Comparison of Three Methods for Estimating GPS Multipath Repeat Time
"> Figure 1
<p>Flowchart of the comparison of MRT estimates derived by ORTM, ARTA, and RCM.</p> "> Figure 2
<p>Comparison of ORTM- and ARTA-derived MRT estimates. AVDOA is short for “the absolute value of the difference between ORTM- and ARTA-derived MRT”. The <span class="html-italic">y</span>-axis, showing “percentage of AVDOA no larger than 2 s”, is on the right side of the upper panel.</p> "> Figure 3
<p>Set-up of the data collection at East China Normal University. Two antennas connect to the same GNSS receiver. (<b>a</b>) One antenna mounted on a concrete pillar (Latitude: 31.035631°N; Longitude: 121.444421°E); (<b>b</b>) the other antenna set on the top of an A/C compressor (Latitude: 31.035640°N; Longitude: 121.444550°E).</p> "> Figure 4
<p>ORTM-, ARTA-, and RCM-derived MRT estimates for PRN 02, 06, 12, 18, 24, and 32. The <span class="html-italic">y</span>-axes denote the daily advance time. MRT estimate equals 86,400 s minus daily advance time. Legend shown on (<b>a</b>) is for the all (<b>a</b>–<b>f</b>).</p> "> Figure 5
<p>ORTM-, ARTA-, and RCM-derived MRT estimates for PRN13. The <span class="html-italic">y</span>-axis shows the daily advance time. MRT estimate equals 86,400 s minus daily advance time.</p> "> Figure 6
<p>Minimal angle (minimal <math display="inline"> <semantics> <mrow> <mi>α</mi> <mo stretchy="false">(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>t</mi> <mn>1</mn> </msub> <mo stretchy="false">)</mo> </mrow> </semantics> </math> value in ARTA) between receiver-to-satellite unit vectors of each two consecutive days from DOY 335 to 354, 2014. The black squares are the minimal angles for PRN 13; each value is a daily average. The red circles are the average minimal angles of all the satellites with the repeat time in the normal range.</p> "> Figure 7
<p>Maximal correlation coefficients (in RCM) of residual time series of each two consecutive days from DOY 335 to 354, 2014. The black squares are the maximal correlation coefficients for PRN 13. The red circles are the average maximal correlation coefficients of all the satellites with the repeat time in the normal range; the upper bound is the maximum of maximal correlation coefficients of all the satellites for each day; the lower bound is the minimum of that for each day.</p> "> Figure 8
<p>Baseline components estimated from the observables with ORTM-ASF correction, with ARTA-ASF correction, with RCM-ASF correction, and without any ASF correction for DOY 344, 2014. (<b>a</b>,<b>c</b>,<b>e</b>) are N, E, and U components estimated with satellite of PRN 13 excluded. (<b>b</b>,<b>d</b>,<b>f</b>) are N, E, and U components estimated with satellite of PRN 13 included. For comparison, time series of “ORTM-ASF”, “ARTA-ASF”, and “RCM-ASF” are shifted by −3, −6, and −9 cm for N and E, and by −5, −10, and −15 cm for U. Legend shown on (<b>a</b>) is for all of (<b>a</b>–<b>f</b>). The time series are shown from epoch 7130 to epoch 26,681, when the data of satellite PRN 13 were receivable.</p> "> Figure 9
<p>Residual time series of single-differenced observables for PRN 13 on DOY 344, 2014. For comparison, time series of “ORTM-ASF”, “ARTA-ASF”, and “RCM-ASF” are shifted by −1.5, −3, and −4.5 cm, respectively.</p> "> Figure 10
<p>MRT estimates for PRN02 and PRN16 on DOY 344, 2014. (<b>a</b>) MRT estimates derived (every two hours) by ORTM; (<b>b</b>) MRT estimates derived (every hour) by ARTA.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Orbit Repeat Time Method (ORTM)
2.2. Aspect Repeat Time Adjustment (ARTA)
2.3. Residual Correlation Method (RCM)
3. Experiment and Results
3.1. ORTM-Derived MRT vs. ARTA-Derived MRT
3.2. MRT Derived from the Three Methods
3.3. Effectiveness of Multipath Mitigation
3.4. Robustness, Computational Cost and Real-Time Application
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
GNSS | Global Navigation Satellite System |
GPS | Global Positioning System |
