Aerosol Microphysical Particle Parameter Inversion and Error Analysis Based on Remote Sensing Data
<p>Base functions curve under a logarithmic scale. <span class="html-italic">r<sub>g</sub></span><sub>,1</sub> of the first function (black line) is 0.14 μm, <span class="html-italic">r<sub>g</sub></span><sub>,2</sub> of the second function (red line) is 0.31 μm, <span class="html-italic">r<sub>g</sub></span><sub>,3</sub> of the third function (blue line) is 0.69 μm, <span class="html-italic">r<sub>g</sub></span><sub>,4</sub> of the fourth function (dark cyan line) is 1.57 μm, and <span class="html-italic">r<sub>g</sub></span><sub>,5</sub> of the last function (magenta line) is 3.54 μm.</p> "> Figure 2
<p>Estimation errors for number (<span class="html-italic">N</span>), surface (<span class="html-italic">S</span>), volume (<span class="html-italic">V</span>) concentration, particle effective radius <span class="html-italic">r<sub>eff</sub></span>, and averaged discrepancy as a function of the averaging interval for three main types of aerosols (<b>a</b>,<b>c</b>,<b>e</b>). Additionally, the retrieved volume size distribution (black square–solid line) for (<b>b</b>) urban industrial aerosol distribution, (<b>d</b>) biomass burning aerosol, and (<b>f</b>) desert dust/oceanic aerosol and their initial bimodal aerosol size distributions (red dot–solid line) are shown. The purple squares represent the chosen averaging interval of <span class="html-italic">ρ</span><sup>ave</sup>.</p> "> Figure 3
<p>Particle volume size distribution involved in the simulation.</p> "> Figure 4
<p>Inversion error of the effective radius. (<b>a</b>) error of the effective radius from the error-free data (red columns); (<b>b</b>) error of the effective radius from the data with 10% systematic error (blue columns); (<b>c</b>) error of the effective radius from the data with 15% random error (black columns).</p> "> Figure 5
<p>Inversion error of the volume concentration. (<b>a</b>) error of the volume concentration from the error-free data (red columns); (<b>b</b>) error of the volume concentration from the data with 10% systematic error (blue columns); (<b>c</b>) error of the volume concentration from the data with 15% random error (black columns).</p> "> Figure 6
<p>Inversion error of the number concentration. (<b>a</b>) error of the number concentration from the error-free data (red columns); (<b>b</b>) error of the number concentration from the data with 10% systematic error (blue columns); (<b>c</b>) error of the number concentration from the data with 15% random error (black columns).</p> "> Figure 7
<p>Comparison of the aerosol distribution and inversion distribution detected at two heights of (<b>a</b>) 376 m and (<b>b</b>) 605 m. The red dot is the aerosol volume concentration distribution measured by PCASP-100X, distribution 1 (dark line) is the retrieved data from the error-free data, distribution 2 (blue dot–solid line) is the retrieved data from the data with 10% systematic error and the distribution 3 (navy circle–hollow line) is the result from the data with 15% random error.</p> "> Figure 8
<p>(<b>a</b>) Measured aerosol effective radius, inversion effective radii and (<b>b</b>) the corresponding relative errors at the vertical heights.</p> "> Figure 9
<p>(<b>a</b>) Measured aerosol volume concentration, inversion volume concentration and (<b>b</b>) the corresponding relative error at the vertical heights.</p> "> Figure 10
<p>(<b>a</b>) Measured aerosol number concentration, inversion number concentration and (<b>b</b>) the corresponding relative error at the vertical heights.</p> ">
Abstract
