Potato Yield Prediction Using Machine Learning Techniques and Sentinel 2 Data
"> Figure 1
<p>Location of the study fields (pink colour) in the municipality of Cuellar (in red colour), Castilla y León (Spain).</p> "> Figure 2
<p>Performance of rqlasso_2, LeapBack_2, LeapBack_3 and svmRadial_3 models in terms of RSME, MAE and R<sup>2</sup> for scenario B.</p> "> Figure 3
<p>Comparison between predicted and actual yields using (<b>a</b>) rqlasso_2 (scenario B), (<b>b</b>) LeapBack_2 (scenario B), and (<b>c</b>) svmRadial_3 (scenario D) with the July, August and September predictors. Graph values are the overall amount of individual predictions over ten iterations per model.</p> "> Figure 4
<p>Maps of predicted potato yield for svmRadial_3 under scenario D across the study period: (<b>A</b>,<b>B</b>) 2016, (<b>C</b>,<b>D</b>) 2017, (<b>E</b>,<b>F</b>) 2018.</p> "> Figure 5
<p>Random forest model (rf_3) with “center” pre-processing across four feature selection scenarios, with July and August predictors.</p> "> Figure 6
<p>Comparison between predicted and actual yields using the random forest model (rf_3) with July and August predictor variables under scenario B.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials
2.3. Methods
2.3.1. Data Preparation
2.3.2. Model Building
2.3.3. Crop Yield Prediction One Month Prior to Harvest
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Seelan, S.K.; Laguette, S.; Casady, G.M.; Seielstad, G.A. Remote sensing applications for precision agriculture: A learning community approach. Remote Sens. Environ. 2003, 88, 157–169. [Google Scholar] [CrossRef]
- Lotze-Campen, H.; Müller, C.; Bondeau, A.; Rost, S.; Popp, A.; Lucht, W. Global food demand, productivity growth, and the scarcity of land and water resources: A spatially explicit mathematical programming approach. Agric. Econ. 2008, 39, 325–338. [Google Scholar] [CrossRef]
- Rijsberman, F.R.; Molden, D. Balancing water uses: Water for food and water for nature. In Thematic Background Paper, Proceedings of the International Conference on Freshwater, Bonn, Germany, 3–7 December 2001; IWRA: Paris, France, 2001; Available online: https://cdn.atria.nl/epublications/2001/Balancing_water_uses.pdf (accessed on 15 April 2019).
- Nelson, G.C.; Valin, H.; Sands, R.D.; Havlík, P.; Ahammad, H.; Deryng, D.; Kyle, P. Climate change effects on agriculture: Economic responses to biophysical shocks. Proc. Natl. Acad. Sci. USA 2014, 111, 3274–3279. [Google Scholar] [CrossRef] [PubMed]
- Bindraban, P.S.; van der Velde, M.; Ye, L.; Van den Berg, M.; Materechera, S.; Kiba, D.I.; Hoogmoed, W. Assessing the impact of soil degradation on food production. Curr. Opin. Environ. Sustain. 2012, 4, 478–488. [Google Scholar] [CrossRef]
- Conijn, J.G.; Bindraban, P.S.; Schröder, J.J.; Jongschaap, R.E.E. Can our global food system meet food demand within planetary boundaries? Agric. Ecosyst. Environ. 2018, 251, 244–256. [Google Scholar] [CrossRef]
- Windfuhr, M.; Jonsén, J. Food Sovereignty: Towards Democracy in Localized Food Systems. 2005. Available online: http://agris.fao.org/agris-search/search.do?recordID=GB2013202621 (accessed on 15 April 2019).
- Doran, J.W. Soil health and global sustainability: Translating science into practice. Agric. Ecosyst. Environ. 2002, 88, 119–127. [Google Scholar] [CrossRef]
- Fischer, G.; Shah, M.; Tubiello, F.N.; Van Velhuizen, H. Socio-economic and climate change impacts on agriculture: An integrated assessment, 1990–2080. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2005, 360, 2067–2083. [Google Scholar] [CrossRef] [PubMed]
- Zarco-Tejada, P.; Hubbard, N.; Loudjani, P. Precision Agriculture: An Opportunity for EU Farmers—Potential Support with the CAP 2014–2020. Jt. Res. Cent. (JRC) Eur. Comm. 2014. Available online: http://www.europarl.europa.eu/RegData/etudes/note/join/2014/529049/IPOL-AGRI_NT%282014%29529049_EN.pdf (accessed on 15 April 2019).
