Impacts of 3D Aerosol, Cloud, and Water Vapor Variations on the Recent Brightening during the South Asian Monsoon Season
<p>Temporal variations in spatial average AOD from (<b>a</b>) CALIPSO and MODIS during the monsoon season and (<b>b</b>) the vertical average aerosol extinction coefficient at 532 nm in South Asia from 2006 to 2015, respectively. The dashed lines indicate the linear fit line of the solid line with the same color; <span class="html-italic">p</span> is the significance level.</p> "> Figure 2
<p>Temporal variations in spatial average vertical cloud physical parameters from CloudSat during the monsoon season in South Asia from 2006 to 2015: (<b>a</b>) cloud vertical frequency distribution, and liquid and ice (<b>b</b>,<b>e</b>) water content, (<b>c</b>,<b>f</b>) effective radius, and (<b>d</b>,<b>g</b>) number concentration.</p> "> Figure 3
<p>Temporal variations in spatial average (<b>a</b>) cloud fraction and CWP, as well as (<b>b</b>) uppermost CTH, lowermost CBH and CGD; spatial distributions of the temporal changes in average (<b>c</b>) cloud fraction, (<b>d</b>) CH, (<b>e</b>) CWP, and (<b>f</b>) CGD from CloudSat during the monsoon season in South Asia from 2006 to 2015. The dashed lines indicate the linear fit line of the solid line with the same color; <span class="html-italic">p</span> is the significance level.</p> "> Figure 4
<p>Temporal variations in spatial average vertical (<b>a</b>) SW, (<b>b</b>) LW, and (<b>c</b>) net heat rating in all-sky conditions from CloudSat during the monsoon season in South Asia from 2006 to 2015.</p> "> Figure 5
<p>(<b>a</b>) Temporal variations in spatial average CRE at the TOA and surface, and (<b>b</b>) spatial distribution of the temporal changes in average SW CRE from CloudSat at the surface during the monsoon season in South Asia from 2006 to 2015. The dashed lines indicate the linear fit line of the solid line with the same color; <span class="html-italic">p</span> is the significance level.</p> "> Figure 6
<p>Temporal variations in spatial average vertical RH in (<b>a</b>) all-sky and (<b>c</b>) clear-sky conditions; spatial distribution of temporal changes in the average PW in (<b>b</b>) all-sky and (<b>d</b>) clear-sky conditions from the ECMWF-AUX during the monsoon season in South Asia from 2006 to 2015.</p> "> Figure 7
<p>Temporal variations in spatial average (<b>a</b>) PW (blue line) and SSR in clear-sky conditions from BUGSrad (red line) and CloudSat (orange line); spatial distribution of temporal changes in average (<b>b</b>) SSR from BUGSrad in clear-sky conditions during the monsoon season in South Asia from 2006 to 2015. The dashed lines indicate the linear fit line of the solid line with the same color; <span class="html-italic">p</span> is the significance level.</p> "> Figure 8
<p>Temporal variations in spatial average PW in (<b>a</b>) all-sky and (<b>b</b>) clear-sky conditions at different ranges of altitude during the monsoon season in South Asia from 2006 to 2015. The dashed lines indicate the linear fit line of the solid line with the same color; <span class="html-italic">p</span> is the significance level.</p> "> Figure 9
<p>Temporal variations in (<b>a</b>) spatial average AOD from MODIS and (<b>b</b>) SSR from CERES during the pre-monsoon, monsoon, and dry seasons in South Asia from 2006 to 2015, respectively. The dashed lines indicate the linear fit line of the solid line with the same color; <span class="html-italic">p</span> is the significance level.</p> "> Figure 10
