Remotely Sensing the Morphometrics and Dynamics of a Cold Region Dune Field Using Historical Aerial Photography and Airborne LiDAR Data
"> Figure 1
<p>Location of Nogahabara dunes with respect to Alaska and other major inactive dune fields or sand sheets including Great Kobuk Sand Dunes (GKSD) and Little Kobuk Sand Dunes (LKSD). Permafrost extent based on Pastick et al., 2015. Aeolian deposits based on Karlstrom, 1964; Jorgenson et al., 2008.</p> "> Figure 2
<p>Active Nogahabara Sand Dune (brown region within the solid line) and surrounding inactive lobes (green regions within the broken line) addressed in this study. Yellow squares denote where dune migration rates were subsampled. Subsample area i41 is located on a rosette dune feature. All graphics overlie 2015 LiDAR-derived DEM.</p> "> Figure 3
<p>(<b>a</b>) Western portion of the Nogahabara Dune field where dunes are migrating to the southwest; (<b>b</b>) ground view of wind-affected sand, sparse vegetation and scattered trees representative of the Nogahabara sand dunes; (<b>c</b>) Oblique view of active and recently stabilized sand deposits.</p> "> Figure 4
<p>Configuration of the LiDAR scanner (silver), GPS (yellow) and camera (black, background) within the aircraft. LiDAR scanner and camera are pointing through portholes in the belly of the aircraft.</p> "> Figure 5
<p>Dune height derived from methods described in <a href="#sec2dot3-remotesensing-10-00792" class="html-sec">Section 2.3</a>. Transects a–e delineate elevation profiles depicted in <a href="#remotesensing-10-00792-f006" class="html-fig">Figure 6</a>. The inset image depicts results from automated dune ridge identification. The base image is the LiDAR-derived DEM.</p> "> Figure 6
<p>(<b>a</b>–<b>d</b>) The variety of mean dune spacing (T = transect length (m)/dune ridges (n)) from within the active dunes; (<b>e</b>) dune spacing within an inactive rosette dune feature. Red lines indicate dunes identified by the authors for each transect.</p> "> Figure 7
<p>Time series of dune migration within the a9 subsample area (see <a href="#remotesensing-10-00792-f002" class="html-fig">Figure 2</a>). At this location, dune migration is to the southeast (~140°). (<b>a</b>) The dunes as they appear in the 1952 imagery and the digitized slipface position (orange line); (<b>b</b>) the same region as seen in the 1978 imagery and the digitized slipface position (green line) relative to the 1952 position (orange line); (<b>c</b>) the same region as seen in the 2015 LiDAR DEM and the digitized slipface location (blue line) relative to the 1978 (green) and 1952 (orange) locations.</p> "> Figure 8
<p>Climate summaries for Galena and Huslia including (<b>a</b>) mean annual air temperature and (<b>b</b>) annual totals of freezing and thawing degree days. FDD, freezing degree days; TDD, thawing degree days.</p> "> Figure 9
<p>Wind roses summarizing seasonal patterns of winds in excess of 6.5 m/s for the three study periods. Winter captures January, February and December. Spring captures March, April and May. Summer captures June, July and August. Fall captures September, October and November. Station ID: WBAN-26501.</p> "> Figure 10
<p>Wind roses summarizing seasonal patterns of winds in excess of 6.5 m/s for Huslia, AK. 1994–2016. Station ID: WBAN-26552.</p> "> Figure 11