- Gebbers, R.; Adamchuk, V.I. Precision agriculture and food security. Science 2010, 327, 828–831. [Google Scholar] [CrossRef]
- Chen, F.; Kissel, D.E.; West, L.T.; Adkins, W. Field-scale mapping of surface soil organic carbon using remotely sensed imagery. Soil Sci. Soc. Am. J. 2000, 64, 746–753. [Google Scholar] [CrossRef]
- Wardlow, B.D.; Egbert, S.L.; Kastens, J.H. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the US Central Great Plains. Remote Sens. Environ. 2007, 108, 290–310. [Google Scholar] [CrossRef]
- Singh, R.K.; Budde, M.E.; Senay, G.B.; Rowland, J. A Novel Approach for Forecasting Crop Production and Yield Using Remotely Sensed Satellite Images. In AGU Fall Meeting Abstracts, 2017. Available online: http://adsabs.harvard.edu/abs/2017AGUFMIN54A..03S (accessed on 12 February 2019).
- Shakoor, N.; Lee, S.; Mockler, T.C. High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field. Curr. Opin. Plant Biol. 2017, 38, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, B.P.; Cosh, M.H.; Lakshmi, V.; Montzka, C. Soil moisture remote sensing: State-of-the-science. Vadose Zone J. 2017, 16, 1. [Google Scholar] [CrossRef]
- Sharma, L.K.; Bali, S.K.; Dwyer, J.D.; Plant, A.B.; Bhowmik, A. A case study of improving yield prediction and sulfur deficiency detection using optical sensors and relationship of historical potato yield with weather data in Maine. Sensors 2017, 17, 1095. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Chen, Z.X.; Tao, Y.U.; Huang, X.Z.; Gu, X.F. Agricultural remote sensing big data: Management and applications. J. Integr. Agric. 2018, 17, 1915–1931. [Google Scholar] [CrossRef]
- Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.J. Big data in smart farming—A review. Agric. Syst. 2017, 153, 69–80. [Google Scholar] [CrossRef]
- Zhang, D. Advances in machine learning applications in software engineering. Igi Glob. 2006. [Google Scholar] [CrossRef]
- Chlingaryan, A.; Sukkarieh, S.; Whelan, B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Comput. Electron. Agric. 2018, 151, 61–69. [Google Scholar] [CrossRef]
- Dahikar, S.S.; Rode, S.V. Agricultural crop yield prediction using artificial neural network approach. Int. J. Innov. Res. Electr. Electron. Instrum. Control Eng. 2014, 2, 683–686. Available online: https://pdfs.semanticscholar.org/7c68/a32212c1f86f535f4c1658ff68399d0a9ddd.pdf (accessed on 15 April 2019).
- Pantazi, X.E.; Moshou, D.; Alexandridis, T.; Whetton, R.L.; Mouazen, A.M. Wheat yield prediction using machine learning and advanced sensing techniques. Comput. Electron. Agric. 2016, 121, 57–65. [Google Scholar] [CrossRef]
- Veenadhari, S.; Misra, B.; Singh, C.D. Machine learning approach for forecasting crop yield based on climatic parameters. In Proceedings of the International Conference on IEEE Computer Communication and Informatics (ICCCI), Coimbatore, Tamilnadu, 3–5 January 2014; pp. 1–5. [Google Scholar] [CrossRef]
- Raymundo, R.; Asseng, S.; Robertson, R.; Petsakos, A.; Hoogenboom, G.; Quiroz, R.; Wolf, J. Climate change impact on global potato production. Eur. J. Agron. 2018, 100, 87–98. [Google Scholar] [CrossRef]
- Devaux, A.; Kromann, P.; Ortiz, O. Potatoes for sustainable global food security. Potato Res. 2014, 57, 185–199. [Google Scholar] [CrossRef]
- Bowen, W.; Cabrera, H.; Barrera, V.H.; Baigorria, G. Simulating the Response of Potato to Applied Nitrogen. CIP Program Report 1997–1998. 1999; pp. 381–386. Available online: http://repositorio.iniap.gob.ec/handle/41000/2784 (accessed on 29 May 2019).
