Coastal Dune Vegetation Mapping Using a Multispectral Sensor Mounted on an UAS
"> Figure 1
<p>Morphology of the Brittas-Buckroney dune complex. Photo taken by the author.</p> "> Figure 2
<p>Photogrammetry-based 3D construction workflow of unmanned aerial systems (UAS) technology.</p> "> Figure 3
<p>Study site (<b>a</b>) general location and (<b>b</b>) site details.</p> "> Figure 4
<p>Plant species at site (<b>a</b>) mosses land; (<b>b</b>) sharp rush (<span class="html-italic">J. acutus</span>); (<b>c</b>) European marram grass (<span class="html-italic">A. arenaria</span>); (<b>d</b>) gorse (<span class="html-italic">U. europaeus</span>); (<b>e</b>) common reed (<span class="html-italic">P. australis</span>); (<b>f</b>) rusty willow (<span class="html-italic">S. cinerea</span> subsp. <span class="html-italic">oleifolia</span>). Photos taken by the author.</p> "> Figure 4 Cont.
<p>Plant species at site (<b>a</b>) mosses land; (<b>b</b>) sharp rush (<span class="html-italic">J. acutus</span>); (<b>c</b>) European marram grass (<span class="html-italic">A. arenaria</span>); (<b>d</b>) gorse (<span class="html-italic">U. europaeus</span>); (<b>e</b>) common reed (<span class="html-italic">P. australis</span>); (<b>f</b>) rusty willow (<span class="html-italic">S. cinerea</span> subsp. <span class="html-italic">oleifolia</span>). Photos taken by the author.</p> "> Figure 5
<p>Sequoia multispectral sensor mounted on a DJI Phantom 3 Pro UAS. Photo taken by the author.</p> "> Figure 6
<p>Ground control points (GCPs) set on site for UAS surveying. Photo taken by the author.</p> "> Figure 7
<p>The balance card used for radiometric calibration.</p> "> Figure 8
<p>A sample of the 3D point cloud for the north section of study site.</p> "> Figure 9
<p>Orthomosaic model of the study site.</p> "> Figure 10
<p>Digital surface model (DSM) of the study site.</p> "> Figure 11
<p>NDVI map of the study site.</p> "> Figure 12
<p>Response of training samples in wavebands from (<b>a</b>) blue, green and red wavebands extracted from RGB camera; (<b>b</b>) green, red, NIR and red edge wavebands from multispectral sensor.</p> "> Figure 13
<p>Vegetation mapping of study site.</p> "> Figure 14
<p>Classification accuracy based on different strategies.</p> "> Figure 15
<p>Wavelength and response of discrete and non-discrete spectral bands.</p> ">
Abstract
:1. Introduction
2. Background
3. Study Site
4. Methodology
4.1. Field Work
4.1.1. Ground Control Points
4.1.2. Flight Mission Planning
4.1.3. Radiometric Calibration
4.1.4. Other Considerations
4.2. Data Processing
4.3. Classification
5. Results and Discussion
5.1. Data Processing Outcome
5.2. Spectral Analysis
5.3. Classification Accuracy
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Frosini, S.; Lardicci, C.; Balestri, E. Global Change and Response of Coastal Dune Plants to the Combined Effects of Increased Sand Accretion (Burial) and Nutrient Availability. PLoS ONE 2012, 7, e47561. [Google Scholar] [CrossRef] [PubMed]
- Fenu, G.; Cogoni, D.; Ferrara, C.; Pinna, M.S.; Bacchetta, G. Relationships between coastal sand dune properties and plant community distribution: The case of Is Arenas (Sardinia). Plant Biosyst. 2012, 146, 586–602. [Google Scholar] [CrossRef]
- McKenna, J.; O’Hagan, A.M.; Power, J.; Macleod, M.; Cooper, A. Coastal dune conservation on an Irish commonage: Community-based management or tragedy of the commons. Geogr. J. 2007, 173, 157–169. [Google Scholar] [CrossRef]
- Sabatier, F.; Anthony, E.J.; Hquette, A.; Suanez, S.; Musereau, J.; Ruz, M.H.; Regnauld, H. Morphodynamics of beach/dune systems: Examples from the coast of France. Géomorphologie 2009, 15, 3–22. [Google Scholar] [CrossRef]
- Woo, M.K.; Fang, G.X.; DiCenzo, P.D. The role of vegetation in the retardation of soil erosion. Catema 1997, 29, 145–159. [Google Scholar]
- Kuplich, T.M. Classifying regenerating forest stages in Amazonia using remotely sensed images and a neural network. For. Ecol. Manag. 2006, 234, 1–9. [Google Scholar] [CrossRef]
- Vaca, R.A.; Golicher, D.J.; Cayuela, L. Using climatically based random forests to downscale coarse-grained potential natural vegetation maps in tropical Mexico. Appl. Veg. Sci. 2011, 14, 388–401. [Google Scholar] [CrossRef]
- Accuracy Assessment: Cowpens National Battlefield Vegetation Map (A NatureServe Technical Report). Available online: https://irma.nps.gov/DataStore/DownloadFile/575467 (accessed on 26 March 2018).