<p>(<b>a</b>) Oblique aerial view of Nogahabara Sand Dunes and surrounding forest; (<b>b</b>) blow-out feature within the previously inactive dune field following the 2015 fire.</p> ">
Abstract
:1. Introduction
Study Area
2. Materials and Methods
2.1. Remote Sensing Data
2.1.1. Airborne LiDAR and Orthophotography
2.1.2. Historical Aerial Photos
2.2. Climate Data Analysis
2.3. Dune Feature Characterization
2.4. Dune Migration Analysis
3. Results
3.1. Dune Characteristics
3.2. Migration Rates
3.3 Historical Climate Conditions
4. Discussion
4.1. Morphology and Dynamics of Dunes in Cold vs. Temperate Regions
4.2. Cold Region Dunes and Permafrost
4.3. Potential Role of Fire, Permafrost Loss and Climate Change on Interior Alaska, Dune Field Activation and Ecosystem Impacts
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Thomas, D.S.G.; Wiggs, G.F.S. Aeolian system responses to global change: Challenges of scale, process and temporal integration. Earth Surf. Process. Landf. 2008, 33, 1396–1418. [Google Scholar] [CrossRef]
- French, H.M. Periglacial geomorphology. Prog. Phys. Geogr. 1979, 3, 264–273. [Google Scholar] [CrossRef]
- Pye, K.; Tsoar, H. Aeolian Sand and Sand Dunes; Springer Science & Business Media: Berlin, Germany, 2008; ISBN 978-3-540-85910-9. [Google Scholar]
- Tsoar, H. The ecological background, deterioration and reclamation of desert dune sand. Agric. Ecosyst. Environ. 1990, 33, 147–170. [Google Scholar] [CrossRef]
- Wolfe, S.; Bond, J.; Lamothe, M. Dune stabilization in central and southern Yukon in relation to early Holocene environmental change, northwestern North America. Quat. Sci. Rev. 2011, 30, 324–334. [Google Scholar] [CrossRef]
- Koster, E.A. Ancient and modern cold-climate aeolian sand deposition: A review. J. Quat. Sci. 1988, 3, 69–83. [Google Scholar] [CrossRef]
- Wolfe, S.A.; Huntley, D.J.; Ollerhead, J. Relict Late Wisconsinan dune fields of the northern Great Plains, Canada. Géogr. Phys. Quat. 2004, 58, 323. [Google Scholar] [CrossRef] [Green Version]
- Chapin, F.S.; Oswood, M.W.; Van Cleve, K.; Viereck, L.A.; Verbyla, D.L. (Eds.) Alaska’s Changing Boreal Forest; Long-Term Ecological Research Network Series; Oxford University Press: Oxford, UK, 2006; ISBN 0-19-534832-X. [Google Scholar]
- Wiggs, G.F.S.; Baird, A.J.; Atherton, R.J. The dynamic effects of moisture on the entrainment and transport of sand by wind. Geomorphology 2004, 59, 13–30. [Google Scholar] [CrossRef]
- Bourke, M.C.; Ewing, R.C.; Finnegan, D.; McGowan, H.A. Sand dune movement in the Victoria Valley, Antarctica. Geomorphology 2009, 109, 148–160. [Google Scholar] [CrossRef]
- McKenna-Neuman, C.M. Role of Sublimation in Particle Supply for Aeolian Transport in Cold Environments. Geogr. Ann. Ser. A Phys. Geogr. 1990, 72, 329–335. [Google Scholar] [CrossRef]
- Lea, P.D.; Waythomas, C.F. Late-pleistocene eolian sand sheets in Alaska. Quat. Res. 1990, 34, 269–281. [Google Scholar] [CrossRef]
- Wolfe, S.A.; Gillis, A.; Robertson, L. Late Quaternary Eolian Deposits of Northern North America: Age and Extent; Geological Survey of Canada, Open File 6006; Geological Survey of Canada: Ottawa, ON, Canada, 2009.
- Mann, D.H.; Heiser, P.A.; Finney, B.P. Holocene history of the Great Kobuk Sand Dunes, Northwestern Alaska. Quat. Sci. Rev. 2002, 21, 709–731. [Google Scholar] [CrossRef]
- Galloway, J.P.; Koster, E.A. Comparison of Grain-Size Statistics from Two Northern Alaska Dune Fields; U.S. Geological Survey: Reston, VA, USA, 1984.