- Molahlehi, L.; Steyn, J.M.; Haverkort, A.J. Potato crop response to genotype and environment in a subtropical highland agro-ecology. Potato Res. 2013, 56, 237–258. [Google Scholar] [CrossRef]
- Machakaire, A.T.; Steyn, J.M.; Caldiz, D.O.; Haverkort, A.J. Forecasting yield and tuber size of processing potatoes in South Africa using the LINTUL-potato-DSS model. Potato Res. 2016, 59, 195–206. [Google Scholar] [CrossRef]
- Bélanger, G.; Walsh, J.R.; Richards, J.E.; Milburn, P.H.; Ziadi, N. Comparison of three statistical models describing potato yield response to nitrogen fertilizer. Agron. J. 2000, 92, 902–908. [Google Scholar] [CrossRef]
- Kooman, P.L.; Haverkort, A.J. Modelling development and growth of the potato crop influenced by temperature and daylength: LINTUL-POTATO. In Potato Ecology and Modelling of Crops under Conditions Limiting Growth; Springer: Dordrecht, The Netherlands, 1995; pp. 41–59. [Google Scholar] [Green Version]
- Manrique, L.A.; Kinry, J.R.; Hodges, T.; Axness, D.S. Dry matter production and radiation interception of potato. Crop Sci. 1991, 31, 1044–1049. [Google Scholar] [CrossRef]
- Fleisher, D.H.; Condori, B.; Quiroz, R.; Alva, A.; Asseng, S.; Barreda, C.; Bindi, M.; Boote, K.J.; Ferrise, R.; Franke, A.C. A potato model intercomparison across varying climates and productivity levels. Glob. Chang. Biol. 2017, 23, 1258–1281. [Google Scholar] [CrossRef] [PubMed]
- Raymundo, R.; Asseng, S.; Cammarano, D.; Quiroz, R. Potato, sweet potato, and yam models for climate change: A review. Field Crop. Res. 2014, 166, 173–185. [Google Scholar] [CrossRef]
- Saue, T.; Kadaja, J. Water limitations on potato yield in Estonia assessed by crop modelling. Agric. For. Meteorol. 2014, 194, 20–28. [Google Scholar] [CrossRef]
- Borus, D.; Parsons, D.; Boersma, M.; Brown, H.; Mohammed, C. Improving the prediction of potato productivity: APSIM-Potato model parameterization and evaluation in Tasmania, Australia. Aust. J. Crop Sci. 2018, 12, 32. [Google Scholar] [CrossRef]
- Basu, S.K.; Kumar, N. Modelling and Simulation of Diffusive Processes; Springer International: Basel, Switzerlan, 2016. [Google Scholar]
- Awad, M.M. Toward Precision in Crop Yield Estimation Using Remote Sensing and Optimization Techniques. Agriculture 2019, 9, 54. [Google Scholar] [CrossRef]
- Hoefsloot, P.; Ines, A.V.; Dam, J.C.V.; Duveiller, G.; Kayitakire, F.; Hansen, J. Combining crop models and remote sensing for yield prediction: Concepts, applications and challenges for heterogeneous smallholder environments. In Proceedings of the Report of CCFAS-JRC Workshop at Joint Research Centre, Ispra, Italy, 13–14 June 2012; Joint Research Center Technical Report. Publications Office of the European Union: Luxembourg, 2012. Available online: http://publications.jrc.ec.europa.eu/repository/bitstream/JRC77375/lbna25643enn.pdf (accessed on 29 May 2019).