GLONASS | Globalnaya navigatsionnaya sputnikovaya Sistema |
BDS | BeiDou Navigation Satellite System |
GALILEO | Galileo Navigation Satellite System |
MRT | Multipath Repeat Time |
ORTM | Orbit Repeat Time Method |
ARTA | Aspect Repeat Time Adjustment |
RCM | Residual Correlation Method |
ASF | Advanced Sidereal Filtering |
DOY | Day of Year |
N, E, and U | North, East, and Up |
PRN | Pseudo Random Noise Code Number |
STD | Standard Deviation |
RMS | Root Mean Square |
IGS | International GNSS Service |
SOPAC | Scripps Orbit and Permanent Array Center |
CDDIS | Crustal Dynamics Data Information System |
References
- Hofmann-Wellenhof, B.; Lichtenegger, H.; Wasle, E. GNSS—Global Naviagtion Satellite System; Springer: Vienna, Austria, 2008; pp. 154–155. ISBN 978-3-211-73012-6. [Google Scholar]
- Park, K.; Nerem, R.; Schenewerk, M.; Davis, J. Site-specific multipath characteristics of global IGS and CORS GPS sites. J. Geod. 2004, 77, 799–803. [Google Scholar] [CrossRef]
- Bock, Y. Continuous monitoring of crustal deformation. GPS World 1991, 2, 40–47. [Google Scholar]
- Genrich, J.; Bock, Y. Rapid resolution of crustal motion at short ranges with the Global Positioning System. J. Geophys. Res. 1992, 97, 3261–3269. [Google Scholar] [CrossRef]
- Wübbena, G.; Schmitz, M.; Menge, F.; Seeber, G.; Völksen, C. A new approach for field calibration of absolute GPS antenna phase center variations. Navigation 1997, 44, 247–255. [Google Scholar] [CrossRef]
- Choi, K.; Bilich, A.; Larson, K.; Axelrad, P. Modified sidereal filtering: Implications for high-rate GPS positioning. Geophys. Res. Lett. 2004, 31, L22608. [Google Scholar] [CrossRef]
- Yin, H.; Gan, W.; Xiao, G. Modified sidereal filter and its effect on high-rate GPS positioning. Geomat. Inf. Sci. Wuhan Univ. 2011, 36, 609–611. [Google Scholar]
- Larson, K.; Bilich, A.; Axelrad, P. Improving the precision of high-rate GPS. J. Geophys. Res. 2007, 112, B05422. [Google Scholar] [CrossRef]
- Ragheb, A.; Clarke, P.; Edwards, S. GPS sidereal filtering: Coordinate and carrier-phase-level strategies. J. Geod. 2007, 81, 325–335. [Google Scholar] [CrossRef]
- Fang, R. High-Rate GPS Data Non-Difference Precise Processing and Its Application on Seismology. Ph.D. Thesis, Wuhan University, Wuhan, China, 2010. [Google Scholar]
- Zhong, P.; Ding, X.; Yuan, L.; Xu, Y.; Kwok, K.; Chen, Y. Sidereal filtering based on single differences for mitigating GPS multipath effects on short baselines. J. Geod. 2010, 84, 145–158. [Google Scholar] [CrossRef]
- Lau, L. Comparison of measurement and position domain multipath filtering techniques with the repeatable GPS orbits for static antennas. Surv. Rev. 2012, 44, 9–16. [Google Scholar] [CrossRef]
- Atkins, C.; Ziebart, M. Effectiveness of observation-domain sidereal filtering for GPS precise point positioning. GPS Solut. 2016, 20, 111–122. [Google Scholar] [CrossRef]
- Zheng, D.; Zhong, P.; Ding, X.; Chen, W. Filtering GPS time-series using a Vondrak filter and cross validation. J. Geod. 2005, 79, 363–369. [Google Scholar] [CrossRef]
- Shen, F.; Li, J.; Zhang, X.; Shu, C. The improved sidereal filtering of time series considering segments’ similarity in coseismic displacement. Acta Geod. Cartogr. Sin. 2013, 42, 487–492. [Google Scholar]
- Agnew, D.; Larson, K. Finding the repeat times of the GPS constellation. GPS Solut. 2007, 11, 71–76. [Google Scholar] [CrossRef]
- Axelrad, P.; Larson, K.; Jones, B. Use of the correct satellite repeat period to characterize and reduce site-specific multipath errors. In Proceedings of the ION GNSS 2005, Long Beach, CA, USA, 13–16 September 2005; pp. 2638–2648. [Google Scholar]
- Dong, D.; Wang, M.; Chen, W.; Zeng, Z.; Song, L.; Zhang, Q.; Cai, M.; Cheng, Y.; Lv, J. Mitigation of multipath effect in GNSS short baseline positioning by the multipath hemispherical map. J. Geod. 2016, 90, 255–262. [Google Scholar] [CrossRef]
