The Impact of Eclipsing GNSS Satellites on the Precise Point Positioning
"> Figure 1
<p>The monitoring results of the eclipsing satellites in July 2017.</p> "> Figure 2
<p>The yaw angle of G21 (IIR) during noon maneuver for different sun angles: (<b>a</b>) beta = 1.63°; (<b>b</b>) beta = 0.77°; and (<b>c</b>) beta = −0.08°. The nominal yaw angle is shown in green, while the modeled one is in red.</p> "> Figure 3
<p>The duration and the yaw angle difference of G06 (IIF) during noon maneuver for different sun angles (−0.38°–3.97°): (<b>a</b>) the duration; and (<b>b</b>) the difference between the nominal yaw angle and the modeled yaw angle.</p> "> Figure 4
<p>The yaw angle of G06 (IIF) during shadow crossing for different sun angles: (<b>a</b>) beta = 4.19°; (<b>b</b>) beta = 1.58°; and (<b>c</b>) beta = −0.17°. The nominal yaw angle is shown in green, while the modeled one is in red.</p> "> Figure 5
<p>The yaw angle of R10 (M) during noon maneuver for different sun angles: (<b>a</b>) beta = −0.70°; (<b>b</b>) beta = −0.33°; and (<b>c</b>) beta = 0.05°. The nominal yaw angle is shown in green, while the modeled one is in red.</p> "> Figure 6
<p>The yaw angle of R10 (M) during shadow crossing for different sun angles: (<b>a</b>) beta = 0.24°; (<b>b</b>) beta = 4.77°; and (<b>c</b>) beta = 13.79°. The nominal yaw angle is shown in green, while the modeled one is in red.</p> "> Figure 7
<p>The yaw angle of E01 (FOC) during noon maneuver for different sun angles: (<b>a</b>) beta = −1.99°; (<b>b</b>) beta = −1.19°; and (<b>c</b>) beta = 0.02°. The nominal yaw angle is shown in green, while the modeled one is in red.</p> "> Figure 8
<p>The yaw angle differences of E01 (FOC) during noon maneuver for different sun angles (−4.00° to 0.02°).</p> "> Figure 9
<p>The attitude switch of BDS C10.</p> "> Figure 10
<p>The distribution of the selected GNSS stations (as of July 2017).</p> "> Figure 11
<p>The positioning performance of BDS-only static PPP for three eclipsing strategies (JFNG station, DOY 195 of 2017, the sampling rate is 30 s).</p> "> Figure 12
<p>The phase residuals of: BDS C07 (<b>a</b>); and C10 (<b>b</b>) with strategy 2 (JFNG station, DOY 195 of 2017, the sampling rate is 30 s).</p> "> Figure 13
<p>The positioning performance of GLONASS-only kinematic PPP for three eclipsing strategies: (<b>a</b>) station RGDG; (<b>b</b>) station MGUE; and (<b>c</b>) station AREG (DOY 194 of 2017, the sampling rate is 30 s).</p> "> Figure 14
<p>The 3D positioning accuracy improvements of S3 relative to S2 for every day in July 2017: (<b>a</b>) GLONASS-only PPP; and (<b>b</b>) BDS-only PPP. The dark blue represents the PPP dynamic mode while the yellow represents the PPP static mode.</p> "> Figure 15
<p>The positioning performance of GR kinematic PPP for three eclipsing strategies. (station AREG, DOY 194 of 2017, the sampling rate is 30 s).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Attitude Model for GNSS Satellites
- The condition for YS- > ON: (1) and ; or (2) and when .
- The condition for ON- > YS: (1) and ; or (2) and when .