- Black, R.F. Eolian deposits of Alaska. Arctic 1951, 4, 89–111. [Google Scholar] [CrossRef]
- David, P.P. Stabilized dune ridges in northern Saskatchewan. Can. J. Earth Sci. 1981, 18, 286–310. [Google Scholar] [CrossRef]
- Kasse, C.K. Sandy aeolian deposits and environments and their relation to climate during the Last Glacial Maximum and Lateglacial in northwest and central Europe. Prog. Phys. Geogr. 2002, 26, 507–532. [Google Scholar] [CrossRef]
- Mountney, N.P.; Russell, A.J. Sedimentology of cold-climate aeolian sandsheet deposits in the Askja region of northeast Iceland. Sediment. Geol. 2004, 166, 223–244. [Google Scholar] [CrossRef]
- Seppälä, M. Aeolian Sediments in the Quaternary Record Deflation and redeposition of sand dunes in finnish lapland. Quat. Sci. Rev. 1995, 14, 799–809. [Google Scholar] [CrossRef]
- Willemse, N.W.; Koster, E.A.; Hoogakker, B.; van Tatenhove, F.G.M. A continuous record of Holocene eolian activity in West Greenland. Quat. Res. 2003, 59, 322–334. [Google Scholar] [CrossRef]
- Koster, E.A.; Galloway, J.P.; Pronk, T. Photo-Interpretation Map of Surficial Deposits and Landforms of the Nogahabara Sand Dunes and Part of the Koyukuk Lowland, Alaska; Open-File Report 84-10; U.S. Geological Survey: Reston, VA, USA, 1984.
- Manley, W.F.; Kaufman, D.S. Alaska PaleoGlacier Atlas. Available online: http://instaar.colorado.edu/groups/QGISL/ak_paleoglacier_atlas/ (accessed on 31 October 2016).
- Pastick, N.J.; Jorgenson, M.T.; Wylie, B.K.; Nield, S.J.; Johnson, K.D.; Finley, A.O. Distribution of near-surface permafrost in Alaska: Estimates of present and future conditions. Remote Sens. Environ. 2015, 168, 301–315. [Google Scholar] [CrossRef]
- USFWS. Koyukuk National Wildlife Refuge, Northern Unit of Innoko National Wildlife Refuge, Comprehensive Conservation Plan, Environmental Impact statement and Wilderness Review: Draft; U.S. Fish and Wildlife Service, Region 7: Anchorage, AK, USA, 1986.
- Cass, J.T. Reconnaissance Geologic Map of the Kateel River Quadrangle, Alaska; IMAP; U.S. Geological Survey: Reston, VA, USA, 1957.
- Patton, W.W., Jr. Regional Geology of the Kateel River Quadrangle, Alaska; IMAP; U.S. Geological Survey: Reston, VA, USA, 1966.
- Collins, F. A Vegetated Dune Field in Central Alaska; U.S. Geological Survey: Reston, VA, USA, 1985.
- Galloway, J.P.; Huebner, M.; Lipkin, R.; Dijkmans, J.W.A. Early Holocene Calcretes from the Subarctic Active Nogahabara Sand Dune Field, Northern Alaska. In Geologic Studies in Alaska by the U.S. Geological Survey, 1990; United States Goverment Printing Office: Washington, DC, USA, 1992. [Google Scholar]
- Farquharson, L. Nogahabara Reconnaissance and Initial Findings, Notes from the August 2011 Field Trip; Department of Geology, University of Alaska Fairbanks: Fairbanks, AK, USA, 2011; p. 16. [Google Scholar]
- USFWS. Alaska—Koyukuk National Wildlife Refuge. Available online: https://www.fws.gov/alaska/nwr/koyukuk/sanddunes.htm (accessed on 25 August 2016).
- NatureServe. NatureServe Explorer: Species Name Criteria—All Species—Scientific or Informal Taxonomy, Species—Informal Names. Available online: http://explorer.natureserve.org/servlet/NatureServe?init=Species (accessed on 25 August 2016).
