Characterization of Subgrid-Scale Variability in Particulate Matter with Respect to Satellite Aerosol Observations
"> Figure 1
<p>Study region showing Intra-Community Variability (ICV) monitoring sites and 4.4 km Multiangle Imaging SpectroRadiometer (MISR) grid over Southern California (Inset: Santa Barbara, CA).</p> "> Figure 2
<p>Map of Riverside, CA showing the 4.4 km MISR grid and the locations of ICV monitoring sites and the measured fine particulate matter (PM<sub>2.5</sub>) concentrations (μg/m<sup>3</sup>) in the cool season, illustrating the matching algorithm for subgrid-scale analyses.</p> "> Figure 3
<p>Boxplot empirical semivariograms showing distance (h in km) versus spatial semivariance <math display="inline"><semantics> <mrow> <mi>γ</mi> <mrow> <mo>(</mo> <mi>h</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> for (<b>a</b>) PM<sub>2.5</sub> warm season; (<b>b</b>) PM<sub>2.5</sub> cool season; (<b>c</b>) PM<sub>2.5–10</sub> warm season; (<b>d</b>) PM<sub>2.5–10</sub> cool season. Solid vertical lines denote median, edges of box denote the 25th and 75th percentiles, and the dashed line whiskers denote ±1.5 × IQR.</p> "> Figure 4
<p>Boxplot empirical semivariograms showing distance (h in km) versus spatial semivariance <math display="inline"><semantics> <mrow> <mi>γ</mi> <mrow> <mo>(</mo> <mi>h</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> for subgrid (<4.4 km) variability in (<b>a</b>) PM<sub>2.5</sub> cool season; (<b>b</b>) PM<sub>2.5–10</sub> cool season. Solid vertical lines denote median, edges of box denote the 25th and 75th percentiles, and the dashed line whiskers denote ±1.5 × IQR.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Particulate Matter Concentrations
2.2. MISR Aerosol Optical Depth and Derived Particulate Matter Concentrations
2.3. Data Processing
2.4. Statistical Analyses
3. Results
3.1. Assessment of Subgrid Variability
3.2. Assessment of Spatial Variance
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Pope, A.C.; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manage. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef]
- Franklin, M.; Zeka, A.; Schwartz, J. Association between PM2.5 and all-cause and specific-cause mortality in 27 US communities. J. Expo. Sci. Environ. Epidemiol. 2007, 17, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Brook, R.D.; Rajagopalan, S.; Pope, C.A.; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A.; et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef] [PubMed]
- Tétreault, L.; Doucet, M.; Gamache, P.; Fournier, M.; Brand, A.; Kosatsky, T. Childhood exposure to ambient air pollutants and the onset of asthma: An administrative cohort study in Québec. Environ. Health Perspect. 2016, 1276, 1276–1283. [Google Scholar] [CrossRef] [PubMed]
- Brauer, M.; Hoek, G.; Smit, H.A.; de Jongste, J.C.; Gerritsen, J.; Postma, D.S.; Kerkhof, M.; Brunekreef, B. Air pollution and development of asthma, allergy and infections in a birth cohort. Eur. Respir. J. 2007, 29, 879–888. [Google Scholar] [CrossRef] [PubMed]
- Urman, R.; McConnell, R.; Islam, T.; Avol, E.L.; Lurmann, F.W.; Vora, H.; Linn, W.S.; Rappaport, E.B.; Gilliland, F.D.; Gauderman, W.J. Associations of children’s lung function with ambient air pollution: Joint effects of regional and near-roadway pollutants. Thorax 2014, 69, 540–547. [Google Scholar] [CrossRef] [PubMed]
- Franklin, M.; Vora, H.; Avol, E.; McConnell, R.; Lurmann, F.; Liu, F.; Penfold, B.; Berhane, K.; Gilliland, F.; Gauderman, W.J. Predictors of intra-community variation in air quality. J. Expo. Sci. Environ. Epidemiol. 2012, 22, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, M.; Raftery, A.E. Model evaluation and spatial interpolation by Bayesian combination of observations with outputs from numerical models. Biometrics 2005, 61, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Isakov, V.; Irwin, J.S.; Ching, J. Using CMAQ for exposure modeling and characterizing the subgrid variability exposure estimates. J. Appl. Meteorol. Climatol. 2007, 46, 1354–1371. [Google Scholar] [CrossRef]
