Wind Speed Retrieval from Simulated RADARSAT Constellation Mission Compact Polarimetry SAR Data for Marine Application
"> Figure 1
<p>ECCC buoy locations, with their ID code, on the West and East coasts of Canada.</p> "> Figure 2
<p><span class="html-italic">σ<sup>0</sup><sub>VV</sub></span> standard deviation versus <span class="html-italic">σ<sup>0</sup><sub>VV</sub></span> for the LowNoise mode (<span class="html-italic">n</span> = 486). The red line represents the upper variability threshold.</p> "> Figure 3
<p><span class="html-italic">δ<sub>RVRH</sub></span> versus wind speed for the LowNoise mode (<span class="html-italic">n</span> = 470).</p> "> Figure 4
<p><span class="html-italic">RVRH phase difference</span> versus <span class="html-italic">Conformity</span> for (<b>a</b>) LowNoise, (<b>b</b>) LowRes, (<b>c</b>) MR50.</p> "> Figure 5
<p>Observed backscatter vs. CMOD-IFR2- (<b>a</b>,<b>c</b>,<b>e</b>) and CMOD5n-modelled (<b>b</b>,<b>d</b>,<b>f</b>) backscatter, for LowNoise data, <span class="html-italic">n</span> = 446 buoy measurements: a,b) <span class="html-italic">σ<sup>0</sup><sub>VV</sub></span>, c,d) <span class="html-italic">σ<sup>0</sup><sub>RV</sub></span>, e,f) <span class="html-italic">SV</span><sub>0</sub>. Spearman’s <span class="html-italic">ρ</span> is indicated.</p> "> Figure 6
<p>Wind speed retrievals with (<b>a</b>) CMOD5n-<span class="html-italic">SV</span><sub>0</sub>, (<b>b</b>) CMOD5n-<span class="html-italic">σ<sup>0</sup><sub>VV</sub></span>, (<b>c</b>) CMOD5n-<span class="html-italic">σ<sup>0</sup><sub>RV</sub></span> and (<b>d</b>) CMOD5n-<span class="html-italic">σ<sup>0</sup><sub>RH</sub></span>, versus buoy wind speed measurements for the MR50 mode, <span class="html-italic">n</span> = 424.</p> "> Figure 7
<p>Wind speed retrieval with CMOD-IFR2-<span class="html-italic">σ<sup>0</sup><sub>RV</sub></span> for the RCM LowRes mode simulated from a RADARSAT-2 FQ3 image for 23 October 2010. The black point is the location of buoy 44141. The projection is Lambert Conformal Conic, Canada WGS84.</p> "> Figure 8
<p>CMOD-IFR2-<span class="html-italic">σ<sup>0</sup><sub>VV</sub></span> wind speed retrievals by the NSW system using simulated RCM MR50 data, for (<b>a</b>) 18 August 2014 and (<b>b</b>) 10 October 2018, based on RADARSAT-2 <span class="html-italic">VV</span> SAR data (<b>c</b>,<b>d</b>), respectively. The red outlines are the RCM MR50 mode swath width. Wind arrows are 10 km Regional Deterministic Prediction System data. The tan colour is a land mask.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Data
2.1.1. C-band SAR Data
2.1.2. Meteorological Data
2.2. SAR Data Quality
2.2.1. Spatial Variability
2.2.2. Low-Quality Backscatter
2.3. Final Data Set
2.4. CMOD Models
2.5. Wind Speed Retrieval
2.6. Wind Speed Accuracy Assessment
3. Results
3.1. CMOD Assessment
3.2. Wind Speed Retrieval
3.3. RCM SAR Wind Case Studies
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation | Description |
CMOD | C-band model |
CMOD-CP | CMOD-related CP parameters |
CP | Compact Polarimetry |
CTLR | Circular-Transmit Linear-Receive |
dB | Decibel |
ECCC | Environment and Climate Change Canada |
FQ | Fine-Quad RADARSAT-2 mode |
HH | Horizontal-transmit Horizontal-receive |
HV, VH | Horizontal-transmit Vertical-receive, or vice versa |
