Evaluation of Satellite-Based Soil Moisture Products over Four Different Continental In-Situ Measurements
"> Figure 1
<p>Distribution of soil moisture (SM) networks and elevation for (<b>a</b>) Oklahoma Mesonet (OKM), (<b>b</b>) REMEDHUS (REM), (<b>c</b>) Naqu Network (NAN), and (<b>d</b>) OZNET (OZN). The grids represent the size of a Soil Moisture and Ocean Salinity soil moisture (SMOS_SM) pixel.</p> "> Figure 2
<p>Bias (<b>a</b>), R (<b>b</b>), RMSE (<b>c</b>), and ubRMSD (<b>d</b>) of the seven SM products over the OKM area.</p> "> Figure 3
<p>Bias (<b>a</b>), R (<b>b</b>), RMSE (<b>c</b>), and ubRMSD (<b>d</b>) of anomalies over the OKM area.</p> "> Figure 4
<p>Bias (<b>a</b>), R (<b>b</b>), RMSE (<b>c</b>), and ubRMSD (<b>d</b>) of the seven SM products over the REM area.</p> "> Figure 5
<p>Bias (<b>a</b>), R (<b>b</b>), RMSE (<b>c</b>), and ubRMSD (<b>d</b>) of the anomalies over the REM area.</p> "> Figure 5 Cont.
<p>Bias (<b>a</b>), R (<b>b</b>), RMSE (<b>c</b>), and ubRMSD (<b>d</b>) of the anomalies over the REM area.</p> "> Figure 6
<p>Bias (<b>a</b>), R (<b>b</b>), RMSE (<b>c</b>), and ubRMSD (<b>d</b>) of the seven SM products over the NAN area.</p> "> Figure 7
<p>Bias (<b>a</b>), R (<b>b</b>), RMSE (<b>c</b>), and ubRMSD (<b>d</b>) of the anomalies over the NAN area.</p> "> Figure 7 Cont.
<p>Bias (<b>a</b>), R (<b>b</b>), RMSE (<b>c</b>), and ubRMSD (<b>d</b>) of the anomalies over the NAN area.</p> "> Figure 8
<p>Bias (<b>a</b>), R (<b>b</b>), RMSE (<b>c</b>), and ubRMSD (<b>d</b>) of the seven SM products over the OZN area.</p> "> Figure 9
<p>Bias (<b>a</b>), R (<b>b</b>), RMSE (<b>c</b>), and ubRMSD (<b>d</b>) of the anomalies over the OZN area.</p> "> Figure 9 Cont.
<p>Bias (<b>a</b>), R (<b>b</b>), RMSE (<b>c</b>), and ubRMSD (<b>d</b>) of the anomalies over the OZN area.</p> "> Figure 10
<p>Taylor diagrams of the OKM (<b>a</b>), REM (<b>b</b>), NAN (<b>c</b>), and OZN areas (<b>d</b>).</p> "> Figure 11
<p>Taylor diagrams of the anomalies in the OKM (<b>a</b>), REM (<b>b</b>), NAN (<b>c</b>), and OZN areas (<b>d</b>).</p> "> Figure 12
<p>Time series variation over the OKM area.</p> "> Figure 13
<p>Time series variation over the REM area.</p> "> Figure 14
<p>Time series variation over the NAN area.</p> "> Figure 15
<p>Time series variation over the OZN area.</p> "> Figure 16
<p>Time series variation in anomalies over the OKM area.</p> "> Figure 17
<p>Time series variation in anomalies over the REM area.</p> "> Figure 17 Cont.
<p>Time series variation in anomalies over the REM area.</p> "> Figure 18
<p>Time series variation in anomalies over the NAN area.</p> "> Figure 19
<p>Time series variation in anomalies over the OZN area.</p> "> Figure 19 Cont.