- Knisley, C.B.; Woodcock, M.R.; Vogler, A.P. A new subspecies of Cicindela limbata (Coleoptera: Cicindelidae) from Alaska, and further review of the maritima group by using mitochondrial DNA analysis. Ann. Entomol. Soc. Am. 2008, 101, 277–288. [Google Scholar] [CrossRef]
- Bagnold, R.A. The Physics of Blown Sand and Desert Dunes; Courier Corporation: Chelmsford, MA, USA, 1941; ISBN 978-0-486-14119-0. [Google Scholar]
- Jones, B.M.; Arp, C.D.; Jorgenson, M.T.; Hinkel, K.M.; Schmutz, J.A.; Flint, P.L. Increase in the rate and uniformity of coastline erosion in Arctic Alaska. Cryosphere 2009, 36. [Google Scholar] [CrossRef]
- Choné, G.; Biron, P.M. Assessing the Relationship between River Mobility and Habitat. River Res. Appl. 2016, 32, 528–539. [Google Scholar] [CrossRef]
- Jones, B.M.; Grosse, G.; Arp, C.D.; Jones, M.C.; Walter Anthony, K.M.; Romanovsky, V.E. Modern thermokarst lake dynamics in the continuous permafrost zone, northern Seward Peninsula, Alaska. Biogeosciences 2011, 116, G00M03. [Google Scholar] [CrossRef]
- Bailey, S.D.; Bristow, C.S. Migration of parabolic dunes at Aberffraw, Anglesey, north Wales. Geomorphology 2004, 59, 165–174. [Google Scholar] [CrossRef]
- Dong, P. Automated measurement of sand dune migration using multi-temporal lidar data and GIS. Int. J. Remote Sens. 2015, 36, 5426–5447. [Google Scholar] [CrossRef]
- Redsteer, M.H.; Bogle, R.C.; Vogle, J.M. Monitoring and Analysis of Sand Dune Movement and Growth on the Navajo Nation, Southwestern United States. Available online: http://pubs.usgs.gov/fs/2011/3085/ (accessed on 29 November 2016).
- Wolfe, S.A.; Lemmen, D.S. Monitoring of dune activity in the Great Sand Hills region, Saskatchewan. In Holocene Climate and Environmental Change in the Palliser Triangle: A Geoscientific Context for Evaluation the Impacts of Climate Change on the Southern Canadian Prairies; Geological Survey of Canada: Ottawa, ON, Canada, 1999; Volume 534, pp. 199–210. [Google Scholar]
- Thieler, E.R.; Himmelstoss, E.A.; Zichichi, J.L.; Ergul, A. Digital Shoreline Analysis System (DSAS) Version 4.0—An ArcGIS Extension for Calculating Shoreline Change; version 4.2; U.S. Geological Survey Open-File Report 2008-1278; U.S. Geological Survey: Reston, VA, USA, 2012.
- Wolfe, S.A. High-latitude dune fields. In Encyclopedia of Quaternary Sciences; Elsevier Publishing: New York, NY, USA, 2006; pp. 599–607. [Google Scholar]
- Arens, S.M.; Slings, Q.; de Vries, C.N. Mobility of a remobilised parabolic dune in Kennemerland, The Netherlands. Geomorphology 2004, 59, 175–188. [Google Scholar] [CrossRef]
- Dinwiddie, C.L.; Michaels, T.I.; Hooper, D.M.; Stillman, D.E. Environmental Conditions and Meteorologic Context for Modification of the Great Kobk Sand Dunes, Northwestern Alaska. In Proceedings of the Conference: 3rd International Planetary Dunes Workshop: Remote Sensing and Image Analysis of Planetary Dunes, Flagstaff, AZ, USA, 12–15 June 2012; ResearchGate: Berlin, Germany, 2012. [Google Scholar]
- Dinwiddie, C.L.; McGinnis, R.N.; Stillman, D.E.; Bjella, K.L.; Grimm, R.E. Geophysical Mars analog studies of multiphase water in the Great Kobuk Sand Dunes, northwestern Alaska. In Proceedings of the 42nd Lunar and Planetary Science Conference, Woodlands, TX, USA, 7–11 March 2011; Volume 42, p. 2501. [Google Scholar]
- Ewing, R.C.; Kocurek, G.A. Aeolian dune interactions and dune-field pattern formation: White Sands Dune Field, New Mexico. Sedimentology 2010, 57, 1199–1219. [Google Scholar] [CrossRef]
- Sweet, M.L.; Nielson, J.; Havholm, K.; Farrelley, J. Algodones dune field of southeastern California: Case history of a migrating modern dune field. Sedimentology 1988, 35, 939–952. [Google Scholar] [CrossRef]
- Hermas, E.; Leprince, S.; El-Magd, I.A. Retrieving sand dune movements using sub-pixel correlation of multi-temporal optical remote sensing imagery, northwest Sinai Peninsula, Egypt. Remote Sens. Environ. 2012, 121, 51–60. [Google Scholar] [CrossRef]
