Use of SMOS L3 Soil Moisture Data: Validation and Drought Assessment for Pernambuco State, Northeast Brazil
"> Figure 1
<p>Location of Pernambuco State and its mesoregions.</p> "> Figure 2
<p>Spatial distribution of soil moisture stations in Pernambuco state and the grid of the Soil Moisture Ocean Salinity (SMOS) satellite.</p> "> Figure 3
<p>Águas Belas station (Water and Climate Pernambuco State Agency (APAC)): (<b>a</b>) daily time interval and (<b>c</b>) eight-day time interval. Scatter plot of the SMOS and in situ data for the (<b>b</b>) daily interval and (<b>d</b>) eight-day interval. SM = soil moisture. RMSD = root mean squared difference.</p> "> Figure 4
<p>Frequency of occurrence of (<b>a</b>) Pearson’s r (<span class="html-italic">r</span>), (<b>b</b>) Willmott index (<span class="html-italic">d</span>), (<b>c</b>) BIAS, and (<b>d</b>) RMSD. CEMADEN = National Center for Monitoring and Early Warning of Natural Disasters.</p> "> Figure 5
<p>Daily soil moisture from CEMADEN stations, SMOS data, and measured precipitation during the period of July 2015 to July 2017. Each graph refers to a station.</p> "> Figure 6
<p>Eight-day average soil moisture from CEMADEN stations, SMOS data, and measured precipitation for the period of July 2015 to July 2017. Each graph refers to a station.</p> "> Figure 7
<p>Statistical criteria values for the regions in Pernambuco considering (<b>a</b>) daily and (<b>b</b>) eight-day time intervals. The number of samples for daily and eight-day intervals were 654 and 96 for Sertão and Agreste, and 630 and 95 for Mata, respectively.</p> "> Figure 8
<p>Soil moisture spatial distribution with (<b>a</b>,<b>c</b>,<b>e</b>,<b>g</b>) in situ and (<b>b</b>,<b>d</b>,<b>f</b>,<b>h</b>) SMOS data for the (<b>a</b>,<b>b</b>) January–February–March (JFM), (<b>c</b>,<b>d</b>) April–May–June (AMJ), (<b>e</b>,<b>f</b>) July–August–September (JAS), and (<b>g</b>,<b>h</b>) October–November–December (OND) seasons. <a href="#app1-remotesensing-10-01314" class="html-app">Supplementary Materials Figures S1–S4</a> present these maps in detail with the numerical values at the samples.</p> "> Figure 9
<p>Soil moisture anomaly in 2012–2017 compared to 2010–2011 for the (<b>a</b>) JFM, (<b>b</b>) AMJ, (<b>c</b>) JAS, and (<b>d</b>) OND seasons.</p> "> Figure 10
<p>Soil moisture annual anomaly of each year in relation to the entire period of 2010 to 2017.</p> "> Figure 11
<p>Precipitation annual anomaly of each year in relation to the entire period of 2010 to 2017. Precipitation data source: Center for Weather Forecasts and Climate Studies of the National Institute for Space Research (CPTEC/INPE).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. In Situ Data
2.3. SMOS Data
2.4. Analysis Criteria
2.5. Drought Assessment
3. Results
3.1. Pixel Assessment
3.2. Areal Average Assessment
3.3. Soil Moisture Anomaly
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Martínez-Fernández, J.; González-Zamora, A.; Sánchez, N.; Gumuzzio, A.; Jiménez, C.M.H. Satellite soil moisture for agricultural drought monitoring: Assessment of the SMOS derived Soil Water Deficit Index. Remote Sens. Environ. 2016, 177, 277–286. [Google Scholar] [CrossRef]
- Molero, B.; Merlina, O.; Malbéteaua, Y.; Al Bitar, A.; Cabot, F.; Stefan, V.; Kerr, Y.; Bacona, S.; Cosh, M.H.; Bindlish, R.; et al. SMOS disaggregated soil moisture product at 1 km resolution: Processor overview and first validation results. Remote Sens. Environ. 2016, 180, 361–376. [Google Scholar] [CrossRef]