2.2. The Multi-GNSS Precise Point Positioning and Its Strategy
3. Results and Discussion
3.1. Current GNSS Constellations and the Results of Eclipsing Monitor
3.2. The Yaw Angle Differences and the Duration of Eclipse
3.2.1. GPS IIR and IIF Satellites
3.2.2. GLONASS-M Satellites
3.2.3. GALILEO-FOC Satellites
3.2.4. BDS Satellites
3.3. The Impact of Eclipsing Satellites on the GNSS PPP
- Strategy 1 (S1): delete all the eclipsing satellites;
- Strategy 2 (S2): always use nominal attitude, even when this satellite is in eclipsing season; and
- Strategy 3 (S3): use the modeled attitude when this satellite is in eclipsing season; otherwise, the nominal attitude is used.
3.3.1. The Impact on the Positioning Accuracy of the Single-System Static PPP
3.3.2. The Impact on the Positioning Accuracy of the Single-System Kinematic PPP
3.3.3. The Relationship between the Sun Angle and the Accuracy Improvement
3.3.4. The Effect of the Satellite Geometry Structure
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bar-Sever, Y.E. A new model for GPS yaw attitude. J. Geod. 1996, 70, 714–723. [Google Scholar] [CrossRef]
- Montenbruck, O.; Peter, S.; André, H. Broadcast versus precise ephemerides: A multi-GNSS perspective. GPS Solut. 2015, 19, 321–333. [Google Scholar] [CrossRef]
- Montenbruck, O.; Schmid, R.; Mercier, F.; Steigenberger, P.; Noll, C.; Fatkulin, R.; Kogure, S.; Ganeshan, A.S. GNSS satellite geometry and attitude models. Adv. Space Res. 2015, 56, 1015–1029. [Google Scholar] [CrossRef] [Green Version]
- Dow, J.M.; Neilan, R.E.; Rizos, C. The international GNSS service in a changing landscape of global navigation satellite systems. J. Geod. 2009, 83, 191–198. [Google Scholar] [CrossRef]
- Kouba, J. A simplified yaw-attitude model for eclipsing GPS satellites. GPS Solut. 2009, 13, 1–12. [Google Scholar] [CrossRef]
- Dilssner, F. GPS IIF-1 satellite antenna phase center and attitude modeling. Inside GNSS 2010, 5, 59–64. [Google Scholar]
- Dilssner, F.; Springer, T.; Enderle, W. GPS IIF yaw attitude control during eclipse season. In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 5–9 December 2011. [Google Scholar]
- Kuang, D.; Desai, S.; Sibois, A. Observed features of GPS Block IIF satellite yaw maneuvers and corresponding modeling. GPS Solut. 2017, 21, 739–745. [Google Scholar] [CrossRef]
- Dilssner, F.; Springer, T.; Gienger, G.; Dow, J. The GLONASS-M satellite yaw-attitude model. Adv. Space Res. 2011, 47, 160–171. [Google Scholar] [CrossRef]
- Galileo Satellite Metadata. Available online: https://www.gsc-europa.eu/support-to-developers/galileo-satellite-metadata#9 (accessed on 6 October 2017).
- Guo, J.; Zhao, Q.; Geng, T.; Xu, S.; Liu, J. Precise orbit determination for COMPASS IGSO satellites during yaw maneuvers. In Proceedings of the China Satellite Navigation Conference (CSNC), Wuhan, China, 15–17 May 2013; pp. 41–53. [Google Scholar]