<p>Time series variation in anomalies over the OZN area.</p> ">
Abstract
:1. Introduction
2. Study Areas and Data Resources
2.1. Study Areas and In-Situ Measurements
2.2. Satellite-Based SM Products
3. Assessment Strategy
4. Results
4.1. Regional Performance Comparison
4.1.1. OKM Area
4.1.2. REM Area
4.1.3. NAN Area
4.1.4. OZN Area
4.1.5. Inter-Comparison
4.2. Temporal Series Comparison
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Koster, R.D.; Yamada, T. Regions of strong coupling between soil moisture and precipitation. Science 2004, 305, 1138–1140. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Dirmeyer, P.A.; Hu, Z.Z.; Xiang, G.; Mei, Z. Evaluation of the Second Global Soil Wetness Project soil moisture simulations: 2. Sensitivity to external meteorological forcing. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Soer, G.J.R. Estimation of regional evapotranspiration and soil moisture conditions using remotely sensed crop surface temperatures. Remote Sens. Environ. 1980, 9, 27–45. [Google Scholar] [CrossRef] [Green Version]
- Koster, R.D.; Suarez, M.J.; Higgins, R.W.; Dool, H.M.V.D. Observational evidence that soil moisture variations affect precipitation. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef] [Green Version]
- Hirschi, M.; Seneviratne, S.I.; Alexandrov, V.; Boberg, F.; Boroneant, C.; Christensen, O.B.; Formayer, H.; Orlowsky, B.; Stepanek, P. Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nat. Geosci. 2011, 4, 17–21. [Google Scholar] [CrossRef]
- Liu, M.; Yang, S.; Huang, H.; He, H.; Li, S.; Cui, Y. Joint use of soil moisture and vegetation growth condition by remote sensing on the agricultural drought monitoring. In Proceedings of the International Symposium on Multispectral Image Processing & Pattern Recognition, Enshi, China, 14 December 2015. [Google Scholar]
- Wang, Y.; Shao, M.A.; Liu, Z. Large-scale spatial variability of dried soil layers and related factors across the entire Loess Plateau of China. Geoderma 2010, 159, 99–108. [Google Scholar] [CrossRef]
- Feng, X.; Li, J.; Cheng, W.; Fu, B.; Wang, Y.; Lü, Y.; Shao, M.A. Evaluation of AMSR-E retrieval by detecting soil moisture decrease following massive dryland re-vegetation in the Loess Plateau, China. Remote Sens. Environ. 2017, 196, 253–264. [Google Scholar] [CrossRef]
- Chang, A.T.C.; Atwater, S.G.; Salomonson, V.V.; Estes, J.E.; Simonett, D.S.; Bryan, M.L. L-Band Radar Sensing of Soil Moisture. IEEE Trans. Geosci. Remote Sens. 1980, GE-18, 303–310. [Google Scholar] [CrossRef]
- Wigneron, J.P.; Waldteufel, P.; Chanzy, A.; Calvet, J.C.; Kerr, Y. Two-dimensional microwave interferometer retrieval capabilities over land surfaces (SMOS Mission). Remote Sens. Environ. 2000, 73, 270–282. [Google Scholar] [CrossRef]
- Pellarin, T.; Calvet, J.; Wagner, W. Evaluation of ERS scatterometer soil moisture products over a half-degree region in southwestern France. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Wigneron, J.P.; Kerr, Y.; Waldteufel, P.; Saleh, K.; Escorihuela, M.J.; Richaume, P.; Ferrazzoli, P.; Rosnay, P.D.; Gurney, R.; Calvet, J.C. L-band Microwave Emission of the Biosphere (L-MEB) Model: Description and calibration against experimental data sets over crop fields. Remote Sens. Environ. 2007, 107, 639–655. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Richaume, P.; Wigneron, J.P.; Ferrazzoli, P.; Mahmoodi, A.; Bitar, A.A.; Cabot, F.; Gruhier, C.; Juglea, S.E. The SMOS Soil Moisture Retrieval Algorithm. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1384–1403. [Google Scholar] [CrossRef]