<p>Schematic of the impacts of 3D aerosol, cloud, and water vapor variations on brightening during the monsoon season in South Asia from 2006 to 2015. Background gradient color represents the changing RH. The relative humidity is high when the color is dark.</p> ">
Abstract
:1. Introduction
2. Data and Methodology
2.1. Data Preparation
2.2. Methodology
3. Results
3.1. Changes in Aerosols
3.2. Effects of Clouds
3.3. Effects of Water Vapor
4. Extended Discussion of Seasonal Differences
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
3D | Three-dimensional |
AERONET | Aerosol Robotic Network |
AOD | Aerosol optical depth |
CALIPSO | Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations |
CBH | Cloud base height |
CERES | Clouds and the Earth’s Radiant Energy System |
CGD | Cloud geometrical depth |
CH | Cloud height |
CRE | Cloud radiative effect |
CTH | Cloud top height |
CWP | Cloud water path |
ECMWF | European Centre for Medium-Range Weather Forecast |
MODIS | Moderate Resolution Imaging Spectroradiometer |
PW | Precipitable water |
RH | Relative humidity |
SW | Shortwave |
LW | Longwave |
SSR | Surface shortwave radiation |
TOA | Top of atmosphere |
References
- Wild, M. Enlightening Global Dimming and Brightening. Bull. Am. Meteorol. Soc. 2012, 93, 27–37. [Google Scholar] [CrossRef]
- Wild, M.; Gilgen, H.; Roesch, A.; Ohmura, A.; Long, C.N.; Dutton, E.G.; Forgan, B.; Kallis, A.; Russak, V.; Tsvetkov, A. From dimming to brightening: Decadal changes in solar radiation at Earth’s surface. Science 2005, 308, 847–850. [Google Scholar] [CrossRef] [PubMed]
- Haywood, J.M.; Nicolas, B.; Andy, J.; Olivier, B.; Martin, W.; Shine, K.P. The roles of aerosol, water vapor and cloud in future global dimming/brightening. J. Geophys. Res. Atmos. 2011, 116, D20. [Google Scholar] [CrossRef]
- Liepert, B.G. Observed reductions of surface solar radiation at sites in the United States and worldwide from 1961 to 1990. Geophys. Res. Lett. 2002, 29, 61-1–61-4. [Google Scholar] [CrossRef]
- Long, C.N.; Dutton, E.G.; Augustine, J.A.; Wiscombe, W.; Wild, M.; Mcfarlane, S.A.; Flynn, C.J. Significant decadal brightening of downwelling shortwave in the continental United States. J. Geophys. Res. Atmos. 2009, 114, 1291–1298. [Google Scholar] [CrossRef]
- Wild, M. Global dimming and brightening: A review. J. Geophys. Res. Atmos. 2009, 114, D00D16. [Google Scholar] [CrossRef]
- Wild, M.; Trüssel, B.; Ohmura, A.; Long, C.N.; König-Langlo, G.; Dutton, E.G.; Anatoly, T. Global dimming and brightening: An update beyond 2000. J. Geophys. Res. Atmos. 2009, 114, 895–896. [Google Scholar] [CrossRef]
- Wang, Y.; Wild, M. A new look at solar dimming and brightening in China. Geophys. Res. Lett. 2016, 43, 11777–11785. [Google Scholar] [CrossRef]
- Soni, V.K.; Pandithurai, G.; Pai, D.S. Is there a transition of solar radiation from dimming to brightening over India? Atmos. Res. 2016, 169, 209–224. [Google Scholar] [CrossRef]
- Padma, K.B.; Londhe, A.L.; Daniel, S.; Jadhav, D.B. Observational evidence of solar dimming: Offsetting surface warming over India. Geophys. Res. Lett. 2007, 34, 377–390. [Google Scholar]
- Willson, R.C.; Mordvinov, A.V. Secular total solar irradiance trend during solar cycles 21–23. Geophys. Res. Lett. 2003, 30, 1199. [Google Scholar] [CrossRef]
- Kim, D.; Ramanathan, V. Solar radiation budget and radiative forcing due to aerosols and clouds. J. Geophys. Res. Atmos. 2008, 113, 194–204. [Google Scholar] [CrossRef]
