Natural Forest Mapping in the Andes (Peru): A Comparison of the Performance of Machine-Learning Algorithms
"> Figure 1
<p>Study area in Peru. The red box outlines the image area.</p> "> Figure 2
<p>Preprocessing flowchart.</p> "> Figure 3
<p>Critical Difference (CD) diagram for the Nemenyi test showing the results of the statistical comparison of all models against each other by mean ranks based on AUC values (higher ranks, such as 5.9 for SVM:All, correspond to higher values of AUC). Classifiers that are not connected by a bold line of length equal to CD have significantly different mean ranks (Confidence level of 95%).</p> "> Figure 4
<p>Critical Difference (CD) diagram for the Nemenyi test showing the results of the statistical comparison of all models against each other by mean ranks based on Cohen’s Kappa values (higher ranks, such as 4.9 for SVM:All, correspond to higher values of Cohen’s Kappa). Classifiers that are not connected by a bold line of length equal to CD have significantly different mean ranks (Confidence level of 95%).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Land Cover Types and Forest Definition
2.2.2. Landsat 8 OLI Satellite Data and Digital Elevation Model (DEM) Data
2.2.3. Collection of Land Cover Data
2.3. Methods
2.3.1. Preprocessing
2.3.2. Training Datasets and Verification Datasets
2.3.3. Classification Variables and Variable Selection
2.3.4. Classification Methods
2.3.5. Tuning of Parameters and Performance Assessment of the Classification Models
- We created a training set T = A − k for each of the k subsets of the dataset A
- We divided the training set T into subsets t1 and t2; these subsets were used for training and tuning respectively. The subset of variables or features used to fine tune the classifiers are the same set of variables selected for each model, as shown in Section 3.1.
- When the parameters of the classifier were tuned for maximum accuracy, we re-ran each of the models with the initial larger training set T. We chose values of the tuning parameters that maximizes the average of Sensitivity and Specificity metrics. This criterion is recommended for conservation studies where omission error is undesirable [42].
- The classification precision indicators were calculated using the fold k as the validation data.
- Mean and standard deviation of the precision indicators were calculated for comparison analysis.
3. Results
3.1. Selection of Variables and Constructed Models
- M56EA: MSAVI, Band 5, Band 6, elevation, and aspect
- M56: MSAVI, Band 5, and Band 6
- NA: NDVI and aspect
- N: NDVI
- PC: Principal components 1, 2, and 3
- TC: Tasseled cap bands 1, 2, and 3
3.2. AUC and Cohen’s Kappa Results
3.3. Non-Parametric Tests for Multiple Comparisons
4. Discussion
4.1. Aspects of Land Cover Classification in the Andes Mountain Region
4.2. Comparison of MLA Classifiers
4.3. The Kappa Coefficient and Its Use as a Performance Indicator of Classification Models
4.4. Machine Learning Algorithms and Contrast to Recent Research
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Zutta, B.R.; Rundel, P.W.; Saatchi, S.; Casana, J.D.; Gauthier, P.G.; Soto, A.; Velazco, Y.; Buermann, W. Prediciendo la distribución de Polylepis: Bosques Andinos vulnerables y cada vez más importantes. Rev. Peru. Biol. 2012, 19. [Google Scholar] [CrossRef]
- Fjeldså, J.; Kessler, M.; Engblom, G.; Driesch, P. Conserving the Biological Diversity of Polylepis Woodlands of the Highland of Peru and Bolivia: A Contribution to Sustainable Natural Resource Management in the Andes; NORDECO: Copenhagen, Denmark, 1996; ISBN 978-87-986168-0-1. [Google Scholar]
- Kessler, M. The “Polylepis problem“: Where do we stand? Ecotropica 2002, 8, 97–110. [Google Scholar]