- Bala, S.K.; Islam, A.S. Correlation between potato yield and MODIS-derived vegetation indices. Int. J. Remote Sens. 2009, 30, 2491–2507. [Google Scholar] [CrossRef]
- Al-Gaadi, K.A.; Hassaballa, A.A.; Tola, E.; Kayad, A.G.; Madugundu, R.; Alblewi, B.; Assiri, F. Prediction of potato crop yield using precision agriculture techniques. PLoS ONE 2016, 11, e0162219. [Google Scholar] [CrossRef] [PubMed]
- Clevers, J.G.; Gitelson, A.A. Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and-3. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 344–351. [Google Scholar] [CrossRef]
- Zheng, T.; Liu, N.; Wu, L.; Li, M.; Sun, H.; Zhang, Q.; Wu, J. Estimation of Chlorophyll Content in Potato Leaves Based on Spectral Red Edge Position. IFAC-PapersOnLine 2018, 51, 602–606. [Google Scholar] [CrossRef]
- Jongschaap, R.E.; Booij, R. Spectral measurements at different spatial scales in potato: Relating leaf, plant and canopy nitrogen status. Int. J. Appl. Earth Obs. Geoinf. 2004, 5, 205–218. [Google Scholar] [CrossRef]
- European Space Agency—ESA. Mission Sentinel 2, Overview. 2016. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-2 (accessed on 4 May 2019).
- Statista. 2017. Available online: https://es.statista.com/estadisticas/510906/produccion-de-patatas-en-espana-por-comunidad-autonoma/ (accessed on 2 May 2019).
- JCyL—Junta de Castilla y Leon. 2015. Available online: http://www.jcyl.es/web/jcyl/AgriculturaGanaderia/es/Plantilla100Detalle/1246464862173/_/1284142623007/Comunicacion?plantillaObligatoria=PlantillaContenidoNoticiaHome (accessed on 31 October 2018).
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- JCyL—Junta de Castilla y Leon. 2018. Available online: http://datosabiertos.jcyl.es/web/jcyl/set/es/cartografia/SIGPAC/1284225645888 (accessed on 15 August 2018).
- ESRI. ArcGIS Desktop: Release 10.4; Environmental Systems Research Institute: Redlands, CA, USA, 2014. [Google Scholar]
- Louis, J.; Debaecker, V.; Pflug, B.; Main-Korn, M.; Bieniarz, J.; Mueller-Wilm, U.; Gascon, F. Sentinel-2 Sen2Cor: L2A Processor for Users. Living Planet Symp. 2016, 740, 91. Available online: https://elib.dlr.de/107381/1/LPS2016_sm10_3louis.pdf (accessed on 15 April 2019).
- Hijmans, R.J.; van Etten, J. Raster: Geographic data analysis and modeling. R Pack. Vers. 2014, 2, 8. Available online: https://rdrr.io/cran/raster/f/inst/doc/rasterfile.pdf (accessed on 24 June 2019).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017; Available online: https://www.R-project.org/ (accessed on 4 May 2019).
- Gitelson, A.A.; Merzlyak, M.N.; Chivkunova, O.B. Optical properties and nondestructive estimation of anthocyanin content in plant leaves. Photochem. Photobiol. 2001, 74, 38–45. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Zur, Y.; Chivkunova, O.B.; Merzlyak, M.N. Assessing Carotenoid Content in Plant Leaves with Reflectance Spectroscopy. Photochem. Photobiol. 2002, 75, 272–281. [Google Scholar] [CrossRef]
- Frampton, W.J.; Dash, J.; Watmough, G.; Milton, E.J. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS J. Photogramm. Remote Sens. 2013, 82, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, J.A. Monitoring vegetation systems in the Great Plains with ERTS. In Proceedings of the Third Symposium on Significant Results Obtained with ERTS-1, Washington, DC, USA, 10–14 December 1973; pp. 309–317. [Google Scholar]
- Merzlyak, M.N.; Gitelson, A.A.; Chivkunova, O.B.; Rakitin, V.Y. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol. Plant. 1999, 106, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Clevers, J.G.P.W. Application of a weighted infrared-red vegetation index for estimating leaf area index by correcting for soil moisture. Remote Sens. Environ. 1989, 29, 25–37. [Google Scholar] [CrossRef]
- Agakov, F.; Bonilla, E.; Cavazos, J.; Franke, B.; Fursin, G.; O’Boyle, M.F.; Williams, C.K. Using machine learning to focus iterative optimization. In Proceedings of the International Symposium on Code Generation and Optimization, New York, NY, USA, 26–29 March 2006; IEEE Computer Society: Washington, DC, USA, 2006; pp. 295–305. [Google Scholar]
- Nelder, J.A.; Wedderburn, R.W. Generalized linear models. J. R. Stat. Soc. Ser. A (Gen.) 1972, 135, 370–384. [Google Scholar] [CrossRef]
- Lumley, T.; Lumley, M.T. Package ‘leaps’. Regression Subset Selection. Thomas Lumley Based on Fortran Code by Alan Miller. 2017. Available online: https://cran.r-project.org/web/packages/leaps/index.html (accessed on 3 May 2019).
