Udvardy, P.; Huang, Y. A comprehensive drought monitoring
method integrating MODIS and TRMM data. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 245–253. [CrossRef]

24. Mutowo, G.; Chikodzi, D. Remote sensing based drought monitoring in Zimbabwe. Disaster Prev. Manag.
An Int. J. 2014, 23, 649–659. [CrossRef]

25. Rojas, O.; Vrieling, A.; Rembold, F. Assessing drought probability for agricultural areas in Africa with coarse
resolution remote sensing imagery. Remote Sens. Environ. 2011, 115, 343–352. [CrossRef]

26. Anderson, W.B.; Zaitchik, B.F.; Hain, C.R.; Anderson, M.C.; Yilmaz, M.T.; Mecikalski, J.; Schultz, L. Towards
an integrated soil moisture drought monitor for East Africa. Hydrol. Earth Syst. Sci. 2012, 16, 2893–2913.
[CrossRef]

27. Masih, I.; Maskey, S.; Mussá, F.E.F.; Trambauer, P. A review of droughts on the African continent: A geospatial
and long-term perspective. Hydrol. Earth Syst. Sci. 2014, 18, 3635–3649. [CrossRef]

28. Yang, S.; Meng, D.; Gong, H.; Li, X.; Wu, X. Soil drought and vegetation response during 2001–2015 in North
China based on GLDAS and MODIS data. Adv. Meteorol. 2018, 2018, 1–14. [CrossRef]

29. Tsegay Wolde-Georgis. El Niño and Drought Early Warning in Ethiopia. Internet J. Afr. Stud. 1997. Available
online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1589710 (accessed on 16 March 2019).

30. Edossa, D.C.; Babel, M.S.; Das Gupta, A. Drought analysis in the Awash River Basin, Ethiopia.
Water Resour. Manag. 2010, 24, 1441–1460. [CrossRef]

31. Kumar, B.G. Ethiopian famines 1973–1985: A case-study. Polit. Econ. Hunger 1990, 2, 173–216.
32. Gore, T.; Hillier, D. Climate Change and Future Impacts on Food Security. Oxfam Policy Pract. Agric. Food L.

2011, 11, 57–62.
33. Ayalew, D.; Tesfaye, K.; Mamo, G.; Yitaferu, B.; Bayu, W. Variability of rainfall and its current trend in

Amhara region, Ethiopia. Afr. J. Agric. Res. 2012, 7, 1475–1486.
34. Schmidt, W.; Peter Uhe, A.; Kimutai, J.; Otto, F.; Cullen, H. Climate and Development Knowledge Network

and World Weather Attribution Initiative Raising Risk Awareness; Royal Netherlands Meteorological Institute:
De Bilt, The Netherlands, 2017; pp. 2016–2017.

35. Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.;
Hoell, A. The climate hazards infrared precipitation with stations—A new environmental record for
monitoring extremes. Sci. Data 2015, 2, 150066. [CrossRef] [PubMed]

36. Philip, S.; Kew, S.F.; Jan van Oldenborgh, G.; Otto, F.; O’Keefe, S.; Haustein, K.; King, A.; Zegeye, A.;
Eshetu, Z.; Hailemariam, K.; et al. Attribution Analysis of the Ethiopian Drought of 2015. J. Clim. 2018, 31,
2465–2486. [CrossRef]

37. USAID. El niño in Ethiopia, A Real-Time Review of Impacts and Responses2015-2016; USAID: Washington, DC,
USA, 2016. Available online: https://www.agri-learning-ethiopia.org/wp-content/uploads/2016/06/AKLDP-
El-Nino-Review-March-2016 (accessed on 28 May 2019).