- Servat Grace, P.; Mendoza, C.W.; Ochoa, C.J.A. Flora y fauna de cuatro bosques de Polylepis (Rosaceae) en la Cordillera del Vilcanota (Cusco, Perú). Ecol. Appl. 2002, 1, 25–35. [Google Scholar] [CrossRef]
- Roberts, D.A.; Gardner, M.; Church, R.; Ustin, S.; Scheer, G.; Green, R.O. Mapping Chaparral in the Santa Monica Mountains Using Multiple Endmember Spectral Mixture Models. Remote Sens. Environ. 1998, 65, 267–279. [Google Scholar] [CrossRef]
- Smith, M.O.; Ustin, S.L.; Adams, J.B.; Gillespie, A.R. Vegetation in deserts: I. A regional measure of abundance from multispectral images. Remote Sens. Environ. 1990, 31, 1–26. [Google Scholar] [CrossRef]
- Byambakhuu, I.; Sugita, M.; Matsushima, D. Spectral unmixing model to assess land cover fractions in Mongolian steppe regions. Remote Sens. Environ. 2010, 114, 2361–2372. [Google Scholar] [CrossRef] [Green Version]
- Song, C. Spectral mixture analysis for subpixel vegetation fractions in the urban environment: How to incorporate endmember variability? Remote Sens. Environ. 2005, 95, 248–263. [Google Scholar] [CrossRef]
- Meyer, P.; Itten, K.I.; Kellenberger, T.; Sandmeier, S.; Sandmeier, R. Radiometric corrections of topographically induced effects on Landsat TM data in an alpine environment. ISPRS J. Photogramm. Remote Sens. 1993, 48, 17–28. [Google Scholar] [CrossRef]
- Li, M.; Im, J.; Beier, C. Machine learning approaches for forest classification and change analysis using multi-temporal Landsat TM images over Huntington Wildlife Forest. GISci. Remote Sens. 2013, 50, 361–384. [Google Scholar] [CrossRef]
- Duro, D.C.; Franklin, S.E.; Dubé, M.G. A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sens. Environ. 2012, 118, 259–272. [Google Scholar] [CrossRef]
- Lu, D.; Weng, Q. A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 2007, 28, 823–870. [Google Scholar] [CrossRef]
- Paneque-Gálvez, J.; Mas, J.-F.; Moré, G.; Cristóbal, J.; Orta-Martínez, M.; Luz, A.C.; Guèze, M.; Macía, M.J.; Reyes-García, V. Enhanced land use/cover classification of heterogeneous tropical landscapes using support vector machines and textural homogeneity. Int. J. Appl. Earth Observ. Geoinf. 2013, 23, 372–383. [Google Scholar] [CrossRef]
- Asner, G.P. Tropical forest carbon assessment: Integrating satellite and airborne mapping approaches. Environ. Res. Lett. 2009, 4, 034009. [Google Scholar] [CrossRef]
- Potapov, P.V.; Dempewolf, J.; Talero, Y.; Hansen, M.C.; Stehman, S.V.; Vargas, C.; Rojas, E.J.; Castillo, D.; Mendoza, E.; Calderón, A.; et al. National satellite-based humid tropical forest change assessment in Peru in support of REDD+ implementation. Environ. Res. Lett. 2014, 9, 124012. [Google Scholar] [CrossRef]
- Bader, M.Y.; Ruijten, J.J.A. A topography-based model of forest cover at the alpine tree line in the tropical Andes. J. Biogeogr. 2008, 35, 711–723. [Google Scholar] [CrossRef]
- Gottlicher, D.; Obregon, A.; Homeier, J.; Rollenbeck, R.; Nauss, T.; Bendix, J. Land-cover Classification in the Andes of Southern Ecuador Using Landsat ETM+ Data As a Basis for SVAT Modelling. Int. J. Remote Sens. 2009, 30, 1867–1886. [Google Scholar] [CrossRef]
- Josse, C.; Cuesta, F.; Navarro, G.; Barrena, V.; Cabrera, E.; Chacón-Moreno, E.; Ferreira, W.; Peralvo, M.; Tovar, A.S.J. Ecosistemas de los Andes del Norte y Centro. Bolivia, Colombia, Ecuador, Perú y Venezuela; Secretaría General de la Comunidad Andina: Lima, Peru, 2009; ISBN 978-9972-787-77-5. [Google Scholar]
- Ministerio del Ambiente. Mapa Nacional de Cobertura Vegetal: Memoria Descriptiva; Dirección General de Evaluación, Valoración y Financiamiento del Patrimonio Natural, MINAM: Lima, Peru, 2015.