- Liu, Y.; Paciorek, C.J.; Koutrakis, P. Estimating regional spatial and temporal variability of PM2.5 concentrations using satellite data, meteorology, and land use information. Environ. Health Perspect. 2009, 117, 886–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Donkelaar, A.; Martin, R.V.; Brauer, M.; Boys, B.L. Use of satellite observations for long-term exposure assessment of global concentrations of fine particulate matter. Environ. Health Perspect. 2015, 123, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Franklin, M.; Kalashnikova, O.V.; Garay, M.J. Size-resolved particulate matter concentrations derived from 4.4 km resolution size-fractionated Multi-angle Imaging SpectroRadiometer (MISR) aerosol optical depth over Southern California. Remote Sens. Environ. 2017, 196, 312–323. [Google Scholar] [CrossRef]
- Jerrett, M.; Arain, A.; Kanaroglou, P.; Beckerman, B.; Potoglou, D.; Sahsuvaroglu, T.; Morrison, J.; Giovis, C. A review and evaluation of intraurban air pollution exposure models. J. Expo. Anal. Environ. Epidemiol. 2005, 15, 185–204. [Google Scholar] [CrossRef] [PubMed]
- Eeftens, M.; Tsai, M.Y.; Ampe, C.; Anwander, B.; Beelen, R.; Bellander, T.; Cesaroni, G.; Cirach, M.; Cyrys, J.; de Hoogh, K.; et al. Spatial variation of PM2.5, PM10, PM2.5 absorbance and PMcoarse concentrations between and within 20 European study areas and the relationship with NO2—Results of the ESCAPE project. Atmos. Environ. 2012, 62, 303–317. [Google Scholar] [CrossRef]
- Fruin, S.; Urman, R.; Lurmann, F.; McConnell, R.; Gauderman, J.; Rappaport, E.; Franklin, M.; Gilliland, F.D.; Shafer, M.; Gorski, P.; et al. Spatial variation in particulate matter components over a large urban area. Atmos. Environ. 2014, 83, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.G.; Kingham, S.; Pearce, J.; Sturman, A.P. A review of intraurban variations in particulate air pollution: Implications for epidemiological research. Atmos. Environ. 2005, 39, 6444–6462. [Google Scholar] [CrossRef]
- Jerrett, M.; Burnett, R.T.; Ma, R.; Pope, C.A., 3rd; Krewski, D.; Newbold, K.B.; Thurston, G.; Shi, Y.; Finkelstein, N.; Calle, E.E.; et al. Spatial analysis of air pollution and mortality in Los Angeles. Epidemiology 2005, 16, 727–736. [Google Scholar] [CrossRef] [PubMed]
- Sampson, P.D.; Richards, M.; Szpiro, A.A.; Bergen, S.; Sheppard, L.; Larson, T.V.; Kaufman, J.D. A regionalized national universal kriging model using Partial Least Squares regression for estimating annual PM2.5 concentrations in epidemiology. Atmos. Environ. 2013, 75, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Paciorek, C.J.; Yanosky, J.D.; Puett, R.C.; Laden, F.; Suh, H.H. Practical large-scale spatio-temporal modeling of particulate matter concentrations. Ann. Appl. Stat. 2009, 3, 370–397. [Google Scholar] [CrossRef]
- Brauer, M.; Amann, M.; Burnett, R.T.; Cohen, A.; Dentener, F.; Ezzati, M.; Henderson, S.B.; Krzyzanowski, M.; Martin, R.V; Van Dingenen, R.; et al. Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution. Environ. Sci. Technol. 2012, 46, 652–660. [Google Scholar] [CrossRef] [PubMed]
- De Sherbinin, A.; Levy, M.A.; Zell, E.; Weber, S.; Jaiteh, M. Using satellite data to develop environmental indicators. Environ. Res. Lett. 2014, 9, 84013. [Google Scholar] [CrossRef]
- Liu, Y.; Franklin, M.; Kahn, R.; Koutrakis, P. Using aerosol optical thickness to predict ground-level PM2.5 concentrations in the St. Louis area: A comparison between MISR and MODIS. Remote Sens. Environ. 2007, 107, 33–44. [Google Scholar] [CrossRef]
- Van Donkelaar, A.; Martin, R.V.; Park, R.J. Estimating ground-level PM2.5 using aerosol optical depth determined from satellite remote sensing. J. Geophys. Res. Atmos. 2006, 111, 1–10. [Google Scholar] [CrossRef]
- Van Donkelaar, A.; Martin, R.V.; Spurr, R.J.D.; Drury, E.; Remer, L.A.; Levy, R.C.; Wang, J. Optimal estimation for global ground-level fine particulate matter concentrations. J. Geophys. Res. Atmos. 2013, 118, 5621–5636. [Google Scholar] [CrossRef]