LowNoise | Low Noise RCM mode |
LowRes | Low resolution RCM mode |
MR50 | Medium Resolution 50 m RCM mode |
NESZ | Noise Equivalent Sigma Zero |
NSW | National SAR Winds |
PR | Polarization Ratio |
RCM | RADARSAT Constellation Mission |
RMSE | Root-Mean-Square Error |
ROI | Region Of Interest |
RR, RL | Right-circular-transmit Right- or Left-circular-receive |
RSE | Residual Standard Error |
RV, RH | Right-circular-transmit Vertical- or Horizontal-receive |
SAR | Synthetic Aperture Radar |
σ0 | Sigma-naught backscatter |
SV0 | Stokes Vector 0 (first Stokes vector) |
VV | Vertical-transmit Vertical-receive |
References
- Quilfen, Y.; Chapron, B.; Elfouhaily, T.; Katsaros, K.; Tournadre, J. Observation of tropical cyclones by high-resolution scatterometry. J. Geophys. Res. Oceans 1998, 103, 7767–7786. [Google Scholar] [CrossRef]
- Hersbach, H. Comparison of C-band scatterometer CMOD5.N equivalent neutral winds with ECMWF. J. Atmos. Ocean Technol. 2010, 27, 721–736. [Google Scholar] [CrossRef]
- Stoffelen, A.; Verspeek, J.A.; Vogelzang, J.; Verhoef, A. The CMOD7 geophysical model function for ASCAT and ERS wind retrievals. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2123–2134. [Google Scholar] [CrossRef]
- Vachon, P.W.; Dobson, F.W. Wind retrieval from RADARSAT SAR images: Selection of a suitable C-band HH polarization wind retrieval model. Can. J. Remote Sens. 2000, 26, 306–313. [Google Scholar] [CrossRef]
- Vachon, P.W.; Wolfe, J. C-band cross-polarization wind speed retrieval. IEEE Geosci. Remote Sens. Lett. 2011, 8, 456–459. [Google Scholar] [CrossRef]
- Komarov, S.; Komarov, A.; Zabeline, V. Marine wind speed retrieval from RADARSAT-2 dual-polarization imagery. Can. J. Remote Sens. 2011, 37, 520–528. [Google Scholar] [CrossRef]
- Zhang, B.; Perrie, W.; Vachon, P.W.; Li, X.; Pichel, W.G.; Guo, J.; He, Y. Ocean vector winds retrieval from C-band fully polarimetric SAR measurements. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4252–4261. [Google Scholar] [CrossRef]
- Kerbaol, V.; Chapron, B.; Vachon, P.W. Analysis of ERS-1/2 synthetic aperture radar wave mode imagettes. J. Geophys. Res. Oceans 1998, 103, 7833–7846. [Google Scholar] [CrossRef]
- Grieco, G.; Lin, W.; Migliaccio, M.; Nirchio, F.; Portabella, M. Dependency of the Sentinel-1 azimuth wavelength cut-off on significant wave height and wind speed. Int. J. Remote Sens. 2016, 37, 5086–5104. [Google Scholar] [CrossRef]
- Corcione, V.; Grieco, G.; Portabella, M.; Nunziata, F.; Migliaccio, M. A novel azimuth cutoff implementation to retrieve sea surface wind speed from SAR imagery. IEEE Trans. Geosci. Remote Sens. 2018. [Google Scholar] [CrossRef]
- Raney, R.K. Hybrid-polarity SAR architecture. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3397–3404. [Google Scholar] [CrossRef]
- Charbonneau, F.J.; Brisco, B.; Raney, R.K.; McNairn, H.; Liu, C.; Vachon, P.W.; Shang, J.; DeAbreu, R.; Champagne, C.; Merzouki, A.; et al. Compact polarimetry overview and applications assessment. Can. J. Remote Sens. 2010, 36, S298–S315. [Google Scholar] [CrossRef]
- Misra, T.; Rana, S.S.; Desai, N.M.; Dave, D.B.; Rajeevjyoti; Arora, R.K.; Rao, C.V.N.; Bakori, B.V.; Neelakantan, R.; Vachchani, J.G. Synthetic aperture radar payload on-board RISAT-1: Configuration, technology and performance. Curr. Sci. 2013, 446–461. [Google Scholar] [CrossRef]