- Zhan, Z.; Qin, Q.; Wang, X. The application of LST/NDVI index for monitoring land surface moisture in semiarid area. IEEE Trans. Geosci. Remote Sens. 2004, 3, 1551–1554. [Google Scholar] [CrossRef]
- Kerr, Y.H. Soil moisture from space: Where are we? Hydrogeol. J. 2007, 15, 117–120. [Google Scholar] [CrossRef]
- Scaini, A.; Sánchez, N.; Vicente-Serrano, S.M.; Martinez-Fernandez, J. SMOS-derived Soil Moisture and drought indices: A comparative analysis using in situ measurements. Hydrol. Process. 2015, 29, 373–383. [Google Scholar] [CrossRef]
- González-Zamora, A.; Sánchez, N.; Martínez-Fernández, J.; Gumuzzio, A.; Piles, M.; Olmedo, E. Long-term SMOS soil moisture products: A comprehensive evaluation across scales and methods in the Duero Basin (Spain). Phys. Chem. Earth 2015, 83–84, 123–136. [Google Scholar] [CrossRef]
- Rossato, L.; Alvalá, R.C.S.; Marengo, J.A.; Zeri, M.; Cunha, A.P.M.A.; Pires, L.B.M.; Barbosa, H.A. Impact of soil moisture on crop yields over Brazilian semiarid. Front. Environ. Sci. 2017, 5, 1–16. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Bongiovanni, T.; Judge, J.; Zotarelli, L.; Bayer, C. Assimilation of SMOS soil moisture for quantifying drought impacts on crop yield in agricultural regions. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3867–3879. [Google Scholar] [CrossRef]
- Petropoulos, G.P.; Srivastava, P.K.; Piles, M.; Pearson, S. Earth observation-based operational estimation of soil moisture and evapotranspiration for agricultural crops in support of sustainable water management. Sustainability 2018, 10, 181. [Google Scholar] [CrossRef]
- Rossato, L.; de Jeu, R.; Alvalá, R.C.D.S.; Souza, S. Evaluation of soil moisture from satellite observations over South America. Int. J. Remote Sens. 2011, 32, 8013–8031. [Google Scholar] [CrossRef] [Green Version]
- Vall-llossera, M.; Duffo, N.; Camps, A.; Corbella, I.; Torres, F.; Bará, J. Reliability analysis in aperture synthesis interferometric radiometers: Application to L band Microwave Imaging Radiometer with Aperture Synthesis instrument. Radio Sci. 2001, 36, 107–117. [Google Scholar] [CrossRef]
- Liu, L.; Liao, J.; Chen, X.; Zhou, G.; Su, Y.; Xiang, Z.; Wang, Z.; Liu, X.; Li, Y.; Wu, J.; et al. The Microwave Temperature Vegetation Drought Index (MTVDI) based on AMSR-E brightness temperatures for long-term drought assessment across China (2003–2010). Remote Sens. Environ. 2017, 199, 302–320. [Google Scholar] [CrossRef]
- Kerr, Y.; Waldteufel, P.; Wigneron, J.P.; Delwart, S.; Cabot, F.; Boutin, J.; Escorihuela, M.J.; Font, J.; Reul, N.; Gruhier, C.; et al. The SMOS mission: New tool for monitoring key elements of the global water cycle. Proc. IEEE 2010, 98, 666–687. [Google Scholar] [CrossRef] [Green Version]
- Panciera, R.; Walker, J.P.; Jackson, T.J.; Ryu, D.; Gray, D.; Monerris, A.; Yardley, H.; Tanase, M.; Rüdiger, C.; Wu, X.; et al. The Soil Moisture Active Passive Experiments (SMAPEx): Towards Soil Moisture Retrieval from the SMAP Mission. IEEE Trans. Geosci. Remote Sens. 2014, 52, 490–507. [Google Scholar] [CrossRef]
- Vittucci, C.; Guerriero, L.; Ferrazzoli, P.; Rahmoune, R.; Tanase, M.; Panciera, R.; Walker, J.P. Airborne forest monitoring during SMAPEx-3 campaign. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium—IGARSS, Melbourne, Australia, 21–26 July 2013; pp. 987–990. [Google Scholar]
- Vittucci, C.; Ferrazzoli, P.; Kerr, Y.; Richaume, P.; Guerriero, L.; Vaglio Laurin, G. SMOS retrieval over forests: Exploitation of optical depth and tests of soil moisture estimates. Remote Sens. Environ. 2016, 180, 115–127. [Google Scholar] [CrossRef]