- Weber, S.; Engel-Cox, J.; Hoff, R.; Parados, A.; Zhang, H. An improved method for estimating surface fine particle concentrations using seasonally adjusted satellite aerosol optical depth. J. Air Waste Manag. Assoc. 2010, 60, 574–585. [Google Scholar] [CrossRef] [PubMed]
- Levy, R.C.; Mattoo, S.; Munchak, L.A.; Remer, L.A.; Sayer, A.M.; Patadia, F.; Hsu, N.C. The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [Google Scholar] [CrossRef]
- Remer, L.A.; Mattoo, S.; Levy, R.C.; Munchak, L.A. MODIS 3 km aerosol product: Algorithm and global perspective. Atmos. Meas. Tech. 2013, 6, 1829–1844. [Google Scholar] [CrossRef]
- Nichol, J.E.; Bilal, M. Validation of MODIS 3 km resolution aerosol optical depth retrievals over Asia. Remote Sens. 2016, 8, 328. [Google Scholar] [CrossRef]
- Hsu, N.C.; Jeong, M.J.; Bettenhausen, C.; Sayer, A.M.; Hansell, R.; Seftor, C.S.; Huang, J.; Tsay, S.C. Enhanced Deep Blue aerosol retrieval algorithm: The second generation. J. Geophys. Res. Atmos. 2013, 118, 9296–9315. [Google Scholar] [CrossRef]
- Lyapustin, A.; Wang, Y.; Laszlo, I.; Kahn, R.; Korkin, S.; Remer, L.; Levy, R.; Reid, J.S. Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm. J. Geophys. Res. Atmos. 2011, 116, 1–15. [Google Scholar] [CrossRef]
- Garay, M.J.; Kalashnikova, O.V.; Bull, M.A. Development and assessment of a high spatial resolution (4.4 km) MISR aerosol product using AERONET-DRAGON Data. Atmos. Chem. Phys. Discuss. 2016, 17, 18–28. [Google Scholar] [CrossRef]
- Diner, D.J.; Beckert, J.C.; Bothwell, G.W.; Rodriguez, J.I. Performance of the MISR instrument during its first 20 months in earth orbit. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1449–1466. [Google Scholar] [CrossRef]
- Kahn, R.A.; Gaitley, B.J. An analysis of global aerosol type as retrieved by MISR. J. Geophys. Res. Atmos. 2015, 120, 4248–4281. [Google Scholar] [CrossRef]
- Kahn, R.A.; Gaitley, B.J.; Martonchik, J.V; Diner, D.J.; Crean, K.A. Multiangle Imaging Spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident Aerosol Robotic Network (AERONET ) observations. J. Geophys. Res. 2005, 110, 1–16. [Google Scholar] [CrossRef]
- Van Donkelaar, A.; Martin, R.V.; Brauer, M.; Kahn, R.; Levy, R.; Verduzco, C.; Villeneuve, P.J. Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: Development and application. Environ. Health Perspect. 2010, 118, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Weijers, E.P.; Khlystov, A.Y.; Kos, G.P.A.; Erisman, J.W. Variability of particulate matter concentrations along roads and motorways determined by a moving measurement unit. Atmos. Environ. 2004, 38, 2993–3002. [Google Scholar] [CrossRef]
- Paciorek, C.J. Combining spatial information sources while accounting for systematic errors in proxies. J. R. Stat. Soc. 2011, 61, 429–451. [Google Scholar] [CrossRef]
- Ching, J.; Majeed, M.A. An approach to characterize within-grid concentration variability in air quality models. Atmos. Environ. 2012, 49, 348–360. [Google Scholar] [CrossRef]
- Peters, J.M.; Avol, E.; Gauderman, W.J.; Linn, W.S.; Navidi, W.; London, S.J.; Margolis, H.; Rappaport, E.; Vora, H.; Gong, H.; et al. A study of twelve Southern California communities with differing levels and types of air pollution: II. Effects on pulmonary function. Am. J. Respir. Crit. Care Med. 1999, 159, 768–775. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Demokritou, P.; Koutrakis, P.; Delgado-Saborit, J.M. Development and evaluation of personal respirable particulate sampler (PRPS). Atmos. Environ. 2006, 40, 212–224. [Google Scholar] [CrossRef]
- Martonchik, J.V.; Kahn, R.; Diner, D.J. Retrieval of aerosol properties over land using MISR observations. In Satellite Aerosol Remote Sensing Over land; Kokhanovsky, A.A., de Leeuw, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 267–293. [Google Scholar]
