Using Nighttime Light Data and POI Big Data to Detect the Urban Centers of Hangzhou
"> Figure 1
<p>Location of the study area. The inset map shows the location of Hangzhou in Zhejiang province.</p> "> Figure 2
<p>Point of interest (POI) data of Hangzhou in May 2018: (<b>a</b>) Spatial distribution of POI, each point stands for one point of interest. (<b>b</b>) Gridded map of POI number with 500 m resolution, representing the number of POI in a square of 25 ha.</p> "> Figure 3
<p>Workflow of the proposed method. NTL: nighttime light; NPP-VIIRS: visible infrared imaging radiometer suite.</p> "> Figure 4
<p>NPP-VIIRS nighttime light intensity map of Hangzhou in May 2018. (NPP-VIIRS: Suomi-NPP satellite, visible infrared imaging radiometer).</p> "> Figure 5
<p>of segments changes with segmentation scale factor using multi-resolution segmentation in eCognition.</p> "> Figure 6
<p>Segmentation results of nine groups of shape factor and compactness factor combinations (here shows a small region). The yellow lines show the boundaries of segments. The image with red frame means the factor combination we chose to use (shape factor is 0.1 and compactness factor is 0.5).</p> "> Figure 7
<p>Weighted mean variances of segments for different scale factors (3,4,5,6,7,8).</p> "> Figure 8
<p>Density of POI counted in segmentation units. The small images on the right show detailed views of the areas of small units and big units respectively.</p> "> Figure 9
<p>Four cluster types of the results of local spatial autocorrelation analysis for the POI densities in units.</p> "> Figure 10
<p>Main centers and subcenters detected by the proposed method. The main centers are shown in <b>red,</b> and the subcenters are shown in <b>yellow</b>. The river and lake layer contains West Lake and the Qiantang River.</p> "> Figure 11
<p>Centers detected by different methods and datasets. All centers detected by threshold are shown in orange. In the results from the Local Moran’s I (LMI) and geographically weighted regression (GWR) methods, the main centers are shown in <b>red</b>, and the subcenters are shown in <b>yellow</b>.</p> "> Figure 12
<p>Hot spot analysis result of population data.</p> "> Figure 13
<p>Centers areas intersect results. The overlapped center areas were shown in <b>green</b> and the different center areas were shown in <b>gray</b>.</p> "> Figure 14
<p>Centers proposed in the master plan and detected by our experiment.</p> ">
Abstract
:1. Introduction
- Low spatial resolution.
- Low temporal resolution.
- Access to spatial disaggregated data.
- Insufficient background and prior knowledge of the research area.
2. Study Area and Data
2.1. Study Area
2.2. Data
2.2.1. NTL Imagery
2.2.2. POI Data
2.2.3. Auxiliary Data
3. Methods
3.1. Data Preprocessing
3.1.1. Preprocessing of NTL Data
3.1.2. Preprocessing of POI Data
3.2. Multi-Resolution Segmentation
3.2.1. Determination of the Range of the Segmentation Scale Factor
3.2.2. Selection of Shape and Compactness Factors
3.2.3. Determination of the Segmentation Scale (Calculated the Weighted Mean Variance)
3.3. Center Detection
3.3.1. Detection of the Main Center
3.3.2. Detection of Subcenters
3.4. Comparison Experiment
3.5. Accuracy Assessment
4. Results
4.1. NTL Data in May 2018 Preprocessing Results
4.2. Multi-Resolution Segmentation Result
4.3. Center Detection Results
4.3.1. Main Centers
4.3.2. Subcenters
4.4. Comparison Experiment Results
4.5. Accuracy Assessment Results
5. Discussion
5.1. Comparison of Main Centers and Analysis
5.2. Comparison of Subcenters and Analysis
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Definitions of Urban Center. Available online: https://www.vocabulary.com/dictionary/urban%20center (accessed on 30 July 2019).
