Sensitivity of Seven MODIS Vegetation Indices to BRDF Effects during the Amazonian Dry Season
"> Figure 1
<p>Location of the three studied sites in the Brazilian Amazon (site 1 = Grão Pará; site 2 = Manaus; and site 3 = Aripuanã). Average annual rainfall data (1960–1990) were interpolated from available weather stations at a 1 km spatial resolution (WorldClim database), as described by Hijmans et al. [<a href="#B24-remotesensing-11-01650" class="html-bibr">24</a>].</p> "> Figure 2
<p>Seasonal variations in the (<b>a</b>) relative frequency of high–quality pixel retrievals, (<b>b</b>) view zenith angle (VZA), and (<b>c</b>) solar zenith angle (SZA) for the three sites selected from north to south of the Amazon. The location of the sites is indicated in <a href="#remotesensing-11-01650-f001" class="html-fig">Figure 1</a>. Results refer to 2008, a non–drought year.</p> "> Figure 3
<p>Daily variations in relative azimuth angle (RAA) for MODIS overpasses in Manaus (site 2), showing shifts in satellite observations toward the principal plane from the beginning to the end of the 2008 dry season (shaded area). Observations close to 180° in September to October represent the bidirectional reflectance distribution function (BRDF) hotspot direction, which produces a reflectance increase in all MODIS bands, especially in the near infrared (NIR).</p> "> Figure 4
<p>Dry season monthly variations in the relative frequency of pixels selected to compose the MOD13A2 product at the backscattering direction (RAA > 90°). Comparatively, more BRDF hotspot observations (<span class="html-italic">n</span>) are registered from the beginning (June) to the end (September) of the dry season. Results refer to 2008 and 4500 pixels distributed over the entire Amazon region.</p> "> Figure 5
<p>Monthly average surface reflectance (2000–2014) of dense ombrophilous forest for MODIS (MAIAC) data non–corrected for bidirectional effects. Spectra are shown for the beginning (June) and end (September) of the dry season over (<b>a</b>) site 1, (<b>b</b>) site 2, (<b>c</b>) site 3, and (<b>d</b>) the entire Amazon region (<span class="html-italic">n</span> = 4500 sampled pixels). The number of pixels per site was 100. Precise MODIS band positioning is indicated in the text.</p> "> Figure 6
<p>Variations in monthly average surface reflectance (2000–2014) for MODIS (MAIAC) data non–corrected for BRDF effects in bands (<b>a</b>) 1 (red), (<b>b</b>) 2 (near infrared—NIR), and (<b>c</b>) 6 (shortwave infrared—SWIR). For all bands, a reflectance increase is observed from the beginning (June) to the end (September) of the Amazonian dry season.</p> "> Figure 7
<p>Variations in monthly average surface reflectance (2000–2014) for MODIS (MAIAC) data corrected for BRDF effects in bands (<b>a</b>) 1 (red), (<b>b</b>) 2 (near infrared—NIR), and (<b>c</b>) 6 (shortwave infrared—SWIR). Compared to <a href="#remotesensing-11-01650-f006" class="html-fig">Figure 6</a>, the reflectance differences between June and September are greatly reduced after BRDF correction.</p> "> Figure 8
<p>Monthly average profiles for the (<b>a</b>) enhanced vegetation index (EVI), (<b>b</b>) normalized difference vegetation index (NDVI), (<b>c</b>) shortwave infrared normalized difference (SWND), and (<b>d</b>) photochemical reflectance index (PRI), showing spectral variations before and after BRDF correction from the beginning (June) to the end (September) of the Amazonian dry season. Results refer to the 2000–2014 period (<span class="html-italic">n</span> = 4500 pixels per date).</p> "> Figure 9