- Kvalevåg, M.M.; Myhre, G. Human Impact on Direct and Diffuse Solar Radiation during the Industrial Era. J. Clim. 2007, 20, 4874–4883. [Google Scholar] [CrossRef]
- Kambezidis, H.D.; Kaskaoutis, D.G.; Kharol, S.K.; Moorthy, K.K.; Satheesh, S.K.; Kalapureddy, M.C.R.; Badarinath, K.V.S.; Sharma, A.R.; Wild, M. Multi-decadal variation of the net downward shortwave radiation over south Asia: The solar dimming effect. Atmos. Environ. 2012, 50, 360–372. [Google Scholar] [CrossRef]
- Folini, D.; Wild, M. Aerosol emissions and dimming/brightening in Europe: Sensitivity studies with ECHAM5-HAM. J. Geophys. Res. Atmos. 2011, 116, 21104. [Google Scholar] [CrossRef]
- Remer, L.A.; Kaufman, Y.J.; Tanré, D.; Mattoo, S.; Chu, D.A.; Martins, J.V.; Li, R.R.; Ichoku, C.; Levy, R.C.; Kleidman, R.G. The MODIS Aerosol Algorithm, Products, and Validation. J. Atmos. Sci. 2005, 62, 947–973. [Google Scholar] [CrossRef]
- Winker, D.M.; Pelon, J.; Coakley, J.A.; Ackerman, S.A.; Charlson, R.J.; Colarco, P.R.; Flamant, P.; Fu, Q.; Hoff, R.M.; Kittaka, C. The CALIPSO Mission: A Global 3D View of Aerosols and Clouds. Bull. Am. Meteorol. Soc. 2010, 91, 1211–1229. [Google Scholar] [CrossRef]
- L'Ecuyer, T.S.; Wood, N.B.; Haladay, T.; Stephens, G.L.; Stackhouse, P.W. Impact of clouds on atmospheric heating based on the R04 CloudSat fluxes and heating rates data set. J. Geophys. Res. Atmos. 2008, 113, 2013–2018. [Google Scholar] [CrossRef]
- Uppala, S.M.; Kållberg, P.W.; Simmons, A.J.; Andrae, U.; Bechtold, V.D.C.; Fiorino, M.; Gibson, J.K.; Haseler, J.; Hernandez, A.; Kelly, G.A. The ERA-40 re-analysis. Q. J. R. Meteorol. Soc. 2005, 131, 2961–3012. [Google Scholar] [CrossRef]
- Loeb, N.G.; Wielicki, B.A.; Doelling, D.R.; Kato, S.; Wong, T.; Smith, G.L.; Keyes, D.F.; Manalosmith, N. Toward optimal closure of the earth's top-of-atmosphere radiation budget. J. Clim. 2009, 22, 748–766. [Google Scholar] [CrossRef]
- Omar, A.H.; Winker, D.M.; Kittaka, C.; Vaughan, M.A.; Liu, Z.; Hu, Y.; Trepte, C.R.; Rogers, R.R.; Ferrare, R.A.; Lee, K.-P. The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm. J. Atmos. Ocean. Technol. 2009, 26, 1994. [Google Scholar] [CrossRef]
- Hu, Y.; Winker, D.; Vaughan, M.; Lin, B.; Omar, A.; Trepte, C.; Flittner, D.; Yang, P.; Nasiri, S.L.; Baum, B. CALIPSO/CALIOP Cloud Phase Discrimination Algorithm. J. Atmos. Ocean. Technol. 2009, 26, 2293–2309. [Google Scholar] [CrossRef]
- Pan, Z.; Gong, W.; Mao, F.; Li, J.; Wang, W.; Li, C.; Min, Q. Macrophysical and optical properties of clouds over East Asia measured by CALIPSO. J. Geophys. Res. Atmos. 2015, 120, 11653–11668. [Google Scholar] [CrossRef]
- Henderson, D.S.; L'Ecuyer, T.; Stephens, G.; Partain, P.; Sekiguchi, M. A Multisensor Perspective on the Radiative Impacts of Clouds and Aerosols. J. Appl. Meteorol. Climatol. 2013, 52, 853–871. [Google Scholar] [CrossRef]
- Mace, G.G.; Zhang, Q. The CloudSat radar-lidar geometrical profile product (RL-GeoProf): Updates, improvements, and selected results. J. Geophys. Res. Atmos. 2014, 119, 9441–9462. [Google Scholar] [CrossRef]
- Fu, Q.; Liou, K.N. On the Correlated k-Distribution Method for Radiative Transfer in Nonhomogeneous Atmospheres. J. Atmos. Sci. 1992, 49, 2139–2156. [Google Scholar] [CrossRef]
- Stephens, G.L.; Gabriel, P.M.; Partain, P.T. Parameterization of Atmospheric Radiative Transfer. Part I: Validity of Simple Models. J. Atmos. Sci. 2001, 58, 3391–3409. [Google Scholar] [CrossRef]
- Pan, Z.; Mao, F.; Gong, W.; Min, Q.; Wang, W. The warming of Tibetan Plateau enhanced by 3D variation of low-level clouds during daytime. Remote Sens. Environ. 2017, 198, 363–368. [Google Scholar] [CrossRef]