- Dai, X.; Ge, M.; Lou, Y.; Shi, C.; Wickert, J.; Schuh, H. Estimating the yaw-attitude of BDS IGSO and MEO satellites. J. Geod. 2015, 89, 1005–1018. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, C.; Guo, J.; Wang, B.; Liu, J. Precise orbit and clock determination for BeiDou-3 experimental satellites with yaw attitude analysis. GPS Solut. 2018, 22, 4. [Google Scholar] [CrossRef]
- Ge, M.; Gendt, G.; Rothacher, M.; Shi, C.; Liu, J. Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. J. Geod. 2008, 82, 389–399. [Google Scholar] [CrossRef]
- Zumberge, J.F.; Heflin, M.B.; Jefferson, D.C.; Watkins, M.M.; Webb, F.H. Precise point positioning for the efficient and robust analysis of GPS data from large networks. J. Geophys. Res. 1997, 102, 5005–5017. [Google Scholar] [CrossRef]
- Li, X.; Ge, M.; Zhang, X.; Zhang, Y.; Guo, B.; Wang, R.; Wickert, J. Real-time high-rate co-seismic displacement from ambiguity-fixed precise point positioning: Application to earthquake early warning. Geophys. Res. Lett. 2013, 40, 295–300. [Google Scholar] [CrossRef]
- Geng, J.; Teferle, F.N.; Meng, X.; Dodson, A. Kinematic precise point positioning at remote marine platforms. GPS Solut. 2010, 14, 343–350. [Google Scholar] [CrossRef]
- Lou, Y.; Zheng, F.; Gu, S.; Liu, J. The Impact of Non-nominal Yaw Attitudes of GPS Satellites on Kinematic PPP Solutions and their Mitigation Strategies. J. Navig. 2015, 68, 718–734. [Google Scholar] [CrossRef]
- Montenbruck, O.; Steigenberger, P.; Prange, L.; Deng, Z.; Zhao, Q.; Perosanz, F.; Romero, I.; Noll, C.; Stürze, A.; Weber, G.; et al. The multi-GNSS experiment (MGEX) of the international GNSS service (IGS)—Achievements, prospects and challenges. Adv. Space Res. 2017, 59, 1671–1697. [Google Scholar] [CrossRef]
- Lou, Y.; Zheng, F.; Gu, S.; Wang, C.; Guo, H.; Feng, Y. Multi-GNSS precise point positioning with raw single-frequency and dual-frequency measurement models. GPS Solut. 2016, 20, 849–862. [Google Scholar] [CrossRef]
- Li, X.; Ge, M.; Dai, X.; Ren, X.; Fritsche, M.; Wickert, J.; Schuh, H. Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo. J. Geod. 2015, 89, 607–635. [Google Scholar] [CrossRef]
- Liu, T.; Yuan, Y.; Zhang, B.; Wang, N.; Tan, B.; Chen, Y. Multi-GNSS precise point positioning (MGPPP) using raw observations. J. Geod. 2017, 91, 253–268. [Google Scholar] [CrossRef]
- Arnold, D.; Meindl, M.; Beutler, G.; Dach, R.; Schaer, S.; Lutz, S.; Prange, L.; Sośnica, K.; Mervart, L.; Jäggi, A. CODE’s new solar radiation pressure model for GNSS orbit determination. J. Geod. 2015, 89, 775–791. [Google Scholar] [CrossRef] [Green Version]
- The Average JPL Reporcessing Yaw-Rate Solutions. Available online: http://acc.igs.org/orbits/yrates.pdf (accessed on 1 July 2017).
- IGS and RTCM-SC104 (2015) RINEX—The Receiver Independent Exchange Format, Version 3.03, 14 July. International GNSS Service (IGS), RINEX Working Group and Radio Technical Commission for Maritime Service Special Committee. Available online: ftp://igs.org/pub/data/format/rinex303.pdf (accessed on 14 July 2015).