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Scholkopf, B.; Sung, K.K.; Burges, C.J.; Girosi, F.; Niyogi, P.; Poggio, T.; Vapnik, V. Comparing support vector machines with Gaussian kernels to radial basis function classifiers. IEEE Trans. Signal Process. 1997, 45, 2758–2765. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Friedman, J.H. Multivariate Adaptive Regression Splines. Ann. Stat. 1991, 19, 1–67. [Google Scholar] [CrossRef]
- Hechenbichler, K.; Schliep, K. Weighted k-nearest-neighbor techniques and ordinal classification. LMU 2004. [CrossRef]
- Burton, T.A. Averaged neural networks. Neural Netw. 1993, 6, 677–680. [Google Scholar] [CrossRef]
- Kuhn, M. Caret package. J. Stat. Softw. 2008, 28, 1–26. Available online: http://www.math.chalmers.se/Stat/Grundutb/GU/MSA220/S18/caret-JSS.pdf (accessed on 15 April 2019).
- Kuhn, M.; Weston, S.; Keefer, C.; Coulter, N.; Quinlan, R. Cubist: Rule-and Instance-Based Regression Modeling. R Package Version 0.0. 15. 2013. Available online: http://www2.uaem.mx/r-mirror/web/packages/Cubist/Cubist.pdf (accessed on 15 April 2019).
- Brownlee, J. Feature Selection with the Caret R Package. 2014. Available online: https://machinelearningmastery.com/feature-selection-with-the-caret-r-package/ (accessed on 2 November 2018).
- Perez-Riverol, Y.; Kuhn, M.; Vizcaíno, J.A.; Hitz, M.P.; Audain, E. Accurate and fast feature selection workflow for high-dimensional omics data. PLoS ONE 2017, 12, e0189875. [Google Scholar] [CrossRef] [PubMed]
- Brownlee, J. A Gentle Introduction to k-Fold Cross-Validation. 2018. Available online: https://machinelearningmastery.com/k-fold-cross-validation/ (accessed on 2 November 2018).
- Mkhabela, M.S.; Bullock, P.; Raj, S.; Wang, S.; Yang, Y. Crop yield forecasting on the Canadian Prairies using MODIS NDVI data. Agric. For. Meteorol. 2011, 151, 385–393. [Google Scholar] [CrossRef]
- Akhand, K.; Nizamuddin, M.; Roytman, L.; Kogan, F. Using remote sensing satellite data and artificial neural network for prediction of potato yield in Bangladesh. Int. Soc. Opt. Photon. 2016, 9975, 997508. [Google Scholar] [CrossRef]
- Idso, S.B.; Reginato, R.J.; Hatfield, J.L.; Walker, G.K.; Jackson, R.D.; Pinter, P.J., Jr. A generalization of the stress-degree-day concept of yield prediction to accommodate a diversity of crops. Agric. Meteorol. 1980, 21, 205–211. [Google Scholar] [CrossRef]
- Peng, Y.H.; Hsu, C.S.; Huang, P.C. Developing crop price forecasting service using open data from Taiwan markets. In Proceedings of the 2015 Conference on Technologies and Applications of Artificial Intelligence (TAAI), Tainan, Taiwan, 20–22 November 2015; pp. 172–175. [Google Scholar] [CrossRef]
- Guyon, I.; Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3, 1157–1182. Available online: http://www.jmlr.org/papers/volume3/guyon03a/guyon03a.pdf (accessed on 15 April 2019).