<p>Monthly average relative changes (2000–2014) between BRDF–corrected and non–corrected (<b>a</b>) enhanced vegetation index (EVI), (<b>b</b>) normalized difference vegetation index (NDVI), (<b>c</b>) normalized difference water index (NDWI), (<b>d</b>) normalized difference infrared index (NDII), (<b>e</b>) shortwave infrared normalized difference (SWND), (<b>f</b>) green–red normalized difference (GRND), and (<b>g</b>) photochemical reflectance index (PRI). For each vegetation index, MODIS results are shown in the beginning (June) and end (September) of the Amazonian dry season.</p> "> Figure 10
<p>Monthly average Pearson’s correlation coefficients (2000–2014) between BRDF–corrected and non–corrected MODIS (<b>a</b>) enhanced vegetation index (EVI), (<b>b</b>) shortwave infrared normalized difference (SWND), and (<b>c</b>) photochemical reflectance index (PRI) in the beginning (June) and end (September) of the Amazonian dry season.</p> "> Figure 11
<p>Variations in Cohen’s <span class="html-italic">r</span> metric of effect size (absolute values) at site 2 (Manaus), derived from the non–parametric Mann–Whitney U test. The magnitude of the BRDF effects is indicated for the enhanced vegetation index (EVI), photochemical reflectance index (PRI), and shortwave infrared normalized difference (SWND). The limits of the effect size are based on Cohen [<a href="#B32-remotesensing-11-01650" class="html-bibr">32</a>].</p> "> Figure 12
<p>Variations in average BRDF–corrected enhanced vegetation index (EVI) (<span class="html-italic">n</span> = 100 pixels per site), as a function of the drought (2005 and 2010) and non–drought (2002 and 2008) years, for the sites (<b>a</b>) Grão–Pará, (<b>b</b>) Manaus, and (<b>c</b>) Aripuanã.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Site Selection in the Study Area
2.2. MODIS (MAIAC) Datasets and Selected Vegetation Indices (VIs)
2.3. Data Analysis
3. Results
3.1. Seasonal Variations in Pixel Quality Retrieval and Viewing–Illumination Parameters
3.2. Variations in the Reflectance of Tropical Forests from Corrected and Non–Corrected BRDF Data
3.3. BRDF Effects on Vegetation Indices (VIs)
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Heimann, M.; Esser, G.; Haxeltine, A.; Kaduk, J.; Kicklighter, D.W.; Knorr, W.; Kohlmaier, G.H.; McGuire, A.D.; Melillo, J.; Moore III, B.; et al. Evaluation of terrestrial carbon cycle models through simulations of the seasonal cycle of atmospheric CO2: First results of a model intercomparison study. Glob. Biogeochem. Cycles 1998, 12, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Malhi, Y.; Roberts, J.T.; Betts, R.A.; Killeen, T.J.; Li, W.; Nobre, C.A. Climate change, deforestation, and the fate of the Amazon. Science 2008, 319, 169–172. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Schwartz, M.D.; Fei, S. Validating satellite phenology through intensive ground observation and landscape scaling in a mixed seasonal forest. Remote Sens. Environ. 2011, 115, 143–157. [Google Scholar] [CrossRef]
- Hmimina, G.; Dufrene, E.; Pontailler, J.Y.; Delpierre, N.; Aubinet, M.; Caquet, B.; Grandcourt, A.D.; Burban, B.; Flechard, C.; Granier, A.; et al. Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: An investigation using ground–based NDVI measurement. Remote Sens. Environ. 2013, 132, 145–158. [Google Scholar] [CrossRef]