- Cai, C.; Gao, Y. Modeling and assessment of combined GPS/GLONASS precise point positioning. GPS Solut. 2013, 17, 223–236. [Google Scholar] [CrossRef]
- Li, P.; Zhang, X.; Guo, F. Ambiguity resolved precise point positioning with GPS and BeiDou. J. Geod. 2017, 91, 25–40. [Google Scholar]
- Guo, F.; Li, X.; Zhang, X.; Wang, J. Assessment of precise orbit and clock products for Galileo, BeiDou, and QZSS from IGS Multi-GNSS Experiment (MGEX). GPS Solut. 2017, 21, 279–290. [Google Scholar] [CrossRef]
- Wanninger, L.; Beer, S. BeiDou satellite-induced code pseudorange variations: Diagnosis and therapy. GPS Solut. 2015, 19, 639–648. [Google Scholar]
- Gao, Y.; Lahaye, F.; Heroux, P.; Liao, X.; Beck, N.; Olynik, M. Modeling and estimation of C1–P1 bias in GPS receivers. J. Geod. 2001, 74, 621–626. [Google Scholar] [CrossRef]
- Blewitt, G. An automatic editing algorithm for GPS data. Geophys. Res. Lett. 1990, 17, 199–202. [Google Scholar] [CrossRef]
- Yang, Y.; Song, L.; Xu, T. Robust estimator for correlated observations based on bifactor equivalent weights. J. Geod. 2002, 76, 353–358. [Google Scholar] [CrossRef]
- Lagler, K.; Schindelegger, M.; Böhm, J.; Krásná, H.; Nilsson, T. GPT2: Empirical slant delay model for radio space geodetic techniques. Geophys. Res. Lett. 2013, 40, 1069–1073. [Google Scholar] [CrossRef] [PubMed]
- Hadas, T.; Krypiak Gregorczyk, A.; Hernández Pajares, M.; Kaplon, J.; Paziewski, J.; Wielgosz, P.; Garcia Rigo, A.; Kazmierski, K.; Sosnica, K.; Kwasniak, D.; et al. Impact and Implementation of Higher-Order Ionospheric Effects on Precise GNSS Applications. J. Geophys. Res.-Solid Earth 2017, 122, 9420–9436. [Google Scholar] [CrossRef]
- Guo, J.; Xu, X.; Zhao, Q.; Liu, J. Precise orbit determination for quad-constellation satellites at Wuhan University: Strategy, result validation, and comparison. J. Geod. 2016, 90, 143–159. [Google Scholar] [CrossRef]
- Petit, G.; Luzum, B. IERS Conventions (2010). Bureau International des Poids et Mesures Sevres (France). 2010. Available online: https://www.iers.org/IERS/EN/Publications/TechnicalNotes/tn36.html (accessed on 1 July 2017).
- Wu, J.T.; Wu, S.C.; Hajj, G.A.; Bertiger, W.I.; Lichten, S.M. Effects of antenna orientation on GPS carrier phase. In Proceedings of the AAS/AIAA Astrodynamics Conference, San Diego, CA, USA, 19–22 August 1992; pp. 1647–1660. [Google Scholar]
- Montenbruck, O.; Hauschild, A.; Steigenberger, P. Differential Code Bias Estimation using Multi-GNSS Observations and Global Ionosphere Maps. Navigation 2014, 61, 191–201. [Google Scholar] [CrossRef]
- The GLONASS Constellation Status. Available online: https://www.glonass-iac.ru/en/GLONASS/ (accessed on 1 July 2017).
- Zhou, F.; Dong, D.; Ge, M.; Li, P.; Wickert, J.; Schuh, H. Simultaneous estimation of GLONASS pseudorange inter-frequency biases in precise point positioning using undifferenced and uncombined observations. GPS Solut. 2018, 22, 19. [Google Scholar] [CrossRef]
Constellation | i | T | Attitude | |
---|---|---|---|---|
GPS | 55° | 11 h 58 min | 0.00836°/s | YS |
GLO | 65° | 11 h 16 min | 0.00888°/s | YS |
GAL | 56° | 14 h 05 min | 0.00710°/s | YS |
BDS-GEO | ≈0° | 23 h 56 min | 0.00418°/s | ON |
BDS-IGSO | 55° | 23 h 56 min | 0.00418°/s | YS/ON |
BDS-MEO | 55° | 12 h 53 min | 0.00776°/s | YS/ON |