- Louvet, S.; Pellarin, T.; Al Bitar, A.; Cappelaere, B.; Galle, S.; Grippa, M.; Gruhier, C.; Kerr, Y.; Lebel, T.; Mialon, A.; et al. SMOS soil moisture product evaluation over West-Africa from local to regional scale. Remote Sens. Environ. 2015, 156, 383–394. [Google Scholar] [CrossRef]
- Piles, M.; Sánchez, N.; Vall-llossera, M.; Camps, A.; Martínez-Fernández, J.; Martínez, J.; González-Gambau, V. A dowscaling approach for SMOS land observations: Evaluation of high resolution soil moisture maps over the Iberian Peninsula. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3845–3857. [Google Scholar] [CrossRef]
- SMOS-BEC Team; Soil Moisture and Ocean Salinity—Barcelona Expert Center. SMOS-BEC Ocean and Land Products Description; Version 1.5; Barcelona Expert Center: Barcelona, Spain, 2016; p. 23. [Google Scholar]
- Loew, A.; Schlenz, F. A dynamic approach for evaluating coarse scale satellite soil moisture products. Hydrol. Earth Syst. Sci. 2011, 15, 75–90. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, G.P.; McCalmont, J.P. An Operational In Situ Soil Moisture & Soil Temperature Monitoring Network for West Wales, UK: The WSMN Network. Sensors 2017, 17, 1481. [Google Scholar] [CrossRef]
- Ochsner, T.E.; Cosh, M.H.; Cuenca, R.H.; Dorigo, W.A.; Draper, C.S.; Hagimoto, Y.; Kerr, Y.H.; Larson, K.M.; Njoku, E.G.; Small, E.E.; et al. State of the art in large-scale soil moisture monitoring. Soil Sci. Soc. Am. J. 2013, 77, 1888–1919. [Google Scholar] [CrossRef] [Green Version]
- Crow, W.T.; Berg, A.A.; Cosh, M.H.; Loew, A.; Mohanty, B.P.; Panciera, R.; de Rosnay, P.; Ryu, D.; Walker, J.P. Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products. Rev. Geophys. 2012, 50, 1–20. [Google Scholar] [CrossRef]
- Sanchez, N.; Martinez-Fernandez, J.; Scaini, A.; Perez-Gutierrez, C. Validation of the SMOS L2 soil moisture data in the REMEDHUS Network (Spain). IEEE Trans. Geosci. Remote Sens. 2012, 50, 1602–1611. [Google Scholar] [CrossRef]
- Xie, X.M.; Xu, J.W.; Zhao, J.F.; Liu, S.; Wang, P. Validation of AMSR-E soil moisture retrievals over Huaihe River basin, in China. Appl. Mech. Mater. 2014, 507, 855–858. [Google Scholar] [CrossRef]
- Chan, S.K.; Bindlish, R.; O’Neill, P.; Jackson, T.; Njoku, E.; Dunbar, S.; Chaubell, J.; Piepmeier, J.; Yueh, S.; Entekhabi, D.; et al. Development and assessment of the SMAP enhanced passive soil moisture product. Remote Sens. Environ. 2018, 204, 931–941. [Google Scholar] [CrossRef]
- Cai, X.; Pan, M.; Chaney, N.W.; Colliander, A.; Misra, S.; Cosh, M.H.; Crow, W.T.; Jackson, T.J.; Wood, E.F. Validation of SMAP soil moisture for the SMAPVEX15 field campaign using a hyper-resolution model. Water Resour. Res. 2017, 53, 3013–3028. [Google Scholar] [CrossRef]
- Shellito, P.J.; Small, E.E.; Colliander, A.; Bindlish, R.; Cosh, M.H.; Berg, A.A.; Bosch, D.D.; Caldwell, T.G.; Goodrich, D.C.; McNairn, H.; et al. SMAP soil moisture drying more rapid than observed in situ following rainfall events. Geophys. Res. Lett. 2016, 43, 8068–8075. [Google Scholar] [CrossRef] [Green Version]
- Jackson, T.J.; Bindlish, R.; Cosh, M.H.; Zhao, T.; Starks, P.J.; Bosch, D.D.; Seyfried, M.; Moran, M.S.; Goodrich, D.C.; Kerr, Y.H.; et al. Validation of soil moisture and Ocean Salinity (SMOS) soil moisture over watershed networks in the U.S. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1530–1543. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, N.; González-Zamora, A.; Piles, M.; Martínez-Fernández, J.A. New Soil Moisture Agricultural Drought Index (SMADI) Integrating MODIS and SMOS Products: A Case of Study over the Iberian Peninsula. Remote Sens. 2016, 8, 287. [Google Scholar] [CrossRef]