- Maeda, E.E.; Moura, Y.M.; Wagner, F.; Hilker, T.; Lyapustin, A.I.; Wang, Y.; Chave, J.; Mõtus, M.; Aragão, L.E.; Shimabukuro, Y. Consistency of vegetation index seasonality across the Amazon rainforest. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 42–53. [Google Scholar] [CrossRef]
- Bhandari, S.; Phinn, S.; Gill, G. Assessing viewing and illumination geometry effects on the MODIS vegetation index (MOD13Q1) time series: Implications for monitoring phenology and disturbances in forest communities in Queensland, Australia. Int. J. Remote Sens. 2011, 32, 7513–7538. [Google Scholar] [CrossRef]
- Breunig, F.M.; Galvão, L.S.; Formaggio, A.R.; Epiphanio, J.C.N. Directional effects on NDVI and LAI retrievals from MODIS: A case study in Brazil with soybean. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 34–42. [Google Scholar] [CrossRef]
- Galvão, L.S.; Breunig, F.M.; Santos, J.R.; Moura, Y.M. View–illumination effects on hyperspectral vegetation indices in the Amazonian tropical forest. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 291–300. [Google Scholar] [CrossRef]
- Petri, C.A.; Galvão, L.S.; Lyapustin, A.I. MODIS BRDF effects over Brazilian tropical forests and savannahs: A comparative analysis. Remote Sens. Lett. 2019, 10, 95–102. [Google Scholar] [CrossRef]
- Galvão, L.S.; Santos, J.R.; Roberts, D.A.; Breunig, F.M.; Toomey, M.; Moura, Y.M. On intra–annual EVI variability in the dry season of tropical forest: A case study with MODIS and hyperspectral data. Remote Sens. Environ. 2011, 115, 2350–2359. [Google Scholar] [CrossRef]
- Moura, Y.M.; Galvão, L.S.; Santos, J.R.; Roberts, D.A.; Breunig, F.M. Use of MISR/Terra data to study intra– and inter–annual EVI variations in the dry season of tropical forest. Remote Sens. Environ. 2012, 127, 260–270. [Google Scholar] [CrossRef]
- Morton, D.C.; Nagol, J.; Carabajal, C.C.; Rossette, J.; Palace, M.; Cook, B.D.; Vermote, E.F.; Harding, D.J.; North, P.R.J. Amazon forests maintain consistent canopy structure and greenness during the dry season. Nature 2014, 506, 221–224. [Google Scholar] [CrossRef] [PubMed]
- Bi, J.; Knyazikhin, Y.; Choi, S.; Park, T.; Barichivich, J.; Ciais, P.; Fu, R.; Ganguly, S.; Hall, F.; Hilker, T.; et al. Sunlight mediated seasonality in canopy structure and photosynthetic activity of Amazonian rainforests. Environ. Res. Lett. 2015, 10, 064014. [Google Scholar] [CrossRef] [Green Version]
- Saleska, S.R.; Didan, K.; Huete, A.R.; Da Rocha, H.R. Amazon forests green–up during 2005 drought. Science 2007, 318, 612. [Google Scholar] [CrossRef] [PubMed]
- Samanta, A.; Ganguly, S.; Hashimoto, H.; Devadiga, S.; Vermote, E.F.; Knyazikhin, Y.; Nemani, R.R.; Myneni, R.B. Amazon Forests Did Not Green–Up during the 2005 Drought. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Huete, A.R.; Didan, K.; Shimabukuro, Y.E.; Ratana, P.; Saleska, S.R.; Hutyra, L.R.; Yang, W.; Nemani, R.R.; Myneni, R. Amazon rainforests green-up with sunlight in dry season. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Moura, Y.M.; Galvão, L.S.; Hilker, T.; Wu, J.; Saleska, S.; Amaral, C.H.; Nelson, B.W.; Lopes, A.P.; Wiedeman, K.K.; Prohaska, N.; et al. Spectral analysis of amazon canopy phenology during the dry season using a tower hyperspectral camera and MODIS observations. ISPRS J. Photogramm. Remote. Sens. 2017, 131, 52–64. [Google Scholar] [CrossRef]
- Hilker, T.; Lyapustin, A.I.; Tucker, C.J.; Hall, F.G.; Myneni, R.B.; Wang, Y.; Bi, J.; De Moura, Y.M.; Sellers, P.J. Vegetation dynamics and rainfall sensitivity of the Amazon. Proc. Natl. Acad. Sci. USA 2014, 111, 16041–16046. [Google Scholar] [CrossRef] [Green Version]