- Njoku, E.G.; Li, L. Retrieval of land surface parameters using passive microwave measurements at 6–18 GHz. IEEE Trans. Geosci. Remote Sens. 1999, 37, 79–93. [Google Scholar] [CrossRef]
- Njoku, E.G.; Chan, S.K. Vegetation and surface roughness effects on AMSR-E land observations. Remote Sens. Environ. 2006, 100, 190–199. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Dorigo, W.A.; Parinussa, R.M.; Jeu, R.A.M.D.; Wagner, W.; Mccabe, M.F.; Evans, J.P.; Dijk, A.I.J.M.V. Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote Sens. Environ. 2012, 123, 280–297. [Google Scholar] [CrossRef]
- Njoku, E.G.; Ashcroft, P.; Chan, T.K.; Li, L. Global survey and statistics of radio-frequency interference in AMSR-E land observations. IEEE Trans. Geosci. Remote Sens. 2005, 43, 938–947. [Google Scholar] [CrossRef]
- Lacava, T.; Faruolo, M.; Pergola, N.; Coviello, I.; Tramutoli, V. A comprehensive analysis of AMSRE C- and X-bands Radio Frequency Interferences. In Proceedings of the 2012 12th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment, Roma, Italy, 5–9 March 2012. [Google Scholar]
- Albergel, C.; Rosnay, P.D.; Gruhier, C.; Muñoz-Sabater, J.; Hasenauer, S.; Isaksen, L.; Kerr, Y.; Wagner, W. Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations. Remote Sens. Environ. 2012, 118, 215–226. [Google Scholar] [CrossRef]
- Taylor, C.M.; de Jeu, R.A.; Guichard, F.; Harris, P.P.; Dorigo, W.A. Afternoon rain more likely over drier soils. Nature 2012, 489, 423–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorigo, W.A.; Scipal, K.; Parinussa, R.M.; Liu, Y.Y.; Wagner, W.; Jeu, R.A.M.D.; Naeimi, V. Error characterisation of global active and passive microwave soil moisture datasets. Hydrol. Earth Syst. Sci. 2010, 14, 2605–2616. [Google Scholar] [CrossRef] [Green Version]
- Mei, S.Y.; Walker, J.P.; Rüdiger, C.; Parinussa, R.M.; Koike, T.; Kerr, Y.H.; Mei, S.Y.; Walker, J.P.; Rüdiger, C.; Parinussa, R.M. A comparison of SMOS and AMSR2 soil moisture using representative sites of the OzNet monitoring network. Remote Sens. Environ. 2017, 195, 297–312. [Google Scholar]
- Peng, J.; Niesel, J.; Loew, A.; Zhang, S.; Wang, J. Evaluation of Satellite and Reanalysis Soil Moisture Products over Southwest China Using Ground-Based Measurements. Remote Sens. 2015, 7, 15729–15747. [Google Scholar] [CrossRef] [Green Version]
- Dorigo, W.A.; Gruber, A.; Jeu, R.A.M.D.; Wagner, W.; Stacke, T.; Loew, A.; Albergel, C.; Brocca, L.; Chung, D.; Parinussa, R.M. Evaluation of the ESA CCI soil moisture product using ground-based observations. Remote Sens. Environ. 2015, 162, 380–395. [Google Scholar] [CrossRef]
- Elliott, R.L.; Arndt, D.S.; Shafer, M.A.; Osborn, N.I.; Lawrence, W.E. The Oklahoma Mesonet: A Multi-Purpose Network for Water Resources Monitoring and Management. In Proceedings of the Session 8 of the UCOWR Conference, Boise, ID, USA, 23–26 July 2007. [Google Scholar]