- Geldsetzer, T.; Charbonneau, F.; Arkett, M.; Zagon, T. Ocean wind study using simulated RCM compact-polarimetry SAR. Can. J. Remote Sens. 2015, 41, 418–430. [Google Scholar] [CrossRef]
- Denbina, M.; Collins, M.J. Wind speed estimation using C-band compact polarimetric SAR for wide swath imaging modes. ISPRS J. Photogramm. Remote Sens. 2016, 113, 75–85. [Google Scholar] [CrossRef]
- Sun, T.; Zhang, G.; Perrie, W.; Zhang, B.; Guan, C.; Khurshid, S.; Warner, K.; Sun, J. Ocean wind retrieval models for RADARSAT constellation mission compact polarimetry SAR. Remote Sens. 2018, 10, 1938. [Google Scholar] [CrossRef]
- Zhang, G.; Perrie, W.; Zhang, B.; Khurshid, S.; Warner, K. Semi-empirical ocean surface model for compact-polarimetry mode SAR of RADARSAT constellation mission. Remote Sens. Environ. 2018, 217, 52–60. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, B.; Perrie, W.; He, Y.; Li, H.; Fang, H.; Khurshid, S.; Warner, K. C-Band right-circular polarization ocean wind retrieval. IEEE Geosci. Remote Sens. Lett. 2019, March, 1–4. [Google Scholar] [CrossRef]
- Zhang, B.; Perrie, W.; Li, X.; Pichel, G. Mapping sea surface oil slicks using RADARSAT-2 quad-polarization SAR image. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Geldsetzer, T.; van der Sanden, J.J. Identification of polarimetric and nonpolarimetric C-band SAR parameters for application in the monitoring of lake ice freeze-up. Can. J. Remote Sens. 2013, 39, 263–275. [Google Scholar] [CrossRef]
- RADARSAT Constellation Mission Technical Characteristics. Available online: http://www.asc-csa.gc.ca/eng/satellites/radarsat/technical-features/characteristics.asp (accessed on 3 June 2019).
- Truong-Loi, M.; Freeman, A.; Dubois-Fernandez, P.; Pottier, E. Estimation of soil moisture and Faraday rotation from bare surfaces using compact polarimetry. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3608–3615. [Google Scholar] [CrossRef]
- Fairall, C.W.; Bradley, E.F.; Hare, J.E.; Grachev, A.A.; Edson, J.B. Bulk parameterization of air-sea fluxes: Updates and verification for the COARE algorithm. J. Clim. 2003, 16, 571–591. [Google Scholar] [CrossRef]
- Donelan, M.A.; Pierson, W.J., Jr. Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. J. Geophys. Res. Oceans 1987, 92, 4971–5029. [Google Scholar] [CrossRef]
- Alpers, W.; Hühnerfuss, H. The damping of ocean waves by surface films: A new look at an old problem. J. Geophys. Res. 1989, 94, 6251–6265. [Google Scholar] [CrossRef]
- Regional Deterministic Prediction System (RDPS) in GRIB2 Format: 10 km. Available online: https://weather.gc.ca/grib/grib2_reg_10km_e.html (accessed on 3 June 2019).
- Monaldo, F.M.; Thompson, D.R.; Beal, R.C.; Pichel, W.G.; Clemente-Colón, P. Comparison of SAR-derived wind speed with model predictions and ocean buoy measurements. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2587–2600. [Google Scholar] [CrossRef]
- Portabella, M.; Stoffelen, A.; Johannessen, J.A. Toward an optimal inversion method for synthetic aperture radar wind retrieval. J. Geophys. Res. Oceans 2002, 107. [Google Scholar] [CrossRef]
- He, Y.; Perrie, W.; Zou, Q.; Vachon, P.W. A new wind vector algorithm for C-band SAR. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1453–1458. [Google Scholar] [CrossRef]