- Jimenez, J.A.; Maia, L.P.; Serra, J.; Morais, J. Aeolian dune migration along the Ceará coast, north-eastern Brazil. Sedimentology 1999, 46, 689–701. [Google Scholar] [CrossRef]
- Long, J.T.; Sharp, R.P. Barchan-dune movement in Imperial Valley, California. Geol. Soc. Am. Bull. 1973, 75, 49–56. [Google Scholar] [CrossRef]
- Carter, J.; Loizeau, D.; Mangold, N.; Poulet, F.; Bibring, J. Widespread surface weathering on early Mars: A case for a warmer and wetter climate. Icarus 2015, 248, 373–382. [Google Scholar] [CrossRef]
- Necsoiu, M.; Leprince, S.; Hooper, D.M.; Dinwiddie, C.L.; McGinnis, R.N.; Walter, G.R. Monitoring migration rates of an active subarctic dune field using optical imagery. Remote Sens. Environ. 2009, 113, 2441–2447. [Google Scholar] [CrossRef]
- Hugenholtz, C.H.; Wolfe, S.A. Recent stabilization of active sand dunes on the Canadian prairies and relation to recent climate variations. Geomorphology 2005, 68, 131–147. [Google Scholar] [CrossRef]
- Yao, Z.Y.; Wang, T.; Han, Z.W.; Zhang, W.M.; Zhao, A.G. Migration of sand dunes on the northern Alxa Plateau, Inner Mongolia, China. J. Arid Environ. 2007, 70, 80–93. [Google Scholar] [CrossRef]
- Marín, L.; Forman, S.L.; Valdez, A.; Bunch, F. Twentieth century dune migration at the Great Sand Dunes National Park and Preserve, Colorado, relation to drought variability. Geomorphology 2005, 70, 163–183. [Google Scholar] [CrossRef]
- Haynes, C.V. Bagnold’s barchan: A 57-yr record of dune movement in the eastern Sahara and implications for dune origin and paleoclimate since Neolithic times. Quat. Res. 1989, 32, 153–167. [Google Scholar] [CrossRef]
- Barnes, J. Barchan dunes on the Kuiseb River Delta, Namibia. South Afr. Geogr. J. 2001, 83, 283–292. [Google Scholar] [CrossRef]
- Koster, E.A.; Dijkmans, J.W.A. Niveo-aeolian deposits and denivation forms, with special reference to the great Kobuk Sand Dunes, Northwestern Alaska. Earth Surf. Process. Landf. 1988, 13, 153–170. [Google Scholar] [CrossRef]
- King, L.; Seppälä, M. Permafrost thickness and distribution in Finnish Lapland; Results of geoelectrical soundings. Polarforschung 1987, 57, 127–147. [Google Scholar]
- Carter, L. A Pleistocene sand sea on the Alaskan Arctic coastal plain. In USGS Staff—Published Research; U.S. Geological Survey: Reston, VA, USA, 1981. [Google Scholar]
- Wolfe, S.A.; Huntley, D.J.; David, P.P.; Ollerhead, J.; Sauchyn, D.J.; MacDonald, G.M. Late 18th century drought-induced sand dune activity, Great Sand Hills, Saskatchewan. Can. J. Earth Sci. 2001, 38, 105–117. [Google Scholar] [CrossRef]
- Dijkmans, J.W.A.; Koster, E.A. Morphological development of dunes in a subarctic environment, Central Kobuk Valley, northwestern Alaska. Geogr. Ann. Ser. A Phys. Geogr. 1990, 72, 93–109. [Google Scholar] [CrossRef]
- Käyhkö, J.A.; Worsley, P.; Pye, K.; Clarke, M.L. A revised chronology for aeolian activity in subarctic Fennoscandia during the Holocene. Holocene 1999, 9, 195–205. [Google Scholar] [CrossRef]
- Filion, L.; Morisset, P. Eolian landforms along the eastern coast of Hudson Bay, Northern Québec. Nordicana 1983, 47, 73–94. [Google Scholar]
- Arbogast, A.F.; Packman, S.C. Middle-Holocene mobilization of aeolian sand in western upper Michigan and the potential relationship with climate and fire. Holocene 2004, 14, 464–471. [Google Scholar] [CrossRef]
- Mangan, J.M.; Overpeck, J.T.; Webb, R.S.; Wessman, C.; Goetz, A.F.H. Response of Nebraska Sand Hills natural vegetation to drought, fire, grazing, and plant functional type shifts as simulated by the century model. Clim. Chang. 2004, 63, 49–90. [Google Scholar] [CrossRef]
- Arens, S.M.; Geelen, L.H.W.T. Dune landscape rejuvenation by intended destabilisation in the Amsterdam water supply dunes. J. Coast. Res. 2006, 22, 1094–1107. [Google Scholar] [CrossRef]
- Niessen, A.C.; Koster, E.A.; Galloway, J.P. Periglacial Sand Dunes and Eolian Sand Sheets; An Annotated Bibliography; Open-File Report; U.S. Geological Survey: Reston, VA, USA, 1984.