- Sanchez, N.; Martinez-Fernandez, J.; Scaini, A.; Perez-Gutierrez, C. Validation of the SMOS L2 Soil Moisture Data in the REMEDHUS Network (Spain). IEEE Trans. Geosci. Remote Sens. 2012, 50, 1602–1611. [Google Scholar] [CrossRef]
- Sánchez, N.; Martínezfernández, J.; Calera, A.; Torres, E.; Pérezgutiérrez, C. Combining remote sensing and in situ soil moisture data for the application and validation of a distributed water balance model (HIDROMORE). Agric. Water Manag. 2010, 98, 69–78. [Google Scholar] [CrossRef]
- Benito, G.; Thorndycraft, V.R.; Rico, M.; Sánchez-Moya, Y.; Sopeña, A. Palaeoflood and floodplain records from Spain: Evidence for long-term climate variability and environmental changes. Geomorphology 2008, 101, 68–77. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; Qin, J.; Zhao, L.; Chen, Y.; Han, M. A Multi-Scale Soil Moisture and Freeze-Thaw Monitoring Network on the Third Pole. Bull. Am. Meteorol. Soc. 2013, 94, 1907–1916. [Google Scholar] [CrossRef]
- Su, Z.; Wen, J.; Dente, L.; van der Velde, R.; Wang, L.; Ma, Y.; Yang, K.; Hu, Z. The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model products. Hydrol. Earth Syst. Sci. 2011, 15, 2303–2316. [Google Scholar] [CrossRef] [Green Version]
- Madsen, D.B. Conceptualizing the Tibetan Plateau: Environmental constraints on the peopling of the “Third Pole”. Archaeol. Res. Asia 2016, 5, 24–32. [Google Scholar] [CrossRef]
- Smith, A.B.; Walker, J.P.; Western, A.W.; Young, R.I.; Ellett, K.M.; Pipunic, R.C.; Grayson, R.B.; Siriwardena, L.; Chiew, F.H.S.; Richter, H. The Murrumbidgee soil moisture monitoring network data set. Water Resour. Res. 2012, 48, 7701. [Google Scholar] [CrossRef]
- Peischl, S.; Walker, J.P.; Rüdiger, C.; Ye, N. The AACES field experiments: SMOS calibration and validation across the Murrumbidgee River catchment. Hydrol. Earth Syst. Sci. Discuss. 2012, 9, 2763–2795. [Google Scholar] [CrossRef]
- Guerschman, J.P.; Dijk, A.I.J.M.V.; Mattersdorf, G.; Beringer, J.; Hutley, L.B.; Leuning, R.; Pipunic, R.C.; Sherman, B.S. Scaling of potential evapotranspiration with MODIS data reproduces flux observations and catchment water balance observations across Australia. J. Hydrol. 2009, 369, 107–119. [Google Scholar] [CrossRef]
- Richter, H.; Western, A.W.; Chiew, F.H.S. The Effect of Soil and Vegetation Parameters in the ECMWF Land Surface Scheme. J. Hydrometeorol. 2004, 5, 1131. [Google Scholar] [CrossRef]
- Jing, W.; Song, J.; Zhao, X. A Comparison of ECV and SMOS Soil Moisture Products Based on OzNet Monitoring Network. Remote Sens. 2018, 10, 703. [Google Scholar] [CrossRef]
- Lobl, E. Joint advanced microwave scanning radiometer (AMSR) science team meeting. Earth Obs. 2001, 13, 3–9. [Google Scholar]
- Owe, M.; Jeu, R.D.; Holmes, T. Multisensor historical climatology of satellite-derived global land surface moisture. J. Geophys. Res. Earth Surf. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Holmes, T.R.H.; De Jeu, R.A.M.; Owe, M.; Dolman, A.J. Land surface temperature from Ka band (37 GHz) passive microwave observations. J. Geophys. Res. Atmos. 2008, 114. [Google Scholar] [CrossRef]
- Li, L.; Njoku, E.G.; Im, E.; Chang, P.S.; Germain, K.S. A preliminary survey of radio-frequency interference over the US in Aqua AMSR-E data. IEEE Trans. Geosci. Remote Sens. 2004, 42, 380–390. [Google Scholar] [CrossRef]