- Sun, B.; Shi, W.; Ning, Y. An empirical study on the polycentric urban structure of Shanghai and strategies in future. Urban Plan. Forum 2010, 1, 58–63. [Google Scholar]
- Xie, Z.W.; Ye, X.Y.; Zheng, Z.H.; Li, D.; Sun, L.S.; Li, R.R.; Benya, S. Modeling polycentric urbanization using multisource big geospatial data. Remote Sens. 2019, 3, 310. [Google Scholar] [CrossRef]
- Tang, C. Improvement of urban construction land extraction method based on NPP-VIIRS nighttime light data and landsat-8 data: A case study of Guangzhou city. Geomat. Spat. Inf. Technol. 2017, 40, 69–73. [Google Scholar]
- Marzena, W.; Monika, K. The continuous built-up area extracted from ISS night-time lights to compare the amount of urban green areas across European cities. Eur. J. Remote Sens. 2019, 52, 58–73. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R. Mapping city lights with nighttime data from the DMSP operational linescan system. Photogramm. Eng. Remote Sens. 1997, 63, 727–734. [Google Scholar]
- Miller, S.D.; Straka, W.; Mills, S.P.; Elvidge, C.D.; Lee, T.F.; Solbrig, J.; Walther, A.; Heidinger, A.K.; Weiss, S.C. Illuminating the capabilities of the Suomi national polar-orbiting partnership (NPP) visible infrared imaging radiometer suite (VIIRS) day/night band. Remote Sens. 2013, 5, 6717–6766. [Google Scholar] [CrossRef]
- Ma, T.; Yin, Z.; Zhou, A. Delineating spatial patterns in human settlements using VIIRS nighttime light data: A watershed-based partition approach. Remote Sens. 2018, 10, 465. [Google Scholar] [CrossRef]
- Small, C.; Pozzi, F.; Elvidge, C. Spatial analysis of global urban extent from DMSP-OLS night lights. Remote Sens. Environ. 2005, 96, 277–291. [Google Scholar] [CrossRef]
- Cai, J.; Huang, B.; Song, Y. Using multi-source geospatial big data to identify the structure of polycentric cities. Remote Sens. Environ. 2017, 202, 210–221. [Google Scholar] [CrossRef]
- Zheng, Q.; Jiang, R.; Wang, K.; Huang, L.; Ye, Z.; Gan, M.; Ji, B. Monitoring the trajectory of urban nighttime light hotspots using a Gaussian volume model. Int. J. Appl. Earth Obs. Geoinf. 2018, 65, 24–34. [Google Scholar] [CrossRef]
- Huang, X.; Wen, D.; Li, J.; Qin, R. Multi-level monitoring of subtle urban changes for the megacities of China using high-resolution multi-view satellite imagery. Remote Sens. Environ. 2017, 196, 56–75. [Google Scholar] [CrossRef]
- Li, X.; Xu, H.; Chen, X.; Li, C. Potential of NPP-VIIRS Nighttime Light Imagery for Modeling the Regional Economy of China. Remote Sens. 2013, 5, 3057–3081. [Google Scholar] [CrossRef] [Green Version]
- Ma, T.; Zhou, C.; Pei, T.; Haynie, S.; Fan, J. Quantitative estimation of urbanization dynamics using time series of DMSP/OLS nighttime light data: A comparative case study from China’s cities. Remote Sens. Environ. 2012, 124, 99–107. [Google Scholar] [CrossRef]
- Zhao, X.; Yu, B.; Liu, Y.; Yao, S.; Lian, T.; Chen, L.; Yang, C.; Chen, Z.; Wu, J. NPP-VIIRS DNB daily data in natural disaster assessment: Evidence from selected case studies. Remote Sens. 2018, 10, 1526. [Google Scholar] [CrossRef]
- Paulino, C.; Aroni, E.; Xu, H.; Alburqueque, E.; Demarcq, H. Use of nighttime visible images in the study of the spatial and temporal variability of fishing areas of jumbo flying squid (Dosidicus gigas) outside Peruvian EEZ 2004–2015. Fish. Res. 2017, 191, 144–153. [Google Scholar] [CrossRef]
- Waluda, C.M.; Trathan, P.N.; Elvidge, C.D.; Hobson, V.R.; Rodhouse, P.G. Throwing light on straddling stocks of Illex argentinus: Assessing fishing intensity with satellite imagery. Can. J. Fish. Aquat. Sci. 2002, 59, 592–596. [Google Scholar] [CrossRef]