:1. Introduction
2. Inversion Technique
3. Optimization of Inversion Algorithm
3.1. Selection of Base Function
3.2. Criterion of Inversion Results
4. Method Testing
5. Inversion of Actual Aerosol Size Distribution
6. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kwon, H.L.; Young, J.K.; Min, J.K. Characteristics of aerosol observed during two severe haze events overKorea in June and October 2004. Atmos. Environ. 2006, 40, 5146–5155. [Google Scholar]
- Quan, J.; Tie, X.; Zhang, Q.; Liu, Q.; Li, X.; Gao, Y.; Zhao, D. Characteristics of heavy aerosol pollution during the 2012–2013 winter in Beijing, China. Atmos. Environ. 2014, 88, 83–89. [Google Scholar] [CrossRef]
- Wang, Y.; Zhuang, G.S.; Sun, Y.L. The variation of characteristics and formation mechanisms of aerosols in dust, haze, and clear days in Beijing. Atmos. Environ. 2006, 40, 6579–6591. [Google Scholar] [CrossRef]
- Iwona, S.S.; Mateusz, S.; Olga, Z.; Kamila, M.H.; Lucja, J.; Patryk, P.; Domonika, S.; Birgit, H.; Wang, D.X.; Karolina, B.; et al. Modification of Local Urban Aerosol Properties by Long-Range Transport of Biomass Burning Aerosol. Remote Sens. 2018, 10, 412. [Google Scholar]
- Di, H.G.; Hua, H.B.; Cui, Y.; Hua, D.X.; He, T.Y.; Wang, Y.F.; Yan, Q. Vertical distribution of optical and microphysical properties of smog aerosols measured by multi-wavelength polarization lidar in Xi’an, China. J. Quant. Spectrosc. Radiat. Transf. 2017, 188, 28–38. [Google Scholar] [CrossRef]
- Műller, D.; Wandinger, U.; Ansmann, A. Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: Theory. Appl. Opt. 1999, 38, 2346–2357. [Google Scholar] [CrossRef] [PubMed]
- Behrendt, A.; Wagner, G.; Petrova, A.; Shiler, M.; Pal, S.; Schaberl, T.; Wulfmeyer, V. Modular lidar systemsfor high-resolution 4-dimensional measurementsof water vapor, temperature, and aerosols. Proc. SPIE 2005, 5653. [Google Scholar] [CrossRef]
- Whiteman, D.N. Examination of the traditional Raman lidar technique. I. Evaluating the temperature-dependent lidar equations. Appl. Opt. 2003, 42, 2571–2592. [Google Scholar] [CrossRef] [PubMed]
- Whiteman, D.N. Examination of the traditional Raman lidar technique. II. Evaluating the ratios for water vapor and aerosols. Appl. Opt. 2003, 42, 2593–2608. [Google Scholar] [CrossRef] [PubMed]
- Veselovskii, I.; Whiteman, D.N.; Korenskiy, M.; Suvorina, A.; Pérez-Ramírez, D. Use of rotational Raman measurements in multiwavelength aerosol lidar for evaluation of particle backscattering and extinction. Atmos. Meas. Tech. 2015, 8, 4111–4122. [Google Scholar] [CrossRef] [Green Version]
- Johnathan, W.H.; Chris, A.H.; Anthony, L.C.; David, B.H.; Richard, A.F.; Terry, L.M.; Wayne, W.; Luis, R.I.; Floyd, E.H. Airborne High Spectral Resolution Lidar for profiling aerosol optical properties. Appl. Opt. 2008, 47, 6734–6753. [Google Scholar]
- Jagodnicka, A.K.; Stacewicz, T.; Karasiński, G.; Posyniak, M.; Malinowski, S.P. Particle size distribution retrieval from multiwavelength lidar signals for droplet aerosol. Appl. Opt. 2009, 48, B8–B16. [Google Scholar] [CrossRef] [PubMed]
- Donovan, D.P.; Carswell, A.I. Principal component analysis applied to multiwavelength lidar aerosol backscatter and extinction measurements. Appl. Opt. 1997, 36, 9406–9424. [Google Scholar] [CrossRef] [PubMed]
- Veselovskii, I.; Dubovik, O.; Kolgotin, A.; Korenskiy, M.D.; Whiteman, D.N.; Allakhverdiev, K.; Huseynoglu, F. Linear estimation of particle bulk parameters from multi-wavelength lidar measurements. Atmos. Meas. Tech. 2012, 5, 1135–1145. [Google Scholar] [CrossRef] [Green Version]