- Ansión, J. El Árbol y el Bosque en la Sociedad Andina; Proyecto FAO/Holanda/INFOR: Lima, Peru, 1986. [Google Scholar]
- Nielsen, A.A.; Conradsen, K.; Simpson, J.J. Multivariate Alteration Detection (MAD) and MAF Postprocessing in Multispectral, Bitemporal Image Data: New Approaches to Change Detection Studies. Remote Sens. Environ. 1998, 64, 1–19. [Google Scholar] [CrossRef]
- Nielsen, A.A. The Regularized Iteratively Reweighted MAD Method for Change Detection in Multi- and Hyperspectral Data. IEEE Trans. Image Process. 2007, 16, 463–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canty, M.J.; Nielsen, A.A. Automatic radiometric normalization of multitemporal satellite imagery with the iteratively re-weighted MAD transformation. Remote Sens. Environ. 2008, 112, 1025–1036. [Google Scholar] [CrossRef]
- eCognition eCognition Developer|Trimble. Available online: http://www.ecognition.com/suite/ecognition-developer (accessed on 2 October 2017).
- Baatz, M.; Schäpe, A. Multiresolution Segmentation: An Optimization Approach for High Quality Multi-Scale Image Segmentation; Strobl, J., Blaschke, T., Griesebener, G., Eds.; Herbert Wichmann Verlag: Salzburg, Austria, 2000; pp. 12–23. [Google Scholar]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Leprieur, C.; Kerr, Y.H.; Mastorchio, S.; Meunier, J.C. Monitoring vegetation cover across semi-arid regions: Comparison of remote observations from various scales. Int. J. Remote Sens. 2000, 21, 281–300. [Google Scholar] [CrossRef]
- Schmidt, H.; Karnieli, A. Sensitivity of vegetation indices to substrate brightness in hyper-arid environment: The Makhtesh Ramon Crater (Israel) case study. Int. J. Remote Sens. 2001, 22, 3503–3520. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778–1790. [Google Scholar] [CrossRef]
- Andrew Hall, M. Correlation-Based Feature Selection for Machine Learning; University of Waikato: Hamilton, New Zealand, 1999. [Google Scholar]
- Huang, S.H. Supervised feature selection: A tutorial. Artif. Intell. Res. 2015, 4, 22. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd ed.; Springer: New York, NY, USA, 2010; ISBN 978-0-387-22456-5. [Google Scholar]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Haapanen, R.; Ek, A.R.; Bauer, M.E.; Finley, A.O. Delineation of forest/nonforest land use classes using nearest neighbor methods. Remote Sens. Environ. 2004, 89, 265–271. [Google Scholar] [CrossRef]
- Franco-Lopez, H.; Ek, A.R.; Bauer, M.E. Estimation and mapping of forest stand density, volume, and cover type using the k-nearest neighbors method. Remote Sens. Environ. 2001, 77, 251–274. [Google Scholar] [CrossRef]