RCM Mode | Short Form | Resolution (m) | Looks (Range × Azimuth) | Swath Width (km) (Accessible) | Nominal NESZ (dB) |
---|---|---|---|---|---|
Low Resolution (100 m) | LowRes | 100 | 8 × 1 | 500 (500) | −22 |
Low Noise | LowNoise | 100 | 4 × 2 | 350 (600) | −25 |
Medium Resolution (50 m) | MR50 | 50 | 4 × 1 | 350 (600) | −22 |
Short Form | Description |
---|---|
σ0RV,σ0RH, σ0RL | Right-circular transmit, vertical, horizontal, left receive |
δRVRH | Phase difference [12] |
Conformity | Conformity coefficient [22] |
SV0 | First Stokes vectors |
σ0VV, σ0HH | Linear polarizations |
Wind Speed/Inc. Angle | 19°–29° | 30°–39° | 40°–49° |
---|---|---|---|
0–3.3 m/s | 22 | 17 | 4 |
3.4–5.4 m/s | 27 | 34 | 18 |
5.5–7.9 m/s | 54 | 55 | 21 |
8.0–13.8 m/s | 55 | 55 | 29 |
13.9–18 m/s | 15 | 24 | 11 |
Parameter | Spearman’s ρ | RSE (dB) | Intercept | Slope | Bias | |
---|---|---|---|---|---|---|
CMOD−IFR2 | σ0VV | 0.96 | 1.79 | −0.60 | 0.98 | −0.42 |
σ0HH | 0.97 | 1.82 | −0.57 | 0.97 | −0.16 | |
σ0RV | 0.96 | 1.74 | −0.91 | 0.95 | −0.14 | |
σ0RH | 0.97 | 1.76 | −1.18 | 0.91 | 0.26 | |
σ0RL | 0.96 | 1.81 | −0.53 | 1.00 | −0.49 | |
SV0 | 0.96 | 1.74 | −0.78 | 0.94 | −0.04 | |
CMOD5n | σ0VV | 0.94 | 2.17 | −0.25 | 0.97 | 0.11 |
σ0HH | 0.96 | 2.31 | 0.63 | 1.04 | 0.03 | |
σ0RV | 0.94 | 2.21 | 0.02 | 1.00 | 0.07 | |
σ0RH | 0.96 | 2.69 | 1.74 | 1.11 | −0.20 | |
σ0RL | 0.95 | 2.26 | 0.23 | 1.03 | −0.13 | |
SV0 | 0.95 | 2.07 | −0.37 | 0.94 | 0.46 |
RMSE (m/s) | Slope | |||
---|---|---|---|---|
Parameter | CMOD-IFR2 | CMOD5n | CMOD-IFR2 | CMOD5n |
LowNoise | ||||
σ0VV | 2.51 | 2.17 | 0.70 | 0.65 |
σ0HH | 2.54 | 2.37 | 0.75 | 0.75 |
σ0RV | 2.50 | 2.24 | 0.69 | 0.67 |
σ0RH | 2.58 | 2.49 | 0.74 | 0.79 |
σ0RL | 2.49 | 2.25 | 0.71 | 0.68 |
SV0 | 2.50 | 2.19 | 0.71 | 0.68 |
LowRes | ||||
σ0VV | 2.40 | 2.26 | 0.76 | 0.72 |
σ0HH | 2.42 | 2.44 | 0.81 | 0.81 |
σ0RV | 2.40 | 2.35 | 0.75 | 0.75 |
σ0RH | 2.52 | 2.62 | 0.80 | 0.84 |
σ0RL | 2.42 | 2.35 | 0.77 | 0.75 |
SV0 | 2.38 | 2.22 | 0.76 | 0.74 |
MR50 | ||||
σ0VV | 2.25 | 2.22 | 0.76 | 0.73 |
σ0HH | 2.31 | 2.36 | 0.81 | 0.81 |
σ0RV | 2.26 | 2.20 | 0.75 | 0.74 |
σ0RH | 2.37 | 2.51 | 0.79 | 0.84 |
σ0RL | 2.28 | 2.27 | 0.78 | 0.75 |
SV0 | 2.25 | 2.13 | 0.77 | 0.75 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geldsetzer, T.; Khurshid, S.K.; Warner, K.; Botelho, F.; Flett, D. Wind Speed Retrieval from Simulated RADARSAT Constellation Mission Compact Polarimetry SAR Data for Marine Application. Remote Sens. 2019, 11, 1682. https://doi.org/10.3390/rs11141682
Geldsetzer T, Khurshid SK, Warner K, Botelho F, Flett D. Wind Speed Retrieval from Simulated RADARSAT Constellation Mission Compact Polarimetry SAR Data for Marine Application. Remote Sensing. 2019; 11(14):1682. https://doi.org/10.3390/rs11141682
Chicago/Turabian StyleGeldsetzer, Torsten, Shahid K. Khurshid, Kerri Warner, Filipe Botelho, and Dean Flett. 2019. "Wind Speed Retrieval from Simulated RADARSAT Constellation Mission Compact Polarimetry SAR Data for Marine Application" Remote Sensing 11, no. 14: 1682. https://doi.org/10.3390/rs11141682
APA StyleGeldsetzer, T., Khurshid, S. K., Warner, K., Botelho, F., & Flett, D. (2019). Wind Speed Retrieval from Simulated RADARSAT Constellation Mission Compact Polarimetry SAR Data for Marine Application. Remote Sensing, 11(14), 1682. https://doi.org/10.3390/rs11141682