- Ji, G.; Tian, L.; Zhao, J.; Yue, Y.; Wang, Z. Detecting spatiotemporal dynamics of PM2.5 emission data in China using DMSP-OLS nighttime stable light data. J. Clean. Prod. 2019, 209, 363–370. [Google Scholar] [CrossRef]
- Zhao, N.; Cao, G.; Zhang, W.; Samson, E.L. Tweets or nighttime lights: Comparison for preeminence in estimating socioeconomic factors. ISPRS J. Photogramm. Remote Sens. 2018, 146, 1–10. [Google Scholar] [CrossRef]
- Anderson, S.J.; Tuttle, B.T.; Powell, R.L.; Sutton, P.C. Characterizing relationships between population density and nighttime imagery for Denver, Colorado: Issues of scale and representation. Int. J. Remote Sens. 2010, 31, 5733–5746. [Google Scholar] [CrossRef]
- Yu, B.; Shi, K.; Hu, Y.; Huang, C.; Chen, Z.; Wu, J. Poverty evaluation using NPP-VIIRS nighttime light composite data at the county level in China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1217–1229. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Zhizhin, M.; Hsu, F.C. Why VIIRS data are superior to DMSP for mapping nighttime lights. Proc. Asia-Pac. Adv. Netw. 2013, 35, 62. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Wang, J. The geography of Weibo. Environ. Plan. A Econ. Space 2015, 47, 1231–1234. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Li, X.; Liu, X.; Liu, P.; Liang, Z.; Zhang, J.; Mai, K. Sensing spatial distribution of urban land use by integrating points-of-interest and Google Word2Vec model. Int. J. Geogr. Inf. Sci. 2016, 31, 825–848. [Google Scholar] [CrossRef]
- Zheng, X. Identification and optimization of Xi’an urban center system based on open data. Planners 2017, 1, 57–64. [Google Scholar]
- Jia, Y.; Ge, Y.; Ling, F.; Guo, X.; Wang, J.; Wang, L.; Chen, Y.; Li, X. Urban land use mapping by combining remote sensing imagery and mobile phone positioning data. Remote Sens. 2018, 10, 446. [Google Scholar] [CrossRef]
- Chen, Y.; Ge, Y.; An, R.; Chen, Y. Super-resolution mapping of impervious surfaces from remotely sensed imagery with points-of-interest. Remote Sens. 2018, 10, 242. [Google Scholar] [CrossRef]
- Long, Y.; Shen, Y.; Jin, X. Mapping block-level urban areas for all Chinese cities. Ann. Am. Assoc. Geogr. 2015, 106, 96–113. [Google Scholar] [CrossRef]
- Li, K.; Chen, Y.; Li, Y. The random forest-based method of fine-resolution population spatialization by using the international space station nighttime photography and social sensing data. Remote Sens. 2018, 10, 1650. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, X.; Li, X.; Zhang, J.; Liang, Z.; Mai, K.; Zhang, Y. Mapping fine-scale population distributions at the building level by integrating multisource geospatial big data. Int. J. Geogr. Inf. Sci. 2017, 31, 1220–1244. [Google Scholar] [CrossRef]
- Duan, Y.; Liu, Y.; Liu, X.; Wang, H. Identification of polycentric urban structure of central Chongqing using points of interest big data. J. Nat. Res. 2018, 33, 788–800. [Google Scholar] [CrossRef]
- Wu, K.; Zhang, H.; Wang, Y.; Wu, Q.; Ye, Y. Identification and spatial pattern of Guangzhou multi-type commercial center. Progr. Geogr. 2016, 35, 963–974. [Google Scholar] [CrossRef]
- Guo, J.; Lv, Y.; Shen, T. Urban Spatial structure based on point pattern analysis—taking beijing metropolitan area as a case. Econ. Geogr. 2015, 35, 68–74. [Google Scholar] [CrossRef]
- Pan, S. Spatial coupling between housing development and economic growth based on night light remote sensing and residential POI. J. Geo-Inf. Sci. 2017, 19, 646–652. [Google Scholar] [CrossRef]
- Yu, B.; Liu, Y.; Chen, G. Urban spatial structure of port city in South China Sea based on spatial coupling between nighttime light data and POI. J. Geo-Inf. Sci. 2018, 20, 854–861. [Google Scholar] [CrossRef]