- McRoberts, R.E.; Nelson, M.D.; Wendt, D.G. Stratified estimation of forest area using satellite imagery, inventory data, and the k-Nearest Neighbors technique. Remote Sens. Environ. 2002, 82, 457–468. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Petropoulos, G.P.; Kalaitzidis, C.; Prasad Vadrevu, K. Support vector machines and object-based classification for obtaining land-use/cover cartography from Hyperion hyperspectral imagery. Comput. Geosci. 2012, 41, 99–107. [Google Scholar] [CrossRef]
- Salzberg, S.L. On Comparing Classifiers: Pitfalls to Avoid and a Recommended Approach. Data Min. Knowl. Discov. 1997, 1, 317–328. [Google Scholar] [CrossRef]
- Jiménez-Valverde, A.; Lobo, J.M. Threshold criteria for conversion of probability of species presence to either-or presence-absence. Acta Oecol. 2007, 31, 361–369. [Google Scholar] [CrossRef]
- Metz, C.E. Basic principles of ROC analysis. Semin. Nucl. Med. 1978, 8, 283–298. [Google Scholar] [CrossRef]
- Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Berry, P.M.; Dawson, T.P.; Pearson, R.G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 2005, 28, 385–393. [Google Scholar] [CrossRef]
- Freeman, E.A.; Moisen, G.G. A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa. Ecol. Model. 2008, 217, 48–58. [Google Scholar] [CrossRef]
- Demšar, J. Statistical Comparisons of Classifiers over Multiple Data Sets. J. Mach. Learn. Res. 2006, 7, 1–30. [Google Scholar]
- Friedman, M. The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance. J. Am. Stat. Assoc. 1937, 32, 675–701. [Google Scholar] [CrossRef]
- Nemenyi, P. Distribution-Free Multiple Comparisons. Ph.D. Thesis, Princeton University: Princeton, NJ, USA, 1963. [Google Scholar]
- Ringrose, S.; Matheson, W.; Mogotsi, B.; Tempest, F. Nature of the darkening effect in drought affected savannah woodland environments relative to soil reflectance in Landsat and Spot Wavebands. Remote Sens. Environ. 1989, 25, 519–524. [Google Scholar]
- Nitze, I.; Schulthess, U.; Asche, H. Comparison of machine learning algorithms random forest, artificial neural network and support vector machine to maximum likelihood for supervised crop type classification. In Proceedings of the 4th international conference on Geographic Object-Based Image Analysis (GEOBIA) Conference; Rio de Janeiro, Brazil, 7–9 May 2012; pp. 35–40. [Google Scholar]
- Huete, A.R.; Jackson, R.D.; Post, D.F. Spectral response of a plant canopy with different soil backgrounds. Remote Sens. Environ. 1985, 17, 37–53. [Google Scholar] [CrossRef]
- Stein, A.; Aryal, J.; Gort, G. Use of the Bradley-Terry model to quantify association in remotely sensed images. IEEE Trans. Geosci. Remote Sens. 2005, 43, 852–856. [Google Scholar] [CrossRef]
- Pontius, R.G.; Millones, M. Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. Int. J. Remote Sens. 2011, 32, 4407–4429. [Google Scholar] [CrossRef]