- Picard, R.R.; Cook, R.D. Cross-validation of regression models. J. Am. Stat. Assoc. 1984, 79, 575–583. [Google Scholar] [CrossRef]
- Drummond, S.T.; Sudduth, K.A.; Joshi, A.; Birrell, S.J.; Kitchen, N.R. Statistical and neural methods for site–specific yield prediction. Trans. ASAE 2003, 46, 5. [Google Scholar] [CrossRef]
- Li, A.; Liang, S.; Wang, A.; Qin, J. Estimating crop yield from multi-temporal satellite data using multivariate regression and neural network techniques. Photogramm. Eng. Remote Sens. 2007, 73, 1149–1157. [Google Scholar] [CrossRef]
- Sayago, S.; Bocco, M. Crop yield estimation using satellite images: Comparison of linear and non-linear models. AgriScientia 2018, 1, 1–9. [Google Scholar] [CrossRef]
- Hawkins, D.M. The problem of overfitting. J. Chem. Inf. Comput. Sci. 2004, 44, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Perrone, M.P.; Cooper, L.N. When networks disagree: Ensemble methods for hybrid neural networks (No. TR-61). Brown Univ. Provid. Ri Inst. Brain Neural Syst. 1992. Available online: https://apps.dtic.mil/dtic/tr/fulltext/u2/a260121.pdf (accessed on 15 April 2019).
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer: Berlin/Heidelberg, Germany, 2013; p. 112. [Google Scholar]
- Friedman, J.; Hastie, T.; Tibshirani, R. The Elements of Statistical Learning; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Joachims, T. Text categorization with support vector machines: Learning with many relevant features. In Proceedings of the European conference on machine learning, Vienna, Austria, 12–14 July 1982; Springer: Berlin/Heidelberg, Germany, 1982; pp. 137–142. [Google Scholar] [CrossRef]
- Blum, A.L.; Langley, P. Selection of relevant features and examples in machine learning. Artif. Intell. 1997, 97, 245–271. [Google Scholar] [CrossRef] [Green Version]
- Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V. Gene selection for cancer classification using support vector machines. Mach. Learn. 2002, 46, 389–422. [Google Scholar] [CrossRef]
- Jain, A.; Zongker, D. Feature selection: Evaluation, application, and small sample performance. IEEE Trans. Pattern Anal. Mach. Intell. 1997, 19, 153–158. [Google Scholar] [CrossRef]
- Baez-Gonzalez, A.D.; Kiniry, J.R.; Maas, S.J.; Tiscareno, M.L.; Macias, C.J.J.L.; Mendoza, J.L.; Manjarrez, J.R. Large-area maize yield forecasting using leaf area index based yield model. Agron. J. 2005, 97, 418–425. [Google Scholar] [CrossRef]
- Launay, M.; Guerif, M. Assimilating remote sensing data into a crop model to improve predictive performance for spatial applications. Agric. Ecosyst. Environ. 2005, 111, 321–339. [Google Scholar] [CrossRef]
- Hartz, T.K.; Moore, F.D. Prediction of potato yield using temperature and insolation data. Am. Potato J. 1978, 55, 431–436. [Google Scholar] [CrossRef]
- Brown, M.E. Satellite remote sensing in agriculture and food security assessment. Procedia Environ. Sci. 2015, 29, 307. [Google Scholar] [CrossRef]
- Kooistra, L.; Clevers, J.G. Estimating potato leaf chlorophyll content using ratio vegetation indices. Remote Sens. Lett. 2016, 7, 611–620. [Google Scholar] [CrossRef] [Green Version]
- Delegido, J.; Verrelst, J.; Alonso, L.; Moreno, J. Evaluation of sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content. Sensors 2011, 11, 7063–7081. [Google Scholar] [CrossRef] [PubMed]