- Njoku, E.G.; Jackson, T.J.; Lakshmi, V.; Chan, T.K.; Nghiem, S.V. Soil moisture retrieval from AMSR-E. IEEE Trans. Geosci. Remote Sens. 2003, 41, 215–229. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.-P.; Martinuzzi, J.; Font, J.; Berger, M. Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1729–1735. [Google Scholar] [CrossRef]
- Dinnat, E.P.; Boutin, J.; Yin, X.; Vine, D.M.L. Inter-comparison of SMOS and aquarius Sea Surface Salinity: Effects of the dielectric constant and vicarious calibration. In Proceedings of the 2014 13th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment, Pasadena, CA, USA, 24–27 March 2014. [Google Scholar]
- González-Zamora, A.; Sánchez, N.; Gumuzzio, A.; Piles, M.; Olmedo, E.; Martínez-Fernández, J. Validation of smos L2 and L3 SOIL Moisture Products over the Duero Basin at Different Spatial Scales. In Proceedings of the 36th International Symposium on Remote Sensing of Environment, Berlin, Germany, 11–15 May 2015; pp. 1183–1188. [Google Scholar]
- Bontemps, S.; Defourny, P.; Radoux, J.; Van Bogaert, E.; Lamarche, C.; Achard, F.; Mayaux, P.; Boettcher, M.; Brockmann, C.; Kirches, G. Consistent global land cover maps for climate modelling communities: Current achievements of the ESA’s land cover CCI. In Proceedings of the ESA Living Planet Symposium, Edinburgh, UK, 9–13 September 2013. [Google Scholar]
- Hollmann, R.; Merchant, C.J.; Saunders, R.; Downy, C.; Buchwitz, M.; Cazenave, A.; Chuvieco, E.; Defourny, P.; de Leeuw, G.; Forsberg, R. The ESA climate change initiative: Satellite data records for essential climate variables. Bull. Am. Meteorol. Soc. 2013, 94, 1541–1552. [Google Scholar] [CrossRef]
- McNally, A.; Shukla, S.; Arsenault, K.R.; Wang, S.; Peters-Lidard, C.D.; Verdin, J.P. Evaluating ESA CCI soil moisture in East Africa. Int. J. Appl. Earth Obs. Geoinf. 2016, 48, 96–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeu, R.A.M.D.; Wagner, W.; Holmes, T.R.H.; Dolman, A.J.; Giesen, N.C.V.D.; Friesen, J. Global Soil Moisture Patterns Observed by Space Borne Microwave Radiometers and Scatterometers. Sur. Geophys. 2008, 29, 399–420. [Google Scholar] [CrossRef] [Green Version]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef] [Green Version]
- Pablos, M.; Piles, M.; Sánchez, N.; Vallllossera, M.; Martínezfernández, J.; Camps, A. Impact of day/night time land surface temperature in soil moisture disaggregation algorithms. Eur. J. Remote Sens. 2016, 48, 899–916. [Google Scholar] [CrossRef]
- Albergel, C.; Rüdiger, C.; Carrer, D.; Calvet, J.C.; Fritz, N.; Naeimi, V.; Bartalis, Z.; Hasenauer, S. An evaluation of ASCAT surface soil moisture products with in-situ observations in Southwestern France. Hydrol. Earth Syst. Sci. Discuss. 2009, 13, 115–124. [Google Scholar] [CrossRef] [Green Version]
- Brocca, L.; Hasenauer, S.; Lacava, T.; Melone, F.; Moramarco, T.; Wagner, W.; Dorigo, W.; Matgen, P.; Martínez-Fernández, J.; Llorens, P. Soil moisture estimation through ASCAT and AMSR-E sensors: An intercomparison and validation study across Europe. Remote Sens. Environ. 2011, 115, 3390–3408. [Google Scholar] [CrossRef]