- Marengo, J.A.; Torres, R.R.; Alves, L.M. Drought in Northeast Brazil—Past, present, and future. Theor. Appl. Clim. 2017, 129, 1189–1200. [Google Scholar] [CrossRef]
- Alvalá, R.C.S.; Cunha, A.P.M.A.; Brito, S.S.B.; Seluchi, M.E.; Marengo, J.A.; Moraes, O.L.L.; Carvalho, M.A. Drought monitoring in the Brazilian semiarid region. Anais da Academia Brasileira de Ciências 2017. [Google Scholar] [CrossRef]
- Vieira, R.M.S.P.; Cunha, A.P.M.A.; Alvalá, R.C.S.; Carvalho, V.C.; Ferraz Neto, S.; Sestini, M.F. Land use and land cover map of a semiarid region of Brazil for meteorological and climatic models. Braz. J. Meteorol. 2013, 28, 129–138. [Google Scholar] [CrossRef]
- CONDEPE/FIDEM. Bacia Hidrográfica do Rio Una, GL4 e GL5. Série Bacias Hidrográficas de Pernambuco 2006, 3, 85. [Google Scholar]
- Sobel, T.F.; Muniz, A.L.P.; de Costa, E.F. Divisão regional do desenvolvimento humano em Pernambuco: Uma aplicação da análise de cluster. Teoria e Evidência Econômica-Ano 2009, 15, 37–62. [Google Scholar]
- Cunha, A.P.M.A; Brito, S.S.B.; Alvalá, R.C.S.; Carvalho, M.A.; Zeri, M.; Vieira, R.M.S.P.; Rossato, L.; Maciel, A.P.R.; Andrade, E.S. Avaliação de indicador para o monitoramento dos impactos da seca em áreas de pastagens no semiárido do Brasil. Revista Brasileira de Cartografia 2017, 69, 89–106. [Google Scholar]
- Escorihuela, M.J.; Chanzy, A.; Wigneron, J.P.; Kerr, Y.H. Effective soil moisture sampling depth of L-band radiometry: A case study. Remote Sens. Environ. 2010, 114, 995–1001. [Google Scholar] [CrossRef] [Green Version]
- Albergel, C.; de Rosnay, P.; Gruhier, C.; Muñoz-Sabater, J.; Hasenauer, S.; Isaksen, L.; Kerr, Y.; Wagner, W. Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations. Remote Sens. Environ. 2012, 118, 215–226. [Google Scholar] [CrossRef]
- Jackson, T.J.; Cosh, M.H.; Zhan, X.; Bosch, D.D.; Seyfried, M.S.; Starks, P.J.; Keefer, T.; Lakshmi, V. Validation of AMSR-E soil moisture products using watershed networks. In Proceedings of the 2006 IEEE International Symposium on Geoscience and Remote Sensing, Denver, CO, USA, 31 July–4 August 2006; pp. 432–435. [Google Scholar]
- Perry, M.A.; Niemann, J.D. Generation of soil moisture patterns at the catchment scale by EOF interpolation. Hydrol. Earth Syst. Sci. 2008, 12, 39–53. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Wu, W.; Liu, H.B. Comparison of spatial interpolation methods for soil moisture and its application for monitoring drought. Environ. Monit. Assess. 2017, 189, 525. [Google Scholar] [CrossRef] [PubMed]
- Marengo, J.A.; Alves, L.M.; Alvalá, R.C.S.; Cunha, A.P.M.A.; Brito, S.; Moraes, O.L.L. Climatic characteristics of the 2010–2016 drought in the semiarid Northeast Brazil region. Anais da Academia Brasileira de Ciências 2017. [Google Scholar] [CrossRef] [PubMed]
- Brito, S.S.B.; Cunha, A.P.M.A.; Cunningham, C.C.; Alvalá, R.C.S.; Marengo, J.A.; Carvalho, M.A. Frequency, duration and severity of drought in the Semiarid Northeast Brazil region. Int. J. Climatol. 2017, 38, 517–529. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Al-Yaari, A.; Rodriguez-Fernandez, N.; Parrens, M.; Molero, B.; Lerouxc, D.; Bircher, S.; Mahmoodi, A.; Mialona, A.; Richaume, P.; et al. Overview of SMOS performance in terms of global soil moisture monitoring after six years in operation. Remote Sens. Environ. 2016, 180, 40–63. [Google Scholar] [CrossRef]