- Gogoi, N.K.; Deka, B.; Bora, L.C. Remote sensing and its use in detection and monitoring plant diseases: A review. Agric. Rev. 2018, 39, 4. [Google Scholar] [CrossRef]
- Duarte-Carvajalino, J.; Alzate, D.; Ramirez, A.; Santa-Sepulveda, J.; Fajardo-Rojas, A.; Soto-Suárez, M. Evaluating Late Blight Severity in Potato Crops Using Unmanned Aerial Vehicles and Machine Learning Algorithms. Remote Sens. 2018, 10, 1513. [Google Scholar] [CrossRef]
No | Model | RMSE | R2 | MAE | Best Tuning Par. |
---|---|---|---|---|---|
1 | rqlasso_2 | 7.374 | 0.84 | 6.562 | lambda = 0.0001 |
2 | LeapBack_3 | 8.239 | 0.89 | 6.489 | nvmax = 2 |
3 | LeapBack_2 | 8.278 | 0.84 | 6.617 | nvmax = 2 |
4 | svmRadial_3 | 8.949 | 0.85 | 7.263 | Sigma = 0.0574157 and C = 1 |
5 | rqlasso_1 | 9.019 | 0.78 | 7.740 | lambda = 0.1 |
6 | rqlasso_4 | 9.046 | 0.85 | 7.409 | lambda = 0.1 |
7 | LeapBack_4 | 9.050 | 0.85 | 7.402 | nvmax = 2 |
8 | rqlasso_3 | 9.086 | 0.81 | 7.416 | lambda = 0.1 |
9 | cubist_Ensemble | 9.168 | 0.38 | 6.550 | - |
10 | glm_1 | 9.228 | 0.77 | 7.786 | - |
11 | rf_3 | 9.234 | 0.84 | 7.386 | Mtry = 6 |
12 | svmLinear_4 | 9.577 | 0.76 | 7.967 | C = 1 |
13 | svmLinear_2 | 9.618 | 0.73 | 7.539 | C = 1 |
14 | rf_2 | 9.643 | 0.80 | 7.366 | Mtry = 6 |
15 | glm_3 | 9.753 | 0.82 | 7.922 | - |
16 | svmLinear_3 | 9.761 | 0.87 | 7.423 | C = 1 |
17 | rf_1 | 9.787 | 0.80 | 8.201 | Mtry = 6 |
18 | mars_1 | 9.813 | 0.77 | 7.824 | nprune = 2 and degree = 1 |
19 | kknn_4 | 9.933 | 0.75 | 8.658 | kmax = 9, distance = 2 and kernel = optimal |
20 | svmRadial_2 | 9.937 | 0.71 | 7.605 | Sigma = 0.0873 and C = 1 |
Feature Selection | Corr. < 0.5 | Corr. < 0.75 | Corr. < 0.90 | No Feature Selection | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Scenario | A | B | C | D | ||||||||
RMSE | R2 | MAE | RMSE | R2 | MAE | RMSE | R2 | MAE | RMSE | R2 | MAE | |
rqlasso_2 | 6.768 | 0.88 | 5.320 | 7.093 | 0.90 | 5.653 | 8.456 | 0.89 | 6.326 | 7.844 | 0.86 | 5.730 |
svmRadial_3 | 9.125 | 0.72 | 6.804 | 7.710 | 0.83 | 5.769 | 7.370 | 0.89 | 5.242 | 6.781 | 0.93 | 5.015 |
LeapBack_2 | 6.341 | 0.89 | 5.192 | 6.866 | 0.89 | 5.512 | 10.455 | 0.75 | 8.502 | 8.319 | 0.81 | 6.981 |
LeapBack_3 | 6.341 | 0.89 | 5.192 | 6.866 | 0.89 | 5.512 | 10.455 | 0.75 | 8.502 | 8.319 | 0.81 | 6.981 |
Average * | 7.411 | 0.83 | 5.772 | 7.223 | 0.87 | 5.645 | 8.760 | 0.84 | 6.690 | 7.648 | 0.87 | 5.909 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez, D.; Salvador, P.; Sanz, J.; Casanova, J.L. Potato Yield Prediction Using Machine Learning Techniques and Sentinel 2 Data. Remote Sens. 2019, 11, 1745. https://doi.org/10.3390/rs11151745
Gómez D, Salvador P, Sanz J, Casanova JL. Potato Yield Prediction Using Machine Learning Techniques and Sentinel 2 Data. Remote Sensing. 2019; 11(15):1745. https://doi.org/10.3390/rs11151745
Chicago/Turabian StyleGómez, Diego, Pablo Salvador, Julia Sanz, and Jose Luis Casanova. 2019. "Potato Yield Prediction Using Machine Learning Techniques and Sentinel 2 Data" Remote Sensing 11, no. 15: 1745. https://doi.org/10.3390/rs11151745
APA StyleGómez, D., Salvador, P., Sanz, J., & Casanova, J. L. (2019). Potato Yield Prediction Using Machine Learning Techniques and Sentinel 2 Data. Remote Sensing, 11(15), 1745. https://doi.org/10.3390/rs11151745