- Dey, S.; Di Girolamo, L. A climatology of aerosol optical and microphysical properties over the Indian subcontinent from 9 years (2000–2008) of Multiangle Imaging Spectroradiometer (MISR) data. J. Geophys. Res. 2010, 115, D15204. [Google Scholar] [CrossRef]
- Cressie, N.A. Statistics for Spatial Data; Revised Edition; John Wiley & Sons: New York, NY, USA, 2015; 928p. [Google Scholar]
- Sardar, S.B.; Fine, P.M.; Sioutas, C. Seasonal and spatial variability of the size-resolved chemical composition of particulate matter (PM10) in the Los Angeles Basin. J. Geophys. Res. 2005, 110, D07S08. [Google Scholar] [CrossRef]
- Bell, M.L.; Ebisu, K.; Peng, R.D. Community-level spatial heterogeneity of chemical constituent levels of fine particulates and implications for epidemiological research. J. Expo. Sci. Environ. Epidemiol. 2010, 21, 372–384. [Google Scholar] [CrossRef] [PubMed]
- Gauderman, W.J.; Avol, E.; Lurmann, F.; Kuenzli, N.; Gilliland, F.; Peters, J.; McConnell, R. Childhood asthma and exposure to traffic and nitrogen dioxide. Epidemiology 2005, 16, 737–743. [Google Scholar] [CrossRef] [PubMed]
- Eckel, S.P.; Berhane, K.; Salam, M.T.; Rappaport, E.B.; Linn, W.S.; Bastain, T.M.; Zhang, Y.; Lurmann, F.; Avol, E.L.; Gilliland, F.D. Residential traffic-related pollution exposures and exhaled nitric oxide in the children’s health study. Environ. Health Perspect. 2011, 119, 1472–1477. [Google Scholar] [CrossRef] [PubMed]
- Health Effects Institute. Traffic Related Air Pollution: A Critical Review of the Literature on Emissions, Exposure, and Health Effects; Special Report 17; Health Effects Institute: Boston, MA, USA, 2010. [Google Scholar]
- Paciorek, C.J.; Liu, Y. Limitations of remotely sensed aerosol as a spatial Proxy. Environ. Health Perspect. 2009, 117, 904–909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jerrett, M.; Turner, M.C.; Beckerman, B.S.; Arden Pope, C., III; van Donkelaar, A. Comparing the health effects of ambient particulate matter estimated using ground-based versus remote sensing exposure estimates. Environ. Health Perspect. 2017, 552, 552–560. [Google Scholar] [CrossRef] [PubMed]
Community | ICV N * | ICV in MISR Grid N * | ICV PM2.5 ** Warm Mean (s.d.) | ICV PM2.5 Cool Mean (s.d.) | ICV PM2.5–10 Warm Mean (s.d.) | ICV PM2.5–10 Cool Mean (s.d.) |
---|---|---|---|---|---|---|
Anaheim | 23 | 8 | 15.9 (1.47) | 13.8 (1.04) | 14.8 (3.31) | 11.3 (0.95) |
Glendora | 27 | 8 | 15.3 (2.09) | 11.0 (1.68) | 10.1 (1.01) | 8.85 (0.86) |
Long Beach | 26 | 4 | 15.0 (1.55) | 13.4 (1.0) | 14.9 (3.83) | 12.6 (1.61) |
Mira Loma | 25 | 6 | 19.3 (1.59) | 24.3 (3.2) | 19.2 (6.00) | 20.5 (4.28) |
Riverside | 23 | 6 | 14.5 (1.37) | 15.8 (0.86) | 17.0 (3.06) | 13.0 (1.33) |
San Dimas | 25 | 6 | 14.0 (1.48) | 15.5 (1.37) | 13.1 (1.09) | 12.6 (1.43) |
Santa Barbara | 26 | 9 | 11.9 (1.09) | 11.0 (1.98) | 10.3 (2.71) | 11.3 (1.64) |
Upland | 24 | 8 | 16.9 (0.84) | 7.14 (0.82) | 14.3 (1.25) | 4.45 (0.71) |
Overall | 199 | 7 | 15.0 (2.61) | 14.0 (4.92) | 13.8 (4.31) | 11.9 (4.54) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franklin, M.; Kalashnikova, O.V.; Garay, M.J.; Fruin, S. Characterization of Subgrid-Scale Variability in Particulate Matter with Respect to Satellite Aerosol Observations. Remote Sens. 2018, 10, 623. https://doi.org/10.3390/rs10040623
Franklin M, Kalashnikova OV, Garay MJ, Fruin S. Characterization of Subgrid-Scale Variability in Particulate Matter with Respect to Satellite Aerosol Observations. Remote Sensing. 2018; 10(4):623. https://doi.org/10.3390/rs10040623
Chicago/Turabian StyleFranklin, Meredith, Olga V. Kalashnikova, Michael J. Garay, and Scott Fruin. 2018. "Characterization of Subgrid-Scale Variability in Particulate Matter with Respect to Satellite Aerosol Observations" Remote Sensing 10, no. 4: 623. https://doi.org/10.3390/rs10040623
APA StyleFranklin, M., Kalashnikova, O. V., Garay, M. J., & Fruin, S. (2018). Characterization of Subgrid-Scale Variability in Particulate Matter with Respect to Satellite Aerosol Observations. Remote Sensing, 10(4), 623. https://doi.org/10.3390/rs10040623