- Malbéteau, Y.; Merlin, O.; Molero, B.; Rüdiger, C.; Bacon, S. DisPATCh as a tool to evaluate coarse-scale remotely sensed soil moisture using localized in situ measurements: Application to SMOS and AMSR-E data in Southeastern Australia. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 45, 221–234. [Google Scholar] [CrossRef]
- Merlin, O.; Rüdiger, C.; Al Bitar, A.; Richaume, P.; Walker, J.P.; Kerr, Y.H. Disaggregation of SMOS soil moisture in Southeastern Australia. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1556–1571. [Google Scholar] [CrossRef] [Green Version]
- Al Bitar, A.; Leroux, D.; Kerr, Y.H.; Merlin, O.; Richaume, P.; Sahoo, A.; Wood, E.F. Evaluation of SMOS soil moisture products over continental U.S. using the SCAN/SNOTEL network. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1572–1586. [Google Scholar] [CrossRef] [Green Version]
- Lacava, T.; Matgen, P.; Brocca, L.; Bittelli, M.; Pergola, N.; Moramarco, T.; Tramutoli, V. A first assessment of the SMOS soil moisture product with in situ and modeled data in Italy and Luxembourg. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1612–1622. [Google Scholar] [CrossRef]
- He, L.; Chen, J.M.; Chen, K.S. Simulation and SMAP Observation of Sun-Glint Over the Land Surface at the L-Band. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2589–2604. [Google Scholar] [CrossRef]
Lat | Lon | Station | r | r-8 | d | d-8 | BIAS (m3·m−3) | BIAS-8 (m3·m−3) | RMSD (m3·m−3) | RMSD-8 (m3·m−3) |
---|---|---|---|---|---|---|---|---|---|---|
−8.56 | −35.92 | Cupira (A) and São Joaquim do Monte | 0.765 | 0.864 | 0.721 | 0.783 | 0.035 | 0.034 | 0.071 | 0.059 |
−8.96 | −36.44 | Brejão and Palmerina | 0.841 | 0.917 | 0.780 | 0.839 | −0.025 | −0.027 | 0.062 | 0.051 |
−8.56 | −36.44 | S.B. Una (A) and S.B. Una | 0.769 | 0.874 | 0.793 | 0.846 | −0.020 | −0.024 | 0.048 | 0.039 |
−8.76 | −36.18 | Canhotinho and Jurema | 0.661 | 0.726 | 0.674 | 0.721 | 0.041 | 0.036 | 0.077 | 0.065 |
−8.36 | −36.70 | Alagoinha and Pesqueira | 0.805 | 0.879 | 0.852 | 0.883 | 0.022 | 0.022 | 0.045 | 0.036 |
−8.56 | −36.18 | Altinho and Lajedo | 0.837 | 0.910 | 0.887 | 0.909 | 0.021 | 0.026 | 0.066 | 0.054 |
−8.16 | −39.29 | Salgueiro (A) and Terra Nova | 0.767 | 0.836 | 0.812 | 0.868 | 0.008 | 0.009 | 0.034 | 0.024 |
−7.57 | −37.21 | São José do Egito and Tuparetama | 0.688 | 0.791 | 0.636 | 0.674 | 0.055 | 0.052 | 0.074 | 0.064 |
−9.15 | −38.25 | Jatoba and Tacaratú | 0.773 | 0.864 | 0.834 | 0.849 | 0.019 | 0.021 | 0.042 | 0.033 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souza, A.G.S.S.; Neto, A.R.; Rossato, L.; Alvalá, R.C.S.; Souza, L.L. Use of SMOS L3 Soil Moisture Data: Validation and Drought Assessment for Pernambuco State, Northeast Brazil. Remote Sens. 2018, 10, 1314. https://doi.org/10.3390/rs10081314
Souza AGSS, Neto AR, Rossato L, Alvalá RCS, Souza LL. Use of SMOS L3 Soil Moisture Data: Validation and Drought Assessment for Pernambuco State, Northeast Brazil. Remote Sensing. 2018; 10(8):1314. https://doi.org/10.3390/rs10081314
Chicago/Turabian StyleSouza, Alzira G. S. S., Alfredo Ribeiro Neto, Luciana Rossato, Regina C. S. Alvalá, and Laio L. Souza. 2018. "Use of SMOS L3 Soil Moisture Data: Validation and Drought Assessment for Pernambuco State, Northeast Brazil" Remote Sensing 10, no. 8: 1314. https://doi.org/10.3390/rs10081314
APA StyleSouza, A. G. S. S., Neto, A. R., Rossato, L., Alvalá, R. C. S., & Souza, L. L. (2018). Use of SMOS L3 Soil Moisture Data: Validation and Drought Assessment for Pernambuco State, Northeast Brazil. Remote Sensing, 10(8), 1314. https://doi.org/10.3390/rs10081314