- Logan, T.; Xi, B.; Dong, X. Aerosol properties and their influences on marine boundary layer cloud condensation nuclei at the ARM mobile facility over the Azores. J. Geophys. Res. Atmos. 2014, 119, 4859–4872. [Google Scholar] [CrossRef]
- Li, S.; Joseph, E.; Min, Q.; Yin, B. Multi-year ground-based observations of aerosol-cloud interactions in the Mid-Atlantic of the United States. J. Quant. Spectrosc. Radiat. Transf. 2016, 188, 192–199. [Google Scholar] [CrossRef]
- Sohn, B.J.; Nakajima, T.; Satoh, M.; Jang, H.S. Impact of different definitions of clear-sky flux on the determination of longwave cloud radiative forcing: NICAM simulation results. Atmos. Chem. Phys. 2010, 10, 11641–11646. [Google Scholar] [CrossRef] [Green Version]
- Bock, O.; Keil, C.; Richard, E.; Flamant, C.; Bouin, M.N. Validation of precipitable water from ECMWF model analyses with GPS and radiosonde data during the MAP SOP. Q. J. R. Meteorol. Soc. 2010, 131, 3013–3036. [Google Scholar] [CrossRef] [Green Version]
- Grandey, B.S.; Stier, P.; Wagner, T.M. Investigating relationships between aerosol optical depth and cloud fraction using satellite, aerosol reanalysis and general circulation model data. Atmos. Chem. Phys. 2013, 17, 30805–30823. [Google Scholar] [CrossRef]
- Ma, X.; Bartlett, K.; Harmon, K.; Yu, F. Comparison of AOD between CALIPSO and MODIS: Significant differences over major dust and biomass burning regions. Atmos. Meas. Tech. 2013, 6, 2391–2401. [Google Scholar] [CrossRef]
- Tian, P.; Cao, X.; Zhang, L.; Sun, N.; Sun, L.; Logan, T.; Shi, J.; Wang, Y.; Ji, Y.; Lin, Y. Aerosol vertical distribution and optical properties over China from long-term satellite and ground-based remote sensing. Atmos. Chem. Phys. 2017, 17, 1–47. [Google Scholar] [CrossRef]
- Yu, H.; Chin, M.; Winker, D.M.; Omar, A.H.; Liu, Z.; Kittaka, C.; Diehl, T. Global view of aerosol vertical distributions from CALIPSO lidar measurements and GOCART simulations: Regional and seasonal variations. J. Geophys. Res. Atmos. 2010, 115, D4. [Google Scholar] [CrossRef]
- Guo, J.; Liu, H.; Wang, F.; Huang, J.; Xia, F.; Lou, M.; Wu, Y.; Jiang, J.H.; Xie, T.; Zhaxi, Y. Three-dimensional structure of aerosol in China: A perspective from multi-satellite observations. Atmos. Res. 2016, 178–179, 580–589. [Google Scholar] [CrossRef]
- Suresh, B.S.; Manoj, M.R.; Krishna, M.K.; Gogoi, M.M.; Nair, V.S.; Kumar, K.S.; Satheesh, S.K.; Niranjan, K.; Ramagopal, K.; Bhuyan, P.K. Trends in aerosol optical depth over Indian region: Potential causes and impact indicators. J. Geophys. Res. Atmos. 2013, 118, 11, 794–711, 806. [Google Scholar]
- Srivastava, R. Trends in aerosol optical properties over South Asia. Int. J. Clim. 2016, 37, 371–380. [Google Scholar] [CrossRef]
- Kaskaoutis, D.G.; Singh, R.P.; Gautam, R.; Sharma, M.; Kosmopoulos, P.G.; Tripathi, S.N. Variability and trends of aerosol properties over Kanpur, northern India using AERONET data (2001–10). Environ. Res. Lett. 2012, 7, 24003–24009. [Google Scholar] [CrossRef]
- Bibi, H.; Alam, K.; Chishtie, F.; Bibi, S.; Shahid, I.; Blaschke, T. Intercomparison of MODIS, MISR, OMI, and CALIPSO aerosol optical depth retrievals for four locations on the Indo-Gangetic plains and validation against AERONET data. Atmos. Environ. 2015, 111, 113–126. [Google Scholar] [CrossRef]
- Thorsen, T.J.; Fu, Q. CALIPSO-inferred aerosol direct radiative effects: Bias estimates using ground-based Raman lidars. J. Geophys. Res. Atmos. 2016, 120, 12–209. [Google Scholar] [CrossRef]
