Characterization of S-Band Dual-Polarized Radar Data for the Convective Rain Melting Layer Detection in A Tropical Region
"> Figure 1
<p>Site locations of Changi airport and NEA upper air observatory.</p> "> Figure 2
<p>Radiosonde altitude and temperature measured at 10:00 UTC on 21 April 2014 with the indication of 0 °C isothermal height.</p> "> Figure 3
<p>Dual-polarized radar PPI images of <math display="inline"><semantics> <mi mathvariant="normal">Z</mi> </semantics></math> for (<b>a</b>) stratiform rain only, (<b>b</b>) convective rain only, and (<b>c</b>) stratiform rain together with convective rain.</p> "> Figure 4
<p>Dual-polarized radar PPI images of (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="sans-serif">ρ</mi> <mrow> <mi>HV</mi> </mrow> </msub> </mrow> </semantics></math>, and (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="normal">Z</mi> <mrow> <mi>DR</mi> </mrow> </msub> </mrow> </semantics></math> at 05:45 UTC on 21st April 2014 with an elevation angle of 5°.</p> "> Figure 5
<p>Radar reflectivity PPI for two separated rain events at 05:45 UTC on 21 April 2014.</p> "> Figure 6
<p>Averaged vertical profiles of (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="sans-serif">ρ</mi> <mrow> <mi>HV</mi> </mrow> </msub> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mi mathvariant="normal">Z</mi> </semantics></math> and (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="normal">Z</mi> <mrow> <mi>DR</mi> </mrow> </msub> </mrow> </semantics></math> at the same height for convective rain cell and stratiform rain cell at 05:45 UTC on 21st April 2014.</p> "> Figure 7
<p>Scatter plot between the 0 °C isothermal height and the corresponding <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="sans-serif">ρ</mi> <mrow> <mi>HV</mi> </mrow> </msub> </mrow> </semantics></math> value for convective rain melting layer.</p> "> Figure 8
<p>Scatter plot between 0 °C isothermal height and convective rain melting layer top height detected using two different thresholds.</p> "> Figure 9
<p>(<b>a</b>) Melting layer bottom and top heights of convective rain cell (<b>b</b>) Histogram of convective rain cell melting layer thickness using two different thresholds.</p> "> Figure 10
<p>Radar reflectivity measured at 14:55 UTC on 14th June 2014 (<b>a</b>) PPI image (<b>b</b>) mapped on the height–azimuth plane.</p> ">
Abstract
:1. Introduction
2. Data Description
2.1. Dual-Polarized Weather Radar Data
2.2. Radiosonde Data
3. Methodology
3.1. Identification of Melting Layer for Different Rain Cases
3.2. Differentiation between Stratiform and Convective Rain
- a reflectivity of 30 dBZ [1] is taken as the threshold for melting layer detection, if the maximum reflectivity is above or equal to the threshold within the height range of 3 km a.g.l. to 5 km a.g.l., then this ray is considered to be passing through the stratiform rain cell.
- with the same threshold of 30 dBZ, if the maximum reflectivity is above or equal to the threshold within the height range of 1 km a.g.l. to 3 km a.g.l., then this ray is considered to be passing through the convective rain cell.