38. Camberlin, P. Rainfall anomalies in the source region of the Nile and their connection with the Indian summer
monsoon. J. Clim. 1997, 10, 1380–1392. [CrossRef]

39. Korecha, D.; Sorteberg, A. Validation of operational seasonal rainfall forecast in Ethiopia. Water Resour. Res.
2013, 49, 7681–7697. [CrossRef]

40. Liou, Y.-A.; Le, M.S.; Chien, H. Normalized difference latent heat index for remote sensing of land surface
energy fluxes. IEEE Trans. Geosci. Remote Sens. 2019, 57, 1423–1433. [CrossRef]

41. Worqlul, A.W.; Jeong, J.; Dile, Y.T.; Osorio, J.; Schmitter, P.; Gerik, T.; Srinivasan, R.; Clark, N. Assessing
potential land suitable for surface irrigation using groundwater in Ethiopia. Appl. Geogr. 2017, 85, 1–13.
[CrossRef]

42. Viste, E.; Korecha, D.; Sorteberg, A. Recent drought and precipitation tendencies in Ethiopia. Theor. Appl.
Climatol. 2013, 112, 535–551. [CrossRef]

http://dx.doi.org/10.1080/01431161.2018.1434326
http://dx.doi.org/10.1080/0143116031000115328
http://dx.doi.org/10.1016/j.jag.2012.09.010
http://dx.doi.org/10.1108/DPM-10-2013-0181
http://dx.doi.org/10.1016/j.rse.2010.09.006
http://dx.doi.org/10.5194/hess-16-2893-2012
http://dx.doi.org/10.5194/hess-18-3635-2014
http://dx.doi.org/10.1155/2018/1818727
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1589710
http://dx.doi.org/10.1007/s11269-009-9508-0
http://dx.doi.org/10.1038/sdata.2015.66
http://www.ncbi.nlm.nih.gov/pubmed/26646728
http://dx.doi.org/10.1175/JCLI-D-17-0274.1
https://www.agri-learning-ethiopia.org/wp-content/uploads/2016/06/AKLDP-El-Nino-Review-March-2016
https://www.agri-learning-ethiopia.org/wp-content/uploads/2016/06/AKLDP-El-Nino-Review-March-2016
http://dx.doi.org/10.1175/1520-0442(1997)010&lt;1380:RAITSR&gt;2.0.CO;2
http://dx.doi.org/10.1002/2013WR013760
http://dx.doi.org/10.1109/TGRS.2018.2866555
http://dx.doi.org/10.1016/j.apgeog.2017.05.010
http://dx.doi.org/10.1007/s00704-012-0746-3


Remote Sens. 2019, 11, 1828 18 of 19

43. Terefe, T.; Mengistu, G. Spatial and temporal variability of summer rainfall over Ethiopia from observations
and a regional climate model experiment climate model experiments. Theor. Appl. Climatol. 2012, 111,
665–681.

44. Seleshi, Y.; Camberlin, P. Recent changes in dry spell and extreme rainfall events in Ethiopia.
Theor. Appl. Climatol. 2006, 83, 181–191. [CrossRef]

45. Liebmann, B.; Hoerling, M.P.; Funk, C.; Bladé, I.; Dole, R.M.; Allured, D.; Quan, X.; Pegion, P.; Eischeid, J.K.
Understanding recent eastern horn of africa rainfall variability and change. J. Clim. 2014, 27, 8630–8645.
[CrossRef]

46. Gebrehiwot, T.; van der Veen, A.; Maathuis, B. Spatial and temporal assessment of drought in the Northern
highlands of Ethiopia. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 309–321. [CrossRef]

47. Birhane, E.; Ashfare, H.; Fenta, A.A.; Hishe, H.; Gebremedhin, M.A.; Solomon, N. Land use land cover
changes along topographic gradients in Hugumburda national forest priority area, Northern Ethiopia.
Remote Sens. Appl. Soc. Environ. 2019, 13, 61–68. [CrossRef]

48. Larbi, I.; Hountondji, F.; Annor, T.; Agyare, W.; Mwangi Gathenya, J.; Amuzu, J.; Larbi, I.; Hountondji, F.C.C.;
Annor, T.; Agyare, W.A.; et al. Spatio-temporal trend analysis of rainfall and temperature extremes in the Vea
Catchment, Ghana. Climate 2018, 6, 87. [CrossRef]