- Eugenio, B.D.; Glass, M. The Kappa Statistic: A Second Look. Comput. Linguist. 2004, 30, 95–101. [Google Scholar] [CrossRef]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Foody, G.M. Thematic Map Comparison. Photogramm. Eng. Remote Sens. 2004, 70, 627–633. [Google Scholar] [CrossRef]
- Foody, G.M. Harshness in image classification accuracy assessment. Int. J. Remote Sens. 2008, 29, 3137–3158. [Google Scholar] [CrossRef]
- Egorov, A.V.; Hansen, M.C.; Roy, D.P.; Kommareddy, A.; Potapov, P.V. Image interpretation-guided supervised classification using nested segmentation. Remote Sens. Environ. 2015, 165, 135–147. [Google Scholar] [CrossRef]
- Guay, K.; Beck, P.; Berner, L.; Goetz, S.; Baccini, A.; Buermann, W. Vegetation productivity patterns at high northern latitudes: A multi-sensor satellite data assessment. Glob. Chang. Biol. 2014, 20, 3147–3158. [Google Scholar] [CrossRef] [PubMed]
- Assal, T.J.; Anderson, P.J.; Sibold, J. Mapping forest functional type in a forest-shrubland ecotone using SPOT imagery and predictive habitat distribution modelling. Remote Sens. Lett. 2015, 6, 755–764. [Google Scholar] [CrossRef]
- Man, C.D.; Nguyen, T.T.; Bui, H.Q.; Lasko, K.; Nguyen, T.N.T. Improvement of land-cover classification over frequently cloud-covered areas using Landsat 8 time-series composites and an ensemble of supervised classifiers. Int. J. Remote Sens. 2018, 39, 1243–1255. [Google Scholar] [CrossRef]
- Halmy, M.W.A.; Gessler, P.E.; Hicke, J.A.; Salem, B.B. Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-CA. Appl. Geogr. 2015, 63, 101–112. [Google Scholar] [CrossRef]
- Vapnik, V.N. Statistical Learning Theory, 1st ed.; Wiley-Interscience: New York, NY, USA, 1998; ISBN 978-0-471-03003-4. [Google Scholar]
- Latifi, H.; Nothdurft, A.; Koch, B. Non-parametric prediction and mapping of standing timber volume and biomass in a temperate forest: Application of multiple optical/LiDAR-derived predictors. Forestry 2010, 83, 395–407. [Google Scholar] [CrossRef]
- Anees, A.; Aryal, J.; O’Reilly, M.M.; Gale, T.J. A Relative Density Ratio-Based Framework for Detection of Land Cover Changes in MODIS NDVI Time Series. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2016, 9, 3359–3371. [Google Scholar] [CrossRef]
- Sugiyama, M. Density Ratio Estimation: A New Versatile Tool for Machine Learning. In Advances in Machine Learning; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2009; pp. 6–9. [Google Scholar]
- Sugiyama, M.; Suzuki, T.; Kanamori, T. Density Ratio Estimation in Machine Learning; Cambridge University Press: Cambridge, UK, 2012; ISBN 978-0-521-19017-6. [Google Scholar]
Characteristic | Detail | ||
---|---|---|---|
Satellite sensor | Landsat 8 | ||
Path/row | 4/69 | ||
Pixel resolution | 30 m | ||
Acquisition date (DD/MM/YYYY) | Scene 1: 28/05/2014 | ||
Scene 2: 01/08/2014 | |||
Scene 3: 17/08/2014 | |||