- Veselovskii, I.; Kolgotin, A.; Griaznov, V.; Műller, D.; Wandinger, U.; Whiteman, D.N. Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding. Appl. Opt. 2002, 41, 3685–3699. [Google Scholar] [CrossRef] [PubMed]
- Veselovskii, I.; Kolgotin, A.; Vadim, G.; Műller, D.; Franke, K.; Whiteman, D.N. Inversion of multiwavelength Raman lidar data forretrieval of bimodal aerosol size distribution. Appl. Opt. 2004, 43, 1180–1195. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Ramírez, D.; Whiteman, D.N.; Veselovskii, I.; Kolgotin, A.; Korenskiy, M.; Alados-Arboledas, L. Effects of systematic and random errors on the retrieval of particle microphysical properties from multiwavelength lidar measurements using inversion with regularization. Atmos. Meas. Tech. 2013, 6, 3039–3054. [Google Scholar] [CrossRef] [Green Version]
- Di, H.G.; Zhao, J.; Zhao, X.; Zhang, Y.X.; Wang, Z.X.; Wang, X.W.; Wang, Y.F.; Zhao, H.; Hua, D.X. Parameterization of aerosol number concentration distributions from aircraft measurements in the lower troposphere over Northern China. J. Quant. Spectrosc. Radiat. Transf. 2018, 218, 46–53. [Google Scholar] [CrossRef]
- Shipley, S.T.; Tracy, D.H.; Eloranta, E.W.; Trauger, J.T.; Sroga, J.T.; Roesler, F.L.; Weinman, J.A. High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation. Appl. Opt. 1983, 22, 3716–3724. [Google Scholar] [CrossRef] [PubMed]
- Veselovskii, I.; Dubovik, O.; Kolgotin, A.; Lapyonok, T.; Girolamo, P.; Summary, D.; Whiteman, D.N.; Mishchenko, M.; Tanré, D. Application of randomly oriented spheroids for retrieval of dust particle parameters from multiwavelength lidar measurements. J. Geophys. Res. 2010, 115, D21203. [Google Scholar] [CrossRef]
- Dubovik, O.; Holben, B.; Eck, T.F.; Smirnov, A.; Kaufman, Y.J.; King, M.D.; Tanre, D.; Slutsker, I. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci. 2002, 59, 590–608. [Google Scholar] [CrossRef]
Aerosol Type | lnσf | lnσc | V1 | V2 | m | ||
---|---|---|---|---|---|---|---|
Urban Industrial | 0.14 | 2.7 | 0.38 | 0.6 | 100 | 50 | 1.41 − 0.003i |
Biomass Burning | 0.17 | 3.0 | 0.42 | 0.7 | 100 | 100 | 1.48 − 0.015i |
Desert Dust and Oceanic | 0.14 | 3.3 | 0.44 | 0.75 | 50 | 80 | 1.51 − 0.002i |
Aerosol Parameter | Urban Industrial | Biomass Burning | Desert Dust and Oceanic |
---|---|---|---|
rg1 | 0.14–0.18 μm | 0.13–0.16 μm | 0.12–0.16 μm |
lnσ1 | 0.38–0.46 | 0.4–0.47 | 0.4–0.53 |
rg2 | 2.7–3.2 μm | 3.2–3.7 μm | 1.9–2.7 μm |
lnσ2 | 0.6–0.8 | 0.7–0.8 | 0.6–0.7 |
V1/V2 | 0.8–2.0 | 1.3–2.5 | 0.1–0.5 |
Real part of index | 1.4–1.5 | 1.47–1.52 | 1.36–1.56 |
Imaginary part of index | 0.003–0.015 | 0.01–0.02 | 0.0015–0.003 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di, H.; Wang, Q.; Hua, H.; Li, S.; Yan, Q.; Liu, J.; Song, Y.; Hua, D. Aerosol Microphysical Particle Parameter Inversion and Error Analysis Based on Remote Sensing Data. Remote Sens. 2018, 10, 1753. https://doi.org/10.3390/rs10111753
Di H, Wang Q, Hua H, Li S, Yan Q, Liu J, Song Y, Hua D. Aerosol Microphysical Particle Parameter Inversion and Error Analysis Based on Remote Sensing Data. Remote Sensing. 2018; 10(11):1753. https://doi.org/10.3390/rs10111753
Chicago/Turabian StyleDi, Huige, Qiyu Wang, Hangbo Hua, Siwen Li, Qing Yan, Jingjing Liu, Yuehui Song, and Dengxin Hua. 2018. "Aerosol Microphysical Particle Parameter Inversion and Error Analysis Based on Remote Sensing Data" Remote Sensing 10, no. 11: 1753. https://doi.org/10.3390/rs10111753
APA StyleDi, H., Wang, Q., Hua, H., Li, S., Yan, Q., Liu, J., Song, Y., & Hua, D. (2018). Aerosol Microphysical Particle Parameter Inversion and Error Analysis Based on Remote Sensing Data. Remote Sensing, 10(11), 1753. https://doi.org/10.3390/rs10111753