3.3. Proposed Threshold for Convective Rain Melting Layer Detection
4. Results and Discussion
4.1. Performance Evaluation of Proposed Threshold
4.2. Special Case for Convective Rain
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Giangrande, S.E.; Krause, J.M.; Ryzhkov, A.V. Automatic designation of the melting layer with a polarimetric prototype of the WSR-88D radar. J. Appl. Meteorol. 2007, 47, 1354–1364. [Google Scholar] [CrossRef]
- Zhang, W.; Karhu, S.I.; Salonen, E.T. Predictions of radiowave attenuations due to a melting layer of precipitation. IEEE Trans. Antennas Propag. 1994, 42, 492–500. [Google Scholar] [CrossRef]
- Romo, J.A.; Maruri, M.; Pérez-Fontán, F.; Fernández, I. Characterization of maximum radar reflectivity height during stratiform rain events. IEEE Trans. Antennas Propag. 2012, 60, 4884–4891. [Google Scholar] [CrossRef]
- Lerber, A.; Moisseev, D.; Leinonen, J.; Koistinen, J.; Hallikainen, M.T. Modeling Radar Attenuation by a Low Melting Layer with Optimized Model Parameters at C-Band. IEEE Trans. Geosci. Remote Sens. 2015, 53, 724–737. [Google Scholar] [CrossRef]
- Pujol, O.; Mesnard, F.; Sauvageot, H. Effects of Melting Layer in Airborne Meteorological X-Band Radar Observations. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2318–2324. [Google Scholar] [CrossRef]
- Russchenberg, H.W.J.; Ligthart, L.P. Backscattering by and propagation through the melting layer of precipitation: A new polarimetric model. IEEE Trans. Geosci. Remote Sens. 1996, 34, 3–14. [Google Scholar] [CrossRef]
- Raynaud, L.; Chenerie, I.; Lemorton, J. Modeling of radiowave scattering in the melting layer of precipitation. IEEE Trans. Geosci. Remote Sens. 2000, 38, 1574–1584. [Google Scholar] [CrossRef]
- Marzano, F.S.; Bauer, P. Sensitivity analysis of airborne microwave retrieval of stratiform precipitation to the melting layer parameterization. IEEE Trans. Geosci. Remote Sens. 2001, 39, 75–91. [Google Scholar] [CrossRef]
- Panagopoulos, A.D.; Arapoglou, P.M.; Cottis, P.G. Satellite communications at Ku, Ka, and V bands: Propagation impairments and mitigation techniques. IEEE Commun. Surv. Tutor. 2004, 6, 2–14. [Google Scholar] [CrossRef]
- Vivekanandan, J.; Zrnic, D.S.; Ellis, S.M.; Oye, R.; Ryzhkov, A.V.; Straka, J. Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Am. Meteorol. Soc. 1999, 80, 381–388. [Google Scholar] [CrossRef]
- Wilson, C.L.; Tan, J.; Goddard, J.W.F.; Ong, J.T. Radar Vertical Profiles and Melting Layer Studies from an S-Band Doppler Polarization-Diversity Radar Campaign in Singapore. Available online: https://ams.confex.com/ams/30radar/techprogram/paper_21517.htm (accessed on 1 November 2018).
- Wilson, C.L.; Tan, J. Melting layer studies in Singapore: experimental results from an S-band doppler polarisation-diversity radar. Phys. Chem. Earth Part B: Hydrol. Ocean. Atmos. 2000, 25, 1129–1132. [Google Scholar] [CrossRef]
- Kalogiros, J.; Anagnostou, M.N.; Anagnostou, E.N.; Montopoli, M.; Picciotti, E.; Marzano, F.S. Correction of polarimetric radar reflectivity measurements and rainfall estimates for apparent vertical profile in stratiform rain. J. Appl. Meteorol. Climatol. 2013, 52, 1170–1186. [Google Scholar] [CrossRef]
- Matrosov, S.Y.; Kingsmill, D.E.; Martner, B.E.; Ralph, F.M. The utility of X-band polarimetric radar for quantitative estimates of rainfall parameters. J. Hydrometeorol. 2005, 6, 248–262. [Google Scholar] [CrossRef]
- Teshiba, M.S.; Chilson, P.B.; Ryzhkov, A.V.T.; Schuur, J.; Palmer, R.D. A combined wind profiler and polarimetric weather radar method for the investigation of precipitation and vertical velocities. J. Atmos. Ocean. Technol. 2008, 26, 1940–1955. [Google Scholar] [CrossRef]
- Shusse, Y.; Nakagawa, K.; Takahashi, N.; Satoh, S.; Iguchi, T. Characteristics of polarimetric radar variables in three types of rainfalls in Baiu front event over the East China Sea. J. Meteorol. Soc. Jpn. 2009, 87, 865–875. [Google Scholar] [CrossRef]
- Shusse, Y.; Takahashi, N.; Nakagawa, K.; Satoh, S.; Iguchi, T. Polarimetric radar observation of the melting layer in a convective rainfall system during the rainy season over the East China sea. J. Appl. Meteorpl. Climatol. 2011, 50, 354–367. [Google Scholar] [CrossRef]
- Department of Atmospheric Science, University of Wyoming. Available online: http://weather.uwyo.edu/upperair/sounding.html (accessed on 31 October 2018).