- Li, S.; Joseph, E.; Min, Q. Remote sensing of ground-level PM2.5 combining AOD and backscattering profile. Remote Sens. Environ. 2016, 183, 120–128. [Google Scholar] [CrossRef]
- Das, S.; Dey, S.; Dash, S.K.; Giuliani, G.; Solmon, F. Dust aerosol feedback on the Indian summer monsoon: Sensitivity to absorption property. J. Geophys. Res. Atmos. 2015, 120, 9642–9652. [Google Scholar] [CrossRef]
- Logan, T.; Xi, B.; Dong, X.; Li, Z.; Cribb, M. Classification and investigation of Asian aerosol absorptive properties. Atmos. Chem. Phys. 2013, 13, 2253–2265. [Google Scholar] [CrossRef]
- Ruiz-Arias, J.A.; Gueymard, C.A.; Santos-Alamillos, F.J.; Pozo-Vázquez, D. Worldwide impact of aerosol’s time scale on the predicted long-term concentrating solar power potential. Sci. Rep. 2016, 6, 30546. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Zhang, R.; Wang, H. Comparing occurrences and vertical structures of hydrometeors between eastern China and the Indian monsoon region using CloudSat/CALIPSO data. J. Clim. 2009, 22, 1052–1064. [Google Scholar] [CrossRef]
- Ackerman, A.S.; Toon, O.B.; Stevens, D.E.; Heymsfield, A.J.; Ramanathan, V.; Welton, E.J. Reduction of tropical cloudiness by soot. Science 2000, 288, 1042–1047. [Google Scholar] [CrossRef] [PubMed]
- Bollasina, M.A.; Ming, Y.; Ramaswamy, V. Anthropogenic Aerosols and the Weakening of the South Asian Summer Monsoon. Science 2011, 334, 502–505. [Google Scholar] [CrossRef] [PubMed]
- Norris, J.R.; Allen, R.J.; Evan, A.T.; Zelinka, M.D.; O’Dell, C.W.; Klein, S.A. Evidence for climate change in the satellite cloud record. Nature 2016, 536, 72. [Google Scholar] [CrossRef] [PubMed]
- Turner, A.G.; Annamalai, H. Climate change and the South Asian summer monsoon. Nat.Clim. Chang. 2012, 2, 587–595. [Google Scholar] [CrossRef]
- Yang, K.; Ding, B.; Qin, J.; Tang, W.; Ning, L.; Lin, C. Can aerosol loading explain the solar dimming over the Tibetan Plateau. Geophys. Res. Lett. 2012, 39, L20710. [Google Scholar] [CrossRef]
- Christensen, M.W.; Chen, Y.C.; Stephens, G.L. Aerosol indirect effect dictated by liquid clouds. J. Geophys. Res. Atmos. 2016, 121, 14636–14650. [Google Scholar] [CrossRef]
- Wang, W.; Mao, F.; Pan, Z.; Du, L.; Gong, W. Validation of VIIRS AOD through a Comparison with a Sun Photometer and MODIS AODs over Wuhan. Remote Sens. 2017, 9, 403. [Google Scholar] [CrossRef]
- Levy, R.C.; Mattoo, S.; Munchak, L.A.; Remer, L.A. The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Z.; Mao, F.; Wang, W.; Zhu, B.; Lu, X.; Gong, W. Impacts of 3D Aerosol, Cloud, and Water Vapor Variations on the Recent Brightening during the South Asian Monsoon Season. Remote Sens. 2018, 10, 651. https://doi.org/10.3390/rs10040651
Pan Z, Mao F, Wang W, Zhu B, Lu X, Gong W. Impacts of 3D Aerosol, Cloud, and Water Vapor Variations on the Recent Brightening during the South Asian Monsoon Season. Remote Sensing. 2018; 10(4):651. https://doi.org/10.3390/rs10040651
Chicago/Turabian StylePan, Zengxin, Feiyue Mao, Wei Wang, Bo Zhu, Xin Lu, and Wei Gong. 2018. "Impacts of 3D Aerosol, Cloud, and Water Vapor Variations on the Recent Brightening during the South Asian Monsoon Season" Remote Sensing 10, no. 4: 651. https://doi.org/10.3390/rs10040651
APA StylePan, Z., Mao, F., Wang, W., Zhu, B., Lu, X., & Gong, W. (2018). Impacts of 3D Aerosol, Cloud, and Water Vapor Variations on the Recent Brightening during the South Asian Monsoon Season. Remote Sensing, 10(4), 651. https://doi.org/10.3390/rs10040651