49. Muthoni, F.K.; Odongo, V.O.; Ochieng, J.; Mugalavai, E.M.; Mourice, S.K.; Hoesche-Zeledon, I.; Mwila, M.;
Bekunda, M. Long-term spatial-temporal trends and variability of rainfall over Eastern and Southern Africa.
Theor. Appl. Climatol. 2019, 137, 1869–1882. [CrossRef]

50. McNally, A.; Arsenault, K.; Kumar, S.; Shukla, S.; Peterson, P.; Wang, S.; Funk, C.; Peters-Lidard, C.D.;
Verdin, J.P. A land data assimilation system for sub-Saharan Africa food and water security applications.
Sci. Data 2017, 4, 170012. [CrossRef]

51. Saji, N.H.; Goswami, B.N.; Vinayachandran, P.N.; Yamagata, T. A dipole mode in the tropical Indian Ocean.
Nature 1999, 401, 360–363. [CrossRef]

52. LIU, W.T.; KOGAN, F.N. Monitoring regional drought using the Vegetation Condition Index. Int. J.
Remote Sens. 1996, 17, 2761–2782. [CrossRef]

53. Winkler, L.; Gessner, U.; Hochschild, V. Identifying droughts affecting agrictlture in Africa based on remote
sensing time series between 2000-2016: Rainfall anomalies and vegetation condition in the context of ENSO.
Remote Sens. 2017, 9, 831. [CrossRef]

54. Measho, S.; Chen, B.; Trisurat, Y.; Pellikka, P.; Guo, L.; Arunyawat, S.; Tuankrua, V.; Ogbazghi, W.; Yemane, T.
Spatio-temporal analysis of vegetation dynamics as a response to climate variability and drought patterns in
the Semiarid Region, Eritrea. Remote Sens. 2019, 11, 724. [CrossRef]

55. Baniya, B.; Tang, Q.; Xu, X.; Haile, G.G.; Chhipi-Shrestha, G. Spatial and temporal variation of drought based
on satellite derived vegetation condition index in Nepal from 1982. Sensors 2019, 19, 430. [CrossRef]

56. De Jong, R.; de Bruin, S.; de Wit, A.; Schaepman, M.E.; Dent, D.L. Analysis of monotonic greening and
browning trends from global NDVI time-series. Remote Sens. Environ. 2011, 115, 692–702. [CrossRef]

57. Sobrino, J.A.; Julien, Y. Global trends in NDVI-derived parameters obtained from GIMMS data. Int. J.
Remote Sens. 2011, 32, 4267–4279. [CrossRef]

58. Julien, Y.; Sobrino, J.A.; Mattar, C.; Ruescas, A.B.; Jiménez-Muñoz, J.C.; Sòria, G.; Hidalgo, V.; Atitar, M.;
Franch, B.; Cuenca, J. Temporal analysis of normalized difference vegetation index (NDVI) and land surface
temperature (LST) parameters to detect changes in the Iberian land cover between 1981 and 2001. Int. J.
Remote Sens. 2011, 32, 2057–2068. [CrossRef]

59. Sen, P.K. Estimates of the regression coefficient based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389.
[CrossRef]

60. Tian, F.; Wang, Y.; Fensholt, R.; Wang, K.; Zhang, L.; Huang, Y. Remote sensing mapping and evaluation of
NDVI trends from synthetic time series obtained by blending landsat and MODIS data around a coalfield on
the Loess Plateau. Remote Sens. 2000, 5, 4255–4279. [CrossRef]

61. Ravindrababu, S.; Ratnam, M.; Basha, G.; Liou, Y.-A.; Reddy, N. Large anomalies in the tropical upper
troposphere lower stratosphere (UTLS) trace gases observed during the Extreme 2015–2016 El Niño Event by
using satellite measurements. Remote Sens. 2019, 11, 687. [CrossRef]