Scene 4: 02/09/2014 | |||
Band and wavelength | 2 | 0.452–0.512 μm | Blue |
3 | 0.533–0.590 μm | Green | |
4 | 0.636–0.673 μm | Red | |
5 | 0.851–0.879 μm | NIR * | |
6 | 1.566–1.651 μm | SWIR-1 ** | |
7 | 2.107–2.294 μm | SWIR-2 ** | |
DEM data | Space Shuttle Radar Topography Mission 30 m resolution |
Land Cover Type | Code | Collect Earth Data | Field Survey Data | Total |
---|---|---|---|---|
Andean mountain forest | AF | 2 | 43 | 45 |
Shrubland | M | 389 | 15 | 404 |
Highland amazon forests | HAF | 240 | 61 | 301 |
Forest plantation | Pl | 6 | 37 | 43 |
Other vegetation | OV | 656 | 34 | 690 |
-Agricultural land | 123 | 21 | ||
-Natural pasture | 528 | 10 | ||
-Wetlands | 5 | 2 | ||
-Bamboo | - | 1 | ||
No vegetation | NV | 30 | 6 | 36 |
-Bare land/towns | 30 | 6 | ||
Inland surface water bodies | W | 45 | - | 45 |
Total | 1368 | 196 | 1564 |
Variable | Elev. | MSAVI | B5 | NDVI | Aspect |
Total AIC weight | 0.88 | 0.81 | 0.80 | 0.62 | 0.58 |
Variable | B6 | B7 | B2 | B3 | B4 |
Total AIC weight | 0.53 | 0.48 | 0.46 | 0.43 | 0.37 |
B2 | B3 | B4 | B5 | B6 | B7 | NDVI | MSAVI | Elev. | |
---|---|---|---|---|---|---|---|---|---|
B2 | |||||||||
B3 | 0.97 *** | ||||||||
B4 | 0.93 *** | 0.96 *** | |||||||
B5 | 0.00 | 0.11 *** | −0.05 *** | ||||||
B6 | 0.51 *** | 0.58 *** | 0.62 *** | 0.04 *** | |||||
B7 | 0.62 *** | 0.67 *** | 0.73 *** | −0.11 *** | 0.95 *** | ||||
NDVI | −0.70 *** | −0.69 *** | −0.81 *** | 0.51 *** | −0.51 *** | −0.67 *** | |||
MSAVI | −0.39 *** | −0.38 *** | −0.43 *** | 0.34 *** | −0.22 *** | −0.32 *** | 0.65 *** | ||
Elev. | 0.44 *** | 0.44 *** | 0.57 *** | −0.44 *** | 0.43 *** | 0.53 *** | −0.69 *** | −0.34 *** | |
Asp. | 0.06 *** | 0.06 *** | 0.05 *** | 0.05 *** | 0.13*** | 0.10*** | −0.02 *** | −0.01 *** | 0.02 *** |
MLA:Model | Mean Rank | Mean | SD | BCI 2.5% | BCI 97.5% |
---|---|---|---|---|---|
SVM:All | 5.9 | 0.81 | 0.10 | 0.75 | 0.85 |
SVM:PC | 7.1 | 0.78 | 0.11 | 0.72 | 0.85 |
RF:TC | 7.2 | 0.79 | 0.11 | 0.73 | 0.86 |
RF:All | 7.4 | 0.79 | 0.11 | 0.72 | 0.84 |
RF:PC | 8.0 | 0.78 | 0.11 | 0.70 | 0.84 |
RF:M56EA | 8.1 | 0.78 | 0.10 | 0.71 | 0.83 |
SVM:TC | 8.2 | 0.77 | 0.11 | 0.71 | 0.85 |
SVM:M56 | 8.6 | 0.76 | 0.12 | 0.69 | 0.84 |
kNN:M56 | 8.8 | 0.75 | 0.15 | 0.65 | 0.82 |
kNN:M56EA | 9.3 | 0.75 | 0.08 | 0.71 | 0.81 |
kNN:TC | 9.4 | 0.75 | 0.10 | 0.69 | 0.81 |
SVM:M56EA | 10.2 | 0.73 | 0.14 | 0.65 | 0.81 |
RF:M56 | 11.3 | 0.72 | 0.14 | 0.64 | 0.79 |
kNN:PC | 11.3 | 0.73 | 0.10 | 0.67 | 0.79 |
RF:NA | 12.4 | 0.70 | 0.08 | 0.65 | 0.74 |
RF:N | 12.8 | 0.69 | 0.07 | 0.65 | 0.73 |
kNN:NA | 15.4 | 0.63 | 0.11 | 0.56 | 0.69 |
kNN:N | 15.6 | 0.65 | 0.10 | 0.59 | 0.71 |
SVM:N | 16.6 | 0.52 | 0.20 | 0.42 | 0.65 |
SVM:NA | 16.9 | 0.61 | 0.12 | 0.55 | 0.69 |
MLA:Model | Mean Rank | Mean | SD | BCI 2.5% | BCI 97.5% |
---|---|---|---|---|---|