- Vermote, E.; Justice, C.O.; Bréon, F. Towards a generalized approach for correction of the BRDF effect in MODIS directional reflectances. IEEE Trans. Geosci. Remote Sens. 2009, 47, 898–908. [Google Scholar] [CrossRef]
- Villaescusa–Nadal, J.L.; Franch, B.; Vermote, E.F.; Roger, J. Improving the AVHRR long term data record BRDF correction. Remote Sens. 2019, 11, 502. [Google Scholar] [CrossRef]
- Franch, B.; Vermote, E.; Skakun, S.; Roger, J.; Masek, J.; Ju, J.; Villaescusa–Nadal, J.L.; Santamaria–Artigas, A. A method for Landsat and Sentinel 2 (HLS) BRDF normalization. Remote Sens. 2019, 11, 632. [Google Scholar] [CrossRef]
- Lyapustin, A.I.; Martonchik, J.; Wang, Y.; Laszlo, I.; Korkin, S. Multiangle Implementation of Atmospheric Correction (MAIAC): 1. radiative transfer basis and look-up tables. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Moura, Y.M.; Hilker, T.; Lyapustin, A.I.; Galvão, L.S.; dos Santos, J.R.; Anderson, L.O.; de Sousa, C.H.R.; Arai, E. Seasonality and drought effects of Amazonian forests observed from multi–angle satellite data. Remote Sens. Environ. 2015, 171, 278–290. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Clim. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Lyapustin, A.I.; Wang, Y.; Laszlo, I.; Hilker, T.; Hall, F.G.; Sellers, P.J.; Tucker, C.J.; Korkin, S.V. Multi–Angle Implementation of Atmospheric Correction for MODIS (MAIAC): 3. atmospheric correction. Remote Sens. Environ. 2012, 127, 385–393. [Google Scholar] [CrossRef]
- Hilker, T.; Lyapustin, A.I.; Tucker, C.J.; Sellers, P.J.; Hall, F.G.; Wang, Y. Remote sensing of tropical ecosystems: Atmospheric correction and cloud masking matter. Remote Sens. Environ. 2012, 127, 370–384. [Google Scholar] [CrossRef] [Green Version]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the great plains with ERTS. In Proceedings of the ERTS Symposium, Washington, DC, USA, 10–14 December 1973; Volume 3, pp. 309–317. [Google Scholar]
- Huete, A.R.; Liu, H.Q.; Batchily, K.; Van Leeuwen, W.A. Comparison of vegetation indices over a global set of TM images for EOS–MODIS. Remote Sens. Environ. 1997, 59, 440–451. [Google Scholar] [CrossRef]
- Gao, B. NDWI–A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Hunt, E.R.; Rock, B.N. Detection of changes in leaf water content using near–and middle–infrared reflectances. Remote Sens. Environ. 1989, 30, 43–54. [Google Scholar] [CrossRef]
- Gamon, J.A.; Serrano, L.; Surfus, J.S. The photochemical reflectance index: An optical indicator of photosynthetic radiation–use efficiency across species, functional types, and nutrient levels. Oecologia 1997, 112, 492–501. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Erlbaum: Hillsdale, MI, USA, 1988. [Google Scholar]
- Sims, D.A.; Rahman, A.F.; Vermote, E.F.; Jiang, Z. Seasonal and inter–annual variation in view angle effect effects on MODIS vegetation indices at three forest sites. Remote Sens. Environ. 2011, 115, 3112–3120. [Google Scholar] [CrossRef]
- Walter–Shea, E.A.; Privette, J.L.; Cornell, D.; Mesarch, M.A.; Hays, C.J. Relations between spectral vegetation indices and leaf area and absorbed radiation in alfalfa. Remote Sens. Environ. 1997, 61, 162–177. [Google Scholar] [CrossRef]
- Van Leeuwen, W.J.D.; Huete, A.R.; Laing, T.W. MODIS vegetation index compositing approach: A prototype with AVHRR data. Remote Sens. Environ. 1999, 61, 264–280. [Google Scholar] [CrossRef]