- Yu, L.F.; Zhu, S.Q.; Ye, J.Z.; Wei, L.M.; Chen, Z.G. A study on evaluation of natural restoration for degraded karst forest. Sci. Silvae Sin. 2000, 36, 12–19. [Google Scholar]
- Song, C.H.; Schroeder, T.A.; Cohen, W.B. Predicting temperate conifer forest successional stage distributions with multitemporal Landsat Thematic Mapper imagery. Remote Sens. Environ. 2007, 106, 228–237. [Google Scholar] [CrossRef]
- Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ. 2010, 114, 106–115. [Google Scholar] [CrossRef]
- Qi, X.K.; Wang, K.L.; Zhang, C.H. Effectiveness of ecological restoration projects in a karst region of southwest China assessed using vegetation succession mapping. Ecol. Eng. 2013, 54, 245–253. [Google Scholar] [CrossRef]
- Kozhoridze, G.; Orlovsky, N.; Orlovsky, L.; Blumberg, D.G.; Golan-Goldhirsh, A. Remote sensing models of structure-related biochemicals and pigments for classification of trees. Remote Sens. Environ. 2016, 186, 184–195. [Google Scholar] [CrossRef]
- Launeau, P.; Giraud, M.; Ba, A.; Moussaoui, S.; Robin, M.; Debaine, F.; Lague, D.; Le Menn, E. Full-Waveform LiDAR Pixel Analysis for Low-Growing Vegetation Mapping of Coastal Foredunes in Western France. Remote Sens. 2018, 10, 669. [Google Scholar] [CrossRef]
- Baltsavias, E.P. Airborne laser scanning: Existing systems and firms and other resources. ISPRS J. Photogramm. Remote Sens. 1999, 54, 164–198. [Google Scholar] [CrossRef]
- Highly Accurate Digital Terrain Models (DTM) or Digital Surface Models (DSM) (Ordnance Survey Ireland). Available online: https://www.osi.ie/wp-content/uploads/2015/05/Lidar_prod_overview.pdf (accessed on 20 February 2018).
- Anderson, K.; Gaston, K.J. Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Front. Ecol. Environ. 2013, 11, 138–146. [Google Scholar] [CrossRef] [Green Version]
- Kaneko, K.; Nohara, S. Review of effective vegetation mapping using the UAV (Unmanned Aerial Vehicle) method. Int. J. Geogr. Inf. Sci. 2014, 6, 733–742. [Google Scholar] [CrossRef]
- Pajares, G. Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs). Photogr. Eng. Remote Sens. 2015, 81, 281–329. [Google Scholar] [CrossRef]
- Weil, G.; Lensky, I.; Resheff, Y.; Levin, N. Optimizing the Timing of Unmanned Aerial Vehicle Image Acquisition for Applied Mapping of Woody Vegetation Species Using Feature Selection. Remote Sens. 2017, 9, 1–5. [Google Scholar] [CrossRef]
- Turner, I.L.; Harley, M.D.; Drummond, C.D. UAVs for coastal surveying. Coast. Eng. 2016, 114, 19–24. [Google Scholar] [CrossRef]
- Venturi, S.; Di Francesco, S.; Materazzi, F.; Manciola, P. Unmanned aerial vehicles and Geographical Information System integrated analysis of vegetation in Trasimeno Lake, Italy. Lakes Reserv. Res. Manag. 2016, 21, 5–19. [Google Scholar] [CrossRef]
- Bemis, S.P.; Micklethwaite, S.; Turner, D.; James, M.R.; Akciz, S.; Thiele, S.T.; Ali, H. Ground-based and UAV-based photogrammetry: A multi-scale, high-resolution mapping tool for structural geology and paleoseismology. J. Struct. Geol. 2014, 69, 163–178. [Google Scholar] [CrossRef]
- Tonkin, T.N.; Midgley, N.G. Ground-control networks for image based surface reconstruction: An investigation of optimum survey designs using UAV derived imagery and structure-from-motion photogrammetry. Remote Sens. 2016, 8, 786. [Google Scholar] [CrossRef]