SVM:All | 4.9 | 0.43 | 0.13 | 0.37 | 0.53 |
RF:TC | 7.8 | 0.35 | 0.17 | 0.28 | 0.48 |
SVM:M56EA | 7.9 | 0.36 | 0.20 | 0.26 | 0.48 |
RF:PC | 8.4 | 0.32 | 0.11 | 0.26 | 0.38 |
RF:M56EA | 8.9 | 0.33 | 0.12 | 0.26 | 0.42 |
RF:All | 9.0 | 0.32 | 0.12 | 0.25 | 0.39 |
SVM:TC | 9.0 | 0.35 | 0.22 | 0.26 | 0.56 |
SVM:M56 | 9.2 | 0.32 | 0.13 | 0.25 | 0.40 |
RF:NA | 9.5 | 0.31 | 0.14 | 0.21 | 0.38 |
RF:M56 | 9.9 | 0.29 | 0.18 | 0.19 | 0.41 |
kNN:M56 | 10.5 | 0.29 | 0.09 | 0.24 | 0.35 |
kNN:N | 11.0 | 0.30 | 0.20 | 0.18 | 0.42 |
kNN:M56EA | 11.4 | 0.29 | 0.15 | 0.22 | 0.41 |
SVM:PC | 11.5 | 0.27 | 0.15 | 0.20 | 0.40 |
kNN:NA | 11.6 | 0.26 | 0.11 | 0.21 | 0.36 |
RF:N | 11.7 | 0.26 | 0.12 | 0.16 | 0.32 |
kNN:PC | 12.4 | 0.25 | 0.10 | 0.20 | 0.33 |
SVM:NA | 13.1 | 0.22 | 0.16 | 0.13 | 0.31 |
kNN:TC | 13.1 | 0.24 | 0.08 | 0.19 | 0.28 |
SVM:N | 19.6 | 0.03 | 0.03 | 0.02 | 0.06 |
Model 1: M56EA | Model 2: M56 | ||||
kNN | SVM | kNN | SVM | ||
SVM | 0.97 | – | SVM | 0.64 | – |
RF | 0.90 | 0.97 | RF | 0.97 | 0.50 |
Model 3: NA | Model 4: N | ||||
kNN | SVM | kNN | SVM | ||
SVM | 0.90 | – | SVM | 0.64 | – |
RF | 0.50 | 0.26 | RF | 0.64 | 0.17 |
Model 5: PC | Model 6: TC | ||||
kNN | SVM | kNN | SVM | ||
SVM | 0.26 | – | SVM | 0.37 | – |
RF | 0.17 | 0.97 | RF | 0.78 | 0.78 |
Model 1: M56EA | Model 2: M56 | ||||
kNN | SVM | kNN | SVM | ||
SVM | 0.17 | – | SVM | 0.97 | – |
RF | 0.64 | 0.64 | RF | 0.64 | 0.50 |
Model 3: NA | Model 4: N | ||||
kNN | SVM | kNN | SVM | ||
SVM | 0.94 | – | SVM | 0.02 | – |
RF | 0.57 | 0.37 | RF | 1.0 | 0.02 |
Model 5: PC | Model 6: TC | ||||
kNN | SVM | kNN | SVM | ||
SVM | 0.261 | – | SVM | 0.173 | – |
RF | 0.037 | 0.644 | RF | 0.065 | 0.896 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vega Isuhuaylas, L.A.; Hirata, Y.; Ventura Santos, L.C.; Serrudo Torobeo, N. Natural Forest Mapping in the Andes (Peru): A Comparison of the Performance of Machine-Learning Algorithms. Remote Sens. 2018, 10, 782. https://doi.org/10.3390/rs10050782
Vega Isuhuaylas LA, Hirata Y, Ventura Santos LC, Serrudo Torobeo N. Natural Forest Mapping in the Andes (Peru): A Comparison of the Performance of Machine-Learning Algorithms. Remote Sensing. 2018; 10(5):782. https://doi.org/10.3390/rs10050782
Chicago/Turabian StyleVega Isuhuaylas, Luis Alberto, Yasumasa Hirata, Lenin Cruyff Ventura Santos, and Noemi Serrudo Torobeo. 2018. "Natural Forest Mapping in the Andes (Peru): A Comparison of the Performance of Machine-Learning Algorithms" Remote Sensing 10, no. 5: 782. https://doi.org/10.3390/rs10050782
APA StyleVega Isuhuaylas, L. A., Hirata, Y., Ventura Santos, L. C., & Serrudo Torobeo, N. (2018). Natural Forest Mapping in the Andes (Peru): A Comparison of the Performance of Machine-Learning Algorithms. Remote Sensing, 10(5), 782. https://doi.org/10.3390/rs10050782