- Matsushita, B.; Yang, W.; Chen, J.; Onda, Y.; Qiu, G. Sensitivity of the Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) to topographic effects: A case study in high–density Cypress Forest. Sensors 2007, 7, 2636–2651. [Google Scholar] [CrossRef]
- Galvão, L.S.; Breunig, F.M.; Teles, T.S.; Gaida, W.; Balbinot, R. Investigation of terrain illumination effects on vegetation indices and VI–derived phenological metrics in subtropical deciduous forests. GISci. Remote Sens. 2016, 53, 360–381. [Google Scholar] [CrossRef]
- Verrelst, J.; Schaepman, M.E.; Koetz, B.; Kneubuehler, M. Angular sensitivity analysis of vegetation indices derived from CHRIS/PROBA data. Remote Sens. Environ. 2008, 112, 2341–2353. [Google Scholar] [CrossRef]
- Garbulsky, M.F.; Penuelas, J.; Gamon, J.; Inoue, Y.; Filella, I. The Photochemical Reflectance Index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies: A review and meta–analysis. Remote Sens. Environ. 2011, 115, 281–297. [Google Scholar] [CrossRef]
- Middleton, E.M.; Huemmrich, K.F.; Cheng, Y.; Margolis, H.A. Spectral bioindicators of photosynthetic efficiency and vegetation stress. In Hyperspectral Remote Sensing of Vegetation; Thenkabail, P.S., Lyon, J.G., Huete, A., Eds.; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2012; Chapter 12; pp. 265–288. [Google Scholar]
- Drolet, G.G.; Middleton, E.M.; Huemmrich, K.F.; Hall, F.G.; Amiro, B.D.; Barr, A.G.; Black, T.A.; McCaughey, J.H.; Margolis, H.A. Regional mapping of gross light–use efficiency using MODIS spectral indices. Remote Sens. Environ. 2008, 112, 3064–3078. [Google Scholar] [CrossRef]
- Franks, S.; Neigh, C.S.R.; Campbell, P.K.; Sun, G.; Yao, T.; Zhang, Q.; Huemmrich, K.F.; Middleton, E.M.; Ungar, S.G.; Frye, S.W. EO–1 data quality and sensor stability with changing orbital precession at the end of a 16 year mission. Remote Sens. 2017, 9, 412. [Google Scholar] [CrossRef]
- Lewis, S.L.; Brando, P.M.; Phillips, O.L.; van der Heijden, G.M.; Nepstad, D. The 2010 Amazon drought. Science 2011, 331, 554. [Google Scholar] [CrossRef]
- Phillips, O.L.; Aragão, L.E.; Lewis, S.L.; Fisher, J.B.; Lloyd, J.; López–González, G.; Malhi, Y.; Monteagudo, A.; Peacock, J.; Quesada, C.A. Drought sensitivity of the Amazon rainforest. Science 2009, 323, 1344–1347. [Google Scholar] [CrossRef] [PubMed]
Site Number | Name | Location | Area (ha) | Predominant Vegetation | Dry Season Length (Months) |
---|---|---|---|---|---|
1 | Grão-Pará Ecological Station | 58.3° W 1.1° N | 682,300 | Dense ombrophilous forest | 3 |
2 | Manaus Conservation Units | 60.5° W 2.2° S | 569,200 | Dense ombrophilous forest | 1–2 |
3 | AripuanãNational Forest | 59.9° W 8.5° S | 710,561 | Dense ombrophilous forest | 1–2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petri, C.A.; Galvão, L.S. Sensitivity of Seven MODIS Vegetation Indices to BRDF Effects during the Amazonian Dry Season. Remote Sens. 2019, 11, 1650. https://doi.org/10.3390/rs11141650
Petri CA, Galvão LS. Sensitivity of Seven MODIS Vegetation Indices to BRDF Effects during the Amazonian Dry Season. Remote Sensing. 2019; 11(14):1650. https://doi.org/10.3390/rs11141650
Chicago/Turabian StylePetri, Caio Arlanche, and Lênio Soares Galvão. 2019. "Sensitivity of Seven MODIS Vegetation Indices to BRDF Effects during the Amazonian Dry Season" Remote Sensing 11, no. 14: 1650. https://doi.org/10.3390/rs11141650
APA StylePetri, C. A., & Galvão, L. S. (2019). Sensitivity of Seven MODIS Vegetation Indices to BRDF Effects during the Amazonian Dry Season. Remote Sensing, 11(14), 1650. https://doi.org/10.3390/rs11141650