- Uysal, M.; Toprak, A.S.; Polat, N. DEM generation with UAV Photogrammetry and accuracy analysis in Sahitler hill. Measurement 2015, 73, 539–543. [Google Scholar] [CrossRef]
- Ren, X.; Sun, M.; Zhang, X.; Liu, L. A Simplified Method for UAV Multispectral Images Mosaicking. Remote Sens. 2017, 9, 1–21. [Google Scholar] [CrossRef]
- Fernández-Guisuraga, J.M.; Sanz-Ablanedo, E.; Suárez-Seoane, S.; Calvo, L. Using Unmanned Aerial Vehicles in Postfire Vegetation Survey Campaigns through Large and Heterogeneous Areas: Opportunities and Challenges. Sensors 2018, 18, E586. [Google Scholar] [CrossRef] [PubMed]
- Gini, R.; Passoni, D.; Pinto, L.; Sona, G. Aerial images from an UAV system: 3d modeling and tree species classification in a park area. Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. 2012, 39, 361–366. [Google Scholar]
- Silleos, N.G.; Alexandridis, T.K.; Gitas, I.Z.; Perakis, K. Vegetation indices: Advances made in biomass estimation and vegetation monitoring in the last 30 years. Geocarto Int. 2006, 21, 21–28. [Google Scholar] [CrossRef]
- Helmer, E.H.; Brown, S.; Cohen, W.B. Mapping montane tropical forest successional stage and land use with multi-date Landsat imagery. Int. J. Remote Sens. 2000, 21, 2163–2183. [Google Scholar] [CrossRef]
- Huang, Q.H.; Cai, Y.L. Mapping karst rock in Southwest China. Mt. Res. Dev. 2009, 29, 14–20. [Google Scholar] [CrossRef]
- Liu, Q.J.; Takamura, T.; Takeuchi, N.; Shao, G. Mapping of boreal vegetation of a temperate mountain in China by multitemporal Landsat imagery. Int. J. Remote Sens. 2002, 23, 3385–3405. [Google Scholar] [CrossRef]
- Tokola, T.; Sarkeala, J.; Linden, M.V.D. Use of topographic correction in Landsat TM-based forest interpretation in Nepal. Int. J. Remote Sens. 2001, 22, 551–563. [Google Scholar] [CrossRef]
- Cuo, L.; Vogler, J.B.; Fox, J.M. Topographic normalization for improving vegetation classification in a mountainous watershed in Northern Thailand. Int. J. Remote Sens. 2010, 31, 3037–3050. [Google Scholar] [CrossRef]
- Elvidge, C.; Lyon, R. Influence of rock–soil spectral variation on the assessment of green biomass. Remote Sens. Environ. 1985, 17, 265–279. [Google Scholar] [CrossRef]
- Song, C.H.; Woodcock, C.E. Monitoring forest succession with multitemporal Landsat images: Factors of uncertainty. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2557–2567. [Google Scholar] [CrossRef]
- Wilson, E.H.; Sader, S.A. Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sens. Environ. 2002, 80, 385–396. [Google Scholar] [CrossRef]
- Franklin, S.E.; Lavigne, M.B.; Wulder, M.A.; McCaffrey, T.M. Large-area forest structure change detection: An example. Can. J. Remote Sens. 2002, 28, 588–592. [Google Scholar] [CrossRef]
- Gao, Y.N.; Zhang, W.C. A simple empirical topographic correction method for ETM plus imagery. Int. J. Remote Sens. 2009, 30, 2259–2275. [Google Scholar] [CrossRef]
- Site Synopsis: Buckroney-Brittas Dunes and Fen SAC (National Parks & Wildlife Service Site Documents). Available online: https://www.npws.ie/protected-sites/sac/000729 (accessed on 14 May 2018).
- Trimble RTX Frequently Asked Question. (Trimble Positioning Service Site). Available online: https://positioningservices.trimble.com/wp-content/uploads/2019/02/Trimble_RTX_Frequently_Asked_Questions.pdf (accessed on 23 July 2019).