- Dong, D.; Chen, W.; Cai, M.; Zhou, F.; Wang, M.; Yu, C.; Zheng, Z.; Wang, Y. Multi-antenna synchronized global navigation satellite system receiver and its advantages in high-precision positioning applications. Front. Earth Sci. 2016, 4, 772–783. [Google Scholar] [CrossRef]
- Cai, M.; Chen, W.; Dong, D.; Song, L.; Wang, M.; Wang, Z.; Zhou, F.; Zheng, Z.; Yu, C. Reduction of Kinematic Short Baseline Multipath Effects Based on Multipath Hemispherical Map. Sensors 2016, 16, 1677. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wang, J.; Dong, D.; Chen, W. Detecting and repairing cycle-slip for clock-synchronized dual-antenna global positioning system data based on single-differencing between antennas. J. Tongji Univ. Nat. Sci. 2016, 44, 462–468. [Google Scholar]
- Chen, W.; Yu, C.; Dong, D.; Cai, M.; Zhou, F.; Wang, Z.; Zhang, L.; Zheng, Z. Formal uncertainty and dispersion of single and double difference models for GNSS-based attitude determination. Sensors 2017, 17, 408. [Google Scholar] [CrossRef] [PubMed]
- Geng, J.; Jiang, P.; Liu, J. Integrating GPS with GLONASS for high-rate seismogeodesy. Geophys. Res. Lett. 2017, 44, 3139–3146. [Google Scholar] [CrossRef]
- Ye, S.; Chen, D.; Liu, Y.; Jiang, P.; Tang, W.; Xia, P. Carrier phase multipath mitigation for BeiDou navigation satellite system. GPS Solut. 2015, 19, 545–557. [Google Scholar] [CrossRef]
DOY | Baseline Component | STD (mm) | |||
---|---|---|---|---|---|
Without ASF | With ASF | ||||
ORTM-ASF | ARTA-ASF | RCM-ASF | |||
344 | N | 4.2539 | 2.0367 | 2.0385 | 2.0381 |
E | 2.9165 | 1.5699 | 1.5719 | 1.5712 | |
U | 6.6746 | 4.0606 | 4.0624 | 4.0604 | |
345 | N | 4.8240 | 2.4629 | 2.4626 | 2.4625 |
E | 3.1866 | 1.9315 | 1.9305 | 1.9301 | |
U | 8.8673 | 5.2794 | 5.2761 | 5.2704 | |
346 | N | 4.8628 | 2.5575 | 2.5555 | 2.5512 |
E | 3.0163 | 1.7367 | 1.7372 | 1.7365 | |
U | 7.8131 | 5.1112 | 5.1134 | 5.1047 |
DOY | Baseline Component | STD (mm) | |||
---|---|---|---|---|---|
Without ASF | With ASF | ||||
ORTM-ASF | ARTA-ASF | RCM-ASF | |||
344 | N | 3.5171 | 1.9142 | 1.8862 | 1.8857 |
E | 2.8904 | 1.5855 | 1.5613 | 1.5603 | |
U | 6.6472 | 4.0482 | 3.9842 | 3.9844 | |
345 | N | 4.0800 | 2.2783 | 2.2551 | 2.2548 |
E | 3.0700 | 1.8916 | 1.8656 | 1.8641 | |
U | 8.7254 | 5.0073 | 4.9048 | 4.8928 | |
346 | N | 4.0967 | 2.2461 | 2.2303 | 2.2264 |
E | 2.9853 | 1.6951 | 1.6768 | 1.6756 | |
U | 7.8988 | 4.7870 | 4.7254 | 4.7196 |
DOY | RMS (mm) | |||
---|---|---|---|---|
Without ASF | With ASF | |||
ORTM-ASF | ARTA-ASF | RCM-ASF | ||
344 | 3.5947 | 1.8189 | 1.7951 | 1.7940 |
345 | 3.4139 | 1.8683 | 1.8427 | 1.8397 |
346 | 2.9936 | 1.7128 | 1.6926 | 1.6919 |
PRN | Length of Residual Time Series for Correlation | ||||||
---|---|---|---|---|---|---|---|
1 h | 2 h | 3 h | 4 h | 5 h | 6 h | 7 h | |
PRN02 | 242 | 242 | 242 | 242 | 242 | 241 | 242 |
242 | 242 | 242 | 241 | 241 | 242 | ||
243 | 241 | 239 | 240 | 241 | |||
240 | 237 | 239 | 241 | ||||
235 | 239 | 242 | |||||
241 | 243 | ||||||
244 | |||||||
PRN16 | 240 | 240 | 241 | 241 | 242 | 242 | 243 |
241 | 242 | 242 | 243 | 243 | 243 | ||
243 | 243 | 244 | 243 | 243 | |||
242 | 245 | 243 | 243 | ||||
246 | 244 | 243 | |||||
242 | 242 | ||||||
242 |
Difference (s) | Number |
---|---|
−4 | 2 |
−3 | 0 |
−2 | 2 |
−1 | 1 |
0 | 21,348 |
1 | 2 |
2 | 3 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Wang, J.; Dong, D.; Li, H.; Han, L.; Chen, W. Comparison of Three Methods for Estimating GPS Multipath Repeat Time. Remote Sens. 2018, 10, 6. https://doi.org/10.3390/rs10020006
Wang M, Wang J, Dong D, Li H, Han L, Chen W. Comparison of Three Methods for Estimating GPS Multipath Repeat Time. Remote Sensing. 2018; 10(2):6. https://doi.org/10.3390/rs10020006
Chicago/Turabian StyleWang, Minghua, Jiexian Wang, Danan Dong, Haojun Li, Ling Han, and Wen Chen. 2018. "Comparison of Three Methods for Estimating GPS Multipath Repeat Time" Remote Sensing 10, no. 2: 6. https://doi.org/10.3390/rs10020006
APA StyleWang, M., Wang, J., Dong, D., Li, H., Han, L., & Chen, W. (2018). Comparison of Three Methods for Estimating GPS Multipath Repeat Time. Remote Sensing, 10(2), 6. https://doi.org/10.3390/rs10020006