- Dinwiddie, C.L.; McGinnis, R.N.; Stillman, D.E.; Grimm, R.E.; Bjella, K.L. Late-winter phase state of water in the Great Kobuk Sand Dunes, Alaska, and testable hypotheses for ba perching mechanism. In Proceedings of the Fifth International Conference on Mars Polar Science and Exploration, Fairbanks, AK, USA, 12–16 September 2011; Volume 1623, p. 6035. [Google Scholar]
- Serreze, M.C.; Walsh, J.E.; Chapin, F.S.; Osterkamp, T.; Dyurgerov, M.; Romanovsky, V.; Oechel, W.C.; Morison, J.; Zhang, T.; Barry, R.G. Observational evidence of recent change in the northern high-latitude environment. Clim. Chang. 2000, 46, 159–207. [Google Scholar] [CrossRef]
- Hinzman, L.D.; Kane, D.L. Potential repsonse of an Arctic watershed during a period of global warming. J. Geophys. Res. 1992, 97, 2811–2820. [Google Scholar] [CrossRef]
- Hugenholtz, C.H.; Wolfe, S.A. Biogeomorphic model of dunefield activation and stabilization on the northern Great Plains. Geomorphology 2005, 70, 53–70. [Google Scholar] [CrossRef]
Subsample Area | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Physical Dune Features | a128 | a130 | a109 | a93 | a83 | a67 | a62 | a45 | a26 | a21 | a9 | AVG. |
total active dune length (m) | 3901 | 4124.9 | 5933 | 5239 | 4036 | 5708 | 5430 | 6784 | 6157 | 6462 | 5581 | 5396 |
active migration features | 6 | 13 | 11 | 9 | 11 | 9 | 6 | 14 | 15 | 11 | 9 | 10 |
mean dune height (m) | 7.3 | 9 | 5.3 | 4.5 | 4.9 | 5.3 | 7.1 | 3.6 | 6.3 | 5.1 | 6 | 6 |
min dune height (m) | 0.5 | 1.2 | 0.8 | 0.8 | 1.5 | 1.1 | 1.4 | 0.6 | 0.5 | 0.6 | 1 | 1 |
max dune height (m) | 18.1 | 18.8 | 11.4 | 9.1 | 9.7 | 13.9 | 13.6 | 9.2 | 20.1 | 10.5 | 14.4 | 14 |
dune height stdev (m) | 4.6 | 3.7 | 2.2 | 1.6 | 1.6 | 2.7 | 2 | 1.6 | 3.2 | 2 | 2.3 | 3 |
mean dune heading (°) | 340 | 20/140 | 125 | 360/110 | 120 | rosette | 120 | 36/200 | 250 | 180 | 140 | 165 |
1952–1978 mig rate (ma−1) ♠ | 0.32 | 0.45 | 1.05 | 0.55 | 1.11 | 0.43 | 1.13 | 0.48 | 0.37 | 0.67 | 0.93 | 0.68 |
1978–2015 mig rate (ma−1) ◊ | 0.21 | 0.4 | 0.59 | 0.59 | 0.6 | 0.25 | 0.63 | 0.22 | 0.39 | 0.4 | 0.42 | 0.43 |
1952–2015 mig rate (ma−1) * | 0.25 | 0.41 | 0.8 | 0.57 | 0.81 | 0.32 | 0.84 | 0.33 | 0.39 | 0.51 | 0.64 | 0.52 |
Subsample Area | ||||
---|---|---|---|---|
Physical Dune Features | i77 | i50 | i41 | AVG. |
total active dune length (m) | 7052 | 8395 | 5558 | 7002 |
active migration features | 4 | 5 | 8 | 6 |
mean dune height (m) | 3 | 5 | 3.14 | 4 |
min dune height (m) | 0.6 | 0.7 | 0.6 | 1 |
max dune height (m) | 7.5 | 11.7 | 10.1 | 10 |
dune height stdev (m) | 1.1 | 2.2 | 1.8 | 2 |