- What Spectral Bands Does the Sequoia Camera Capture? (MicaSense Knowledge Base Site). Available online: https://support.micasense.com/hc/en-us/articles/217112037-What-spectral-bands-does-the-Sequoia-camera-captur (accessed on 12 May 2018).
Spectral Indices | Formula | Explanation |
---|---|---|
Relative Green | The relative component of green, red and blue bands over the total sum of all camera bands. Less affected from scene illumination conditions than the original band value. | |
Relative Red | ||
Relative Blue | ||
Normalized Differential Vegetation Index (NDVI) | Relationship between the near-infrared (NIR) and red bands indicates vegetation condition due to chlorophyll absorption within the red spectral range and high reflectance within the NIR range. | |
gNDVI | Improvement of NDVI, accurate in assessing chlorophyll content. | |
Green-Red Vegetation Index (GRVI) | Relationship between the green and red bands is an effective index for detecting phenophases. |
Flight Height | Overlapping along Line | Overlapping between Lines | Estimated Flight Time | Maximum Flight Speed |
---|---|---|---|---|
80 m | 80% | 75% | 10 min | 10 m/s |
Capture Mode | Interval Distance | Image Resolution | Bit Depth |
---|---|---|---|
Global Positioning System (GPS)-controlled | 15 m | 1.2 Mpx | 10-bit |
Classification Strategy | Band Combinations |
---|---|
Three wavebands from camera with red, green and blue wavebands (RGB camera) | 1. Red + Green + Blue |
Four wavebands from multispectral sensor | 2. Green + Red + Red edge + NIR |
Seven available multispectral wavebands | 3. Red + Green + Blue (from RGB) + Green + Red + Red edge + NIR (from multispectral) |
Eight wavebands combinations | 4. Red + Green + Blue (from RGB) + Green + Red + Red edge + NIR (from multispectral) + Relative Green |
5. Red + Green + Blue (from RGB) + Green + Red + Red edge + NIR (from multispectral) + Relative Red | |
6. Red + Green + Blue (from RGB) + Green + Red + Red edge + NIR (from multispectral) + Relative Blue | |
7. Red + Green + Blue (from RGB) + Green + Red + Red edge + NIR (from multispectral) + NDVI | |
8. Red + Green + Blue (from RGB) + Green + Red + Red edge + NIR (from multispectral) + gNDVI | |
9. Red + Green + Blue (from RGB) + Green + Red + Red edge + NIR (from multispectral) + GRVI |
Column1 | Classified Data | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Road | Built Area | Sand | Stream | Beach | Pasture | Sharp Rush | Common Reed | Rusty Willow | Gorse | Mosses Land | Marram | ||
Ground truth data | Road | 13 | 3 | 1 | 4 | 1 | |||||||
B_A | 2 | 16 | 3 | ||||||||||
Sand | 16 | 2 | 1 | 2 | |||||||||
Str | 1 | 17 | 2 | 1 | |||||||||
Beach | 1 | 14 | |||||||||||
Past | 16 | ||||||||||||
S_R | 14 | ||||||||||||
C_R | 1 | 15 | 5 | 2 | 1 | ||||||||
R_W | 1 | 8 | |||||||||||
Gorse | 2 | 1 | 16 | 1 | |||||||||
M_L | 3 | 1 | 1 | 17 | |||||||||
Mar | 1 | 1 | 5 | 5 | 1 | 2 | 15 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suo, C.; McGovern, E.; Gilmer, A. Coastal Dune Vegetation Mapping Using a Multispectral Sensor Mounted on an UAS. Remote Sens. 2019, 11, 1814. https://doi.org/10.3390/rs11151814
Suo C, McGovern E, Gilmer A. Coastal Dune Vegetation Mapping Using a Multispectral Sensor Mounted on an UAS. Remote Sensing. 2019; 11(15):1814. https://doi.org/10.3390/rs11151814
Chicago/Turabian StyleSuo, Chen, Eugene McGovern, and Alan Gilmer. 2019. "Coastal Dune Vegetation Mapping Using a Multispectral Sensor Mounted on an UAS" Remote Sensing 11, no. 15: 1814. https://doi.org/10.3390/rs11151814
APA StyleSuo, C., McGovern, E., & Gilmer, A. (2019). Coastal Dune Vegetation Mapping Using a Multispectral Sensor Mounted on an UAS. Remote Sensing, 11(15), 1814. https://doi.org/10.3390/rs11151814