- Wolfensberger, D.; Scipion, D.; Berne, A. Detection and characterization of the melting layer based on polarimetric radar scans. Q. J. R. Meteorol. Soc. 2015, 142, 108–124. [Google Scholar] [CrossRef] [Green Version]
- Alexander, V.R.; Scott, E.G.; Terry, J.S. Rainfall estimation with a polarimetric prototype of WSR-88D. J. Appl. Meteorol. 2004, 44, 502–515. [Google Scholar]
- Capsoni, C.; Luini, L.; Paraboni, A.; Riva, C.; Martelluci, A. A new prediction model of rain attenuation that separately accounts for stratiform and convective rain. IEEE Trans. Antennas Propag. 2009, 57, 196–203. [Google Scholar] [CrossRef]
- Fabry, F.; Zawadzki, I. Long-term radar observations of the melting layer of precipitation and their interpretation. J. Atmos. Sci. 1995, 52, 838–851. [Google Scholar] [CrossRef]
- Hall, W.; Rico-Ramirez, M.A.; Kramer, S. Classification and correction of the bright band using an operational C-band polarimetric radar. J. Hydrol. 2015, 531, 248–258. [Google Scholar] [CrossRef] [Green Version]
- Model Comparison for Estimating Cloud Liquid Water Content and Attenuation in Tropical Region. Available online: https://ieeexplore.ieee.org/document/7848226 (accessed on 1 November 2018).
- ITU-R: Recommendation P.839-3. Rain Height Model for Prediction Methods. Propagation in Non-Ionized Media 2001. Available online: https://www.itu.int/rec/R-REC-P.839-3-200102-S/en (accessed on 1 November 2018).
Event | Time (UTC) | Time Difference Comparing with Radiosonde | 0 °C Isothermal Height (m) | Height of Maximum Reflectivity |
---|---|---|---|---|
04 Jan 2014 | 18:40 | 5 h 20 min | 4775 | 2092 |
05 Jan 2014 | 20:25 | 3 h 35 min | 4663 | 675 |
21 Apr 2014 | 05:45 | 4 h 15 min | 5102 | 2135 |
05 Jun 2014 | 06:15 | 3 h 45 min | 4898 | 1133 |
14 Jun 2014 | 05:50 | 4 h 10 min | 5090 | 1961 |
30 Nov 2014 | 23:00 | 1 h | 4820 | 2593 |
04 Dec 2014 | 01:25 | 1 h 25 min | 4741 | 1830 |
12 Aug 2015 | 02:20 | 2 h 20 min | 4764 | 2462 |
01 Oct 2015 | 21:40 | 2 h 20 min | 4578 | 174 |
27 Oct 2015 | 21:00 | 3 h | 4727 | 1155 |
08 Dec 2015 | 18:20 | 5 h 40 min | 5041 | 218 |
12 Dec 2015 | 14:10 | 4 h 10 min | 4999 | 1133 |
13 Dec 2015 | 07:45 | 2 h 15 min | 4955 | 2114 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, F.; Lee, Y.H.; Meng, Y.S.; Ong, J.T. Characterization of S-Band Dual-Polarized Radar Data for the Convective Rain Melting Layer Detection in A Tropical Region. Remote Sens. 2018, 10, 1740. https://doi.org/10.3390/rs10111740
Yuan F, Lee YH, Meng YS, Ong JT. Characterization of S-Band Dual-Polarized Radar Data for the Convective Rain Melting Layer Detection in A Tropical Region. Remote Sensing. 2018; 10(11):1740. https://doi.org/10.3390/rs10111740
Chicago/Turabian StyleYuan, Feng, Yee Hui Lee, Yu Song Meng, and Jin Teong Ong. 2018. "Characterization of S-Band Dual-Polarized Radar Data for the Convective Rain Melting Layer Detection in A Tropical Region" Remote Sensing 10, no. 11: 1740. https://doi.org/10.3390/rs10111740
APA StyleYuan, F., Lee, Y. H., Meng, Y. S., & Ong, J. T. (2018). Characterization of S-Band Dual-Polarized Radar Data for the Convective Rain Melting Layer Detection in A Tropical Region. Remote Sensing, 10(11), 1740. https://doi.org/10.3390/rs10111740