- Jing, W.; Song, J.; Zhao, X. Evaluation of Multiple Satellite-Based Soil Moisture Products over Continental U.S. Based on In Situ Measurements. Water Resour. Manag. 2018, 32, 3233–3246. [Google Scholar] [CrossRef]
- Bindlish, R.; Cosh, M.H.; Jackson, T.J.; Koike, T.; Fujii, H.; Chan, S.K.; Asanuma, J.; Berg, A.; Bosch, D.D.; Caldwell, T. GCOM-W AMSR2 Soil Moisture Product Validation Using Core Validation Sites. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 209–219. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, K.; Qin, J.; Cui, Q.; Lu, H.; Zhu, L.; Han, M.; Tang, W. Evaluation of SMAP, SMOS, and AMSR2 soil moisture retrievals against observations from two networks on the Tibetan Plateau. J. Geophys. Res. Atmos. 2017, 122, 5780–5792. [Google Scholar] [CrossRef]
- Scipal, K.; Holmes, T.; de Jeu, R.; Naeimi, V.; Wagner, W. A possible solution for the problem of estimating the error structure of global soil moisture data sets. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Miralles, D.G.; Crow, W.T.; Cosh, M.H. Estimating Spatial Sampling Errors in Coarse-Scale Soil Moisture Estimates Derived from Point-Scale Observations. J. Hydrometeorol. 2010, 11, 1423–1429. [Google Scholar] [CrossRef]
- Leroux, D.J.; Kerr, Y.H.; Richaume, P.; Fieuzal, R. Spatial distribution and possible sources of SMOS errors at the global scale. Remote Sens. Environ. 2013, 133, 240–250. [Google Scholar] [CrossRef] [Green Version]
Land Cover Type | Station Number | Station Percentage |
---|---|---|
Cropland | 45 | 45.45% |
Grassland/Shrubland | 29 | 29.29% |
Sparse Deciduous Forest | 8 | 8.08% |
Herbaceous Vegetation | 17 | 17.17% |
Land Cover Type | Station Number | Station Percentage |
---|---|---|
Cropland | 13 | 65% |
Grassland/Shrubland | 1 | 5% |
Sparse (<15%) Vegetation | 6 | 30% |
Land Cover Type | Station Number | Station Percentage |
---|---|---|
Cropland | 6 | 10.53% |
Grassland/Shrubland | 43 | 75.33% |
Herbaceous Vegetation | 8 | 14.04% |
Land Cover Type | Station Number | Station Percentage |
---|---|---|
Cropland | 31 | 83.78% |
Grassland/Shrubland | 2 | 5.41% |
Sparse (<15%) Vegetation | 1 | 2.70% |
Artificial Surfaces | 3 | 8.11% |
Metrics | Products | ||||||
---|---|---|---|---|---|---|---|
AMSR_A | AMSR_D | SMOS_A | SMOS_D | ECV_A | ECV_C | ECV_P | |
Bias (m3 × m−3) | −0.001 | 0.047 | −0.098 | −0.093 | 0.128 | −0.084 | −0.048 |
R | 0.589 | 0.627 | 0.578 | 0.607 | 0.643 | 0.679 | 0.654 |
RMSE (m3 × m−3) | 0.123 | 0.136 | 0.145 | 0.140 | 0.231 | 0.098 | 0.114 |
ubRMSD (m3 × m−3) | 0.106 | 0.108 | 0.091 | 0.088 | 0.185 | 0.042 | 0.079 |
Metrics | Products | ||||||
---|---|---|---|---|---|---|---|
AMSR_A | AMSR_D | SMOS_A | SMOS_D | ECV_A | ECV_C | ECV_P | |
Bias (m3 × m−3) | −0.00022 | 0.00035 | −0.0004 | −0.00052 | −0.00087 | −0.00011 | 0.00029 |
R | 0.357 | 0.348 | 0.434 | 0.445 | 0.524 | 0.498 | 0.434 |
RMSE (m3 × m−3) | 0.0551 | 0.0616 | 0.0765 | 0.0726 | 0.1358 | 0.0324 | 0.0546 |
ubRMSD (m3 × m−3) | 0.0551 | 0.0616 | 0.0764 | 0.0725 | 0.1357 | 0.0324 | 0.0546 |
Metrics | Products | ||||||
---|---|---|---|---|---|---|---|
AMSR_A | AMSR_D | SMOS_A | SMOS_D | ECV_A | ECV_C | ECV_P | |
Bias (m3 × m−3) | 0.091 | 0.139 | −0.039 | −0.026 | 0.197 | 0.075 | 0.131 |