- Zhang, S.; Tang, J.; Wang, H.; Wang, Y.; An, S. Revealing intra-urban travel patterns and service ranges from taxi trajectories. J. Trans. Geogr. 2017, 61, 72–86. [Google Scholar] [CrossRef]
- Bennett, M.M.; Smith, L.C. Advances in using multitemporal night-time lights satellite imagery to detect, estimate, and monitor socioeconomic dynamics. Remote Sens. Environ. 2017, 192, 176–197. [Google Scholar] [CrossRef]
- Kohli, D.; Warwadekar, P.; Kerle, N.; Sliuzas, R.; Stein, A. Transferability of object-oriented image analysis methods for slum identification. Remote Sens. 2013, 5, 4209–4228. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, G.; Yu, B.; Zhang, X. Determination of the optimal segmentation scale of high-resolution remote sensing images of islands and reefs in the south China sea. Geosptial Inf. 2018, 16, 21–24. [Google Scholar]
- Deng, M.; Liu, Q. Spatial Analysis; Surveying and Mapping Press: Beijing, China, 2015. [Google Scholar]
- Su, L.Y.; Yang, X.H.; Bai, G.Y.; Li, F.L. Spatial inequality and regional difference of population birth rate in China. J. Chongqing Univ. Technol. 2018, 32, 249–258. [Google Scholar]
- Anselin, L. Local indicators of spatial association-LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Yin, S.; Song, W.; Ma, Z.; Li, Z.; Wu, Q. Spatial differentiation and influencing factors analysis of housing prices in Nanjing: Based on geographically weighted regression model. Hum. Geogr. 2018, 33, 68–77. [Google Scholar] [CrossRef]
- Liu, X.; Wang, M. How polycentric is urban China and why? A case study of 318 cities. Landsc. Urban Plan. 2016, 151, 10–20. [Google Scholar] [CrossRef]
- Zhang, L.; Yue, W.; Liu, Y. Multidimensional analysis of the polycentric urban spatial structure—A case of Hangzhou. Econ. Geogr. 2017, 37, 67–75. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, X. Study on urban polycentricity of Hangzhou based on service facilities. Mod. Urban Res. 2018, 10, 28–36. [Google Scholar]
Data | Threshold | LMI+GWR | ||
---|---|---|---|---|
OA | Kappa | OA | Kappa | |
NTL+POI | 84.9228% | 0.0094 | 90.8185% | 0.5546 |
NTL | 84.7039% | −0.0017 | 88.9350% | 0.4692 |
Class | Number | Name | Degree of Implementation | |
---|---|---|---|---|
Municipal center | Main center | 1 | Yan‘an Road and the area near West Lake | ★★★★★ * |
2 | Qianjiang New Town and Qianjiang Century City | Qianjiang new town ★★★★★ Qianjiang century city ★★★☆☆ | ||
Municipal subcenter | subcenter | 1 | Jiangnan City Center | ★★★★☆ |
2 | Linping City Center | ★★★★☆ | ||
3 | Xiasha City Center | ★★☆☆☆ | ||
4 | Yuhang Group Center | ★★★★☆ | ||
5 | Liangzhu Group Center | ★★★★☆ | ||
6 | Yipeng Group Center | ★★☆☆☆ |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lou, G.; Chen, Q.; He, K.; Zhou, Y.; Shi, Z. Using Nighttime Light Data and POI Big Data to Detect the Urban Centers of Hangzhou. Remote Sens. 2019, 11, 1821. https://doi.org/10.3390/rs11151821
Lou G, Chen Q, He K, Zhou Y, Shi Z. Using Nighttime Light Data and POI Big Data to Detect the Urban Centers of Hangzhou. Remote Sensing. 2019; 11(15):1821. https://doi.org/10.3390/rs11151821
Chicago/Turabian StyleLou, Ge, Qiuxiao Chen, Kang He, Yue Zhou, and Zhou Shi. 2019. "Using Nighttime Light Data and POI Big Data to Detect the Urban Centers of Hangzhou" Remote Sensing 11, no. 15: 1821. https://doi.org/10.3390/rs11151821
APA StyleLou, G., Chen, Q., He, K., Zhou, Y., & Shi, Z. (2019). Using Nighttime Light Data and POI Big Data to Detect the Urban Centers of Hangzhou. Remote Sensing, 11(15), 1821. https://doi.org/10.3390/rs11151821