62. Anyamba, A.; Glennie, E.; Small, J.; Anyamba, A.; Glennie, E.; Small, J. Teleconnections and Interannual
Transitions as Observed in African Vegetation: 2015. Remote Sens. 2018, 10, 1038. [CrossRef]

http://dx.doi.org/10.1007/s00704-005-0134-3
http://dx.doi.org/10.1175/JCLI-D-13-00714.1
http://dx.doi.org/10.1016/j.jag.2010.12.002
http://dx.doi.org/10.1016/j.rsase.2018.10.017
http://dx.doi.org/10.3390/cli6040087
http://dx.doi.org/10.1007/s00704-018-2712-1
http://dx.doi.org/10.1038/sdata.2017.12
http://dx.doi.org/10.1038/43854
http://dx.doi.org/10.1080/01431169608949106
http://dx.doi.org/10.3390/rs9080831
http://dx.doi.org/10.3390/rs11060724
http://dx.doi.org/10.3390/s19020430
http://dx.doi.org/10.1016/j.rse.2010.10.011
http://dx.doi.org/10.1080/01431161.2010.486414
http://dx.doi.org/10.1080/01431161003762363
http://dx.doi.org/10.1080/01621459.1968.10480934
http://dx.doi.org/10.3390/rs5094255
http://dx.doi.org/10.3390/rs11060687
http://dx.doi.org/10.3390/rs10071038


Remote Sens. 2019, 11, 1828 19 of 19

63. Cochrane, L.; Bekele, Y.W. Average crop yield (2001–2017) in Ethiopia: Trends at national, regional and zonal
levels. Data Br. 2018, 16, 1025–1033. [CrossRef]

64. Korecha, D.; Barnston, A.G.; Korecha, D.; Barnston, A.G. Predictability of June–September rainfall in Ethiopia.
Mon. Weather Rev. 2007, 135, 628–650. [CrossRef]

65. Workie, T.G.; Debella, H.J. Climate change and its effects on vegetation phenology across ecoregions of
Ethiopia. Glob. Ecol. Conserv. 2018, 13, e00366. [CrossRef]

66. Yan, D.; Xu, T.; Girma, A.; Yuan, Z.; Weng, B.; Qin, T.; Do, P.; Yuan, Y.; Yan, D.; Xu, T.; et al. Regional
Correlation between precipitation and vegetation in the Huang-Huai-Hai River Basin, China. Water 2017, 9,
557. [CrossRef]

67. Zhao, W.; Zhao, X.; Zhou, T.; Wu, D.; Tang, B.; Wei, H. Climatic factors driving vegetation declines in the
2005 and 2010 Amazon droughts. PLoS ONE 2017, 12, e0175379. [CrossRef]

68. Degefu, M.A.; Rowell, D.P.; Bewket, W. Teleconnections between Ethiopian rainfall variability and global
SSTs: Observations and methods for model evaluation. Meteorol. Atmos. Phys. 2017, 129, 173–186. [CrossRef]

69. Greenland, S.; Senn, S.J.; Rothman, K.J.; Carlin, J.B.; Poole, C.; Goodman, S.N.; Altman, D.G. Statistical tests,
P values, confidence intervals, and power: A guide to misinterpretations. Eur. J. Epidemiol. 2016, 31, 337–350.
[CrossRef]

70. Wu, D.; Zhao, X.; Liang, S.; Zhou, T.; Huang, K.; Tang, B.; Zhao, W. Time-lag effects of global vegetation
responses to climate change. Glob. Chang. Biol. 2015, 21, 3520–3531. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.dib.2017.12.039
http://dx.doi.org/10.1175/MWR3304.1
http://dx.doi.org/10.1016/j.gecco.2017.e00366
http://dx.doi.org/10.3390/w9080557
http://dx.doi.org/10.1371/journal.pone.0175379
http://dx.doi.org/10.1007/s00703-016-0466-9
http://dx.doi.org/10.1007/s10654-016-0149-3
http://dx.doi.org/10.1111/gcb.12945
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Study Area and Data 
	Study Area 
	Datasets 

	Methodology 
	Identification of Drought 
	Mann–Kendall Trend Analysis 
	Multiple Linear Regression 

	Results and Discussion 
	Drought Patterns Based on VCI 
	Spatial and Temporal Trends 
	Multi Linear Regression and Correlation Statistics 

	Conclusions 
	References