R | 0.788 | 0.803 | 0.745 | 0.663 | 0.721 | 0.826 | 0.822 |
RMSE (m3 × m−3) | 0.141 | 0.176 | 0.089 | 0.097 | 0.286 | 0.088 | 0.152 |
ubRMSD (m3 × m−3) | 0.104 | 0.105 | 0.061 | 0.074 | 0.206 | 0.037 | 0.074 |
Metrics | Products | ||||||
---|---|---|---|---|---|---|---|
AMSR_A | AMSR_D | SMOS_A | SMOS_D | ECV_A | ECV_C | ECV_P | |
Bias (m3 × m−3) | −0.00176 | −0.00129 | 0.00004 | 0.00010 | −0.00075 | −0.00002 | −0.00007 |
R | 0.485 | 0.519 | 0.542 | 0.375 | 0.512 | 0.539 | 0.531 |
RMSE (m3 × m−3) | 0.0657 | 0.0698 | 0.0521 | 0.0554 | 0.1353 | 0.0280 | 0.0505 |
ubRMSD (m3 × m−3) | 0.0657 | 0.0698 | 0.0521 | 0.0554 | 0.1353 | 0.0280 | 0.0505 |
Metrics | Products | ||||||
---|---|---|---|---|---|---|---|
AMSR_A | AMSR_D | SMOS_A | SMOS_D | ECV_A | ECV_C | ECV_P | |
Bias (m3 × m−3) | 0.074 | 0.102 | −0.145 | −0.114 | 0.477 | −0.049 | 0.082 |
R | 0.755 | 0.696 | 0.347 | 0.325 | 0.805 | 0.788 | 0.759 |
RMSE (m3 × m−3) | 0.108 | 0.142 | 0.179 | 0.154 | 0.493 | 0.085 | 0.123 |
ubRMSD (m3 × m−3) | 0.061 | 0.081 | 0.097 | 0.093 | 0.125 | 0.041 | 0.082 |
Metrics | Products | ||||||
---|---|---|---|---|---|---|---|
AMSR_A | AMSR_D | SMOS_A | SMOS_D | ECV_A | ECV_C | ECV_P | |
Bias (m3 × m−3) | −0.01126 | −0.02136 | 0.00422 | 0.07745 | −0.00398 | −0.00206 | −0.00157 |
R | 0.488 | 0.392 | 0.228 | 0.130 | 0.637 | 0.596 | 0.592 |
RMSE (m3 × m−3) | 0.0311 | 0.0464 | 0.1148 | 0.1508 | 0.0775 | 0.0255 | 0.0361 |
ubRMSD (m3 × m−3) | 0.0311 | 0.0464 | 0.1141 | 0.1495 | 0.0774 | 0.0254 | 0.0361 |
Metrics | Products | ||||||
---|---|---|---|---|---|---|---|
AMSR_A | AMSR_D | SMOS_A | SMOS_D | ECV_A | ECV_C | ECV_P | |
Bias (m3 × m−3) | 0.047 | 0.085 | 0.023 | 0.017 | 0.383 | 0.026 | 0.070 |
R | 0.684 | 0.585 | 0.638 | 0.579 | 0.716 | 0.763 | 0.740 |
RMSE (m3 × m−3) | 0.085 | 0.128 | 0.085 | 0.100 | 0.427 | 0.068 | 0.104 |
ubRMSD (m3 × m−3) | 0.062 | 0.090 | 0.072 | 0.091 | 0.183 | 0.049 | 0.069 |
Metrics | Products | ||||||
---|---|---|---|---|---|---|---|
AMSR_A | AMSR_D | SMOS_A | SMOS_D | ECV_A | ECV_C | ECV_P | |
Bias (m3 × m−3) | 0.00023 | −0.00017 | −0.00012 | −0.00013 | 0.00297 | 0.00047 | 0.00051 |
R | 0.623 | 0.471 | 0.584 | 0.485 | 0.627 | 0.657 | 0.597 |
RMSE (m3 × m−3) | 0.0466 | 0.0637 | 0.0670 | 0.0981 | 0.1150 | 0.0348 | 0.0522 |
ubRMSD (m3 × m−3) | 0.0466 | 0.0636 | 0.0670 | 0.0980 | 0.1149 | 0.0347 | 0.0522 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Yang, Y.; Yue, X. Evaluation of Satellite-Based Soil Moisture Products over Four Different Continental In-Situ Measurements. Remote Sens. 2018, 10, 1161. https://doi.org/10.3390/rs10071161
Liu Y, Yang Y, Yue X. Evaluation of Satellite-Based Soil Moisture Products over Four Different Continental In-Situ Measurements. Remote Sensing. 2018; 10(7):1161. https://doi.org/10.3390/rs10071161
Chicago/Turabian StyleLiu, Yangxiaoyue, Yaping Yang, and Xiafang Yue. 2018. "Evaluation of Satellite-Based Soil Moisture Products over Four Different Continental In-Situ Measurements" Remote Sensing 10, no. 7: 1161. https://doi.org/10.3390/rs10071161
APA StyleLiu, Y., Yang, Y., & Yue, X. (2018). Evaluation of Satellite-Based Soil Moisture Products over Four Different Continental In-Situ Measurements. Remote Sensing, 10(7), 1161. https://doi.org/10.3390/rs10071161