mean dune heading (°) | 165 | NA | 315 | 240 |
1978–2015 mig rate (ma−1) ◊ | 0.09 | 0.04 | 0.04 | 0.06 |
Dune Field | latitude | Koeppen-Geiger Climate | Rate (m a−1) | Citation |
---|---|---|---|---|
Great Kobuk | 67°00′N | Polar (polar tundra) | 0.5–1.5 | [53] |
Nogahabara | 65°41′N | Polar (polar tundra) | 0.5–0.8 | this study |
Zuid-Kennemerland | 53°23′N | Warm Temperate (fully humid warm summer) | 0–6 | [44] |
Aberffraw | 53°11′N | Warm Temperate (fully humid warm summer) | 1 | [38] |
Tunstall Sand Hills | 51°09′N | Arid (steppe, cold arid) | 10 | [54] |
Alxa Plateau | 40°30′N | Arid (winter dry, cold arid) | 5.3 | [55] |
Great Sand Dunes | 37°47′N | Arid (steppe, cold arid) | 1.9–10.5 | [56] |
Grand Falls Dune Field | 35°25′N | Arid (steppe, cold arid) | 35 | [40] |
Imperial Valley | 33°00′N | Arid (winter dry, hot arid) | 25 | [51] |
White Sands | 32°48′N | Arid (steppe, cold arid) | 1–7 | [47] |
Agodones | 33°00′N | Arid (desert, hot arid) | 0.08 | [48] |
Sinai Peninsula | 30°30′N | Arid (desert, hot arid) | 11.9 | [49] |
Eastern Sahara | 20°55′N | Arid (desert, hot arid) | 7.5 | [57] |
Ceará Coast | 3°30′S | Equatorial (summer dry) | 17.5 | [50] |
Kuiseb River Delta | 22°56′S | Arid (desert, cold air) | 4.2–18.9 | [58] |
Victoria Valley | 77°22′S | Polar (fully humid) | 1.5 | [10] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baughman, C.A.; Jones, B.M.; Bodony, K.L.; Mann, D.H.; Larsen, C.F.; Himelstoss, E.; Smith, J. Remotely Sensing the Morphometrics and Dynamics of a Cold Region Dune Field Using Historical Aerial Photography and Airborne LiDAR Data. Remote Sens. 2018, 10, 792. https://doi.org/10.3390/rs10050792
Baughman CA, Jones BM, Bodony KL, Mann DH, Larsen CF, Himelstoss E, Smith J. Remotely Sensing the Morphometrics and Dynamics of a Cold Region Dune Field Using Historical Aerial Photography and Airborne LiDAR Data. Remote Sensing. 2018; 10(5):792. https://doi.org/10.3390/rs10050792
Chicago/Turabian StyleBaughman, Carson A., Benjamin M. Jones, Karin L. Bodony, Daniel H. Mann, Chris F. Larsen, Emily Himelstoss, and Jeremy Smith. 2018. "Remotely Sensing the Morphometrics and Dynamics of a Cold Region Dune Field Using Historical Aerial Photography and Airborne LiDAR Data" Remote Sensing 10, no. 5: 792. https://doi.org/10.3390/rs10050792
APA StyleBaughman, C. A., Jones, B. M., Bodony, K. L., Mann, D. H., Larsen, C. F., Himelstoss, E., & Smith, J. (2018). Remotely Sensing the Morphometrics and Dynamics of a Cold Region Dune Field Using Historical Aerial Photography and Airborne LiDAR Data. Remote Sensing, 10(5), 792. https://doi.org/10.3390/rs10050792