Constellation | Noon Maneuver | Shadow Crossing | Post-Shadow Maneuver |
---|---|---|---|
GPS-II/IIA | Yes 1, 2.39°–5.69° 2 | Yes, 13.5° | Yes |
GPS-IIR | Yes, 2.39° | Yes, 2.39° 3 | No |
GPS-IIF | Yes, 4.34° | Yes, 13.5° | No |
GLO-M | Yes, 2.03 | Yes, 14.2° | No |
GAL-IOV | Yes, 2.0° | Yes, 2.0° | No |
GAL-FOC | Yes, 4.1° | Yes, 4.1° | No |
BDS-GEO | ON 4 | ON | ON |
BDS-IGSO/MEO | ON, 4.0° | ON, 4.0° | ON, 4.0° |
Item | Models |
---|---|
Observations | G: L1 and L2; R: L1 and L2; E: L1 and L5; C: L2 and L7 |
Models | Traditional IF combination |
Estimator | Robust Kalman filter |
Sampling rate | 30 s |
Cut-off angle | 7° |
Observation weight | Elevation-dependent weight |
Satellite orbit and clock | The products of GBM are used for GPS/GLONASS/GALILEO, while the products of WUM are used for BDS |
Eclipse strategy | S1:deleted eclipsing satellites; S2: adopted nominal attitude; S3: adopted modeled attitude |
A Priori troposphere | GPT2 model and VMF mapping function were applied [33]; Not considering the tropospheric gradient |
Ionosphere | The first order of the ionospheric delays is eliminated by IF combination; Not considering the higher-order delays [34] |
Satellite antenna phase center offset | PCO and PCV values for GPS /GLONASS/GALILEO from igs.atx were used; Corrections for BDS adopted the values provided by WHU [35]; |
Receiver antenna phase center offset | PCO and PCV values for GPS and GLONASS from igs.atx were used; Corrections for GALILEO/BDS were assumed the same as that of GPS; |
Tidal effects | Solid tides, ocean tide loading and polar tides (IERS 2010 [36]) |
Wind-up effect | Corrected [37] |
Satellite DCB | Corrected by MGEX DCB products (DLR) [38] |
Station coordinate | Estimated as constant/white noise (104 m2) in static/kinematic modes |
Zenith wet tropospheric delay | Estimated as random-walk model (5 × 10−8 m2/s) |
Receiver clock | Estimated as white noise (104 m2) |
Receiver ISBs | Estimated as 1-day constant |
Phase ambiguity | Estimated as float constant for each arc; when cycle-slip happened, estimated as white noise model (104 m2) |
Constellation | Type | x | y | z |
---|---|---|---|---|
GPS | IIR-A | +2.5 | −0.8 | +1270.0 |
IIR-B | +5.8 | +1.8 | +788.4 | |
IIR-M | +3.4 | +0.5 | +782.3 | |
IIF | +394.0 | 0.0 | +1505.5 | |
GLO | M | −545.0 | 0.0 | +2396.2 |
K1 (R09/R26) | 0.0 | 0.0 | +2083.0/+2014.7 | |
GAL | IOV | −170.0 | +30.0 | +950.0 |
FOC | +120.0/+160.0 1 | −10.0/−10.0 | +1100.0/+1050.0 | |
BDS | GEO | +600.0 | 0.0 | +1100.0 |
IGSO | +588.7 | 0.0 | +2902.4 | |
MEO | +575.0 | 0.0 | +2128.0 |
Beta | Max Differences | Duration |
---|---|---|
1.63° | 13.51° | 7.5 min |
0.77° | 55.75° | 11 min |
−0.08° | 131.87° | 14 min |
Constellation | Average Percentage | Direction | Static | Kinematic | ||||
---|---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S1 | S2 | S3 | |||
G | 9.2% (31) 1 | N | 4.25 | 4.24 | 4.20 | 16.80 | 16.89 | 16.76 |
E | 8.49 | 8.56 | 8.49 | 24.13 | 24.15 | 24.01 | ||
U | 10.35 | 10.42 | 10.32 | 41.56 | 41.68 | 41.40 | ||
R | 27.3% (22) | N | 5.63 | 6.16 | 5.47 | 43.38 | 43.33 | 38.33 |
E | 11.26 | 12.50 | 10.96 | 71.72 | 73.49 | 65.97 | ||
U | 12.57 | 13.20 | 12.35 | 106.40 | 112.07 | 99.12 | ||
E 2 | 22.2% (18) | N | 7.63 | 7.56 | 7.58 | - | - | - |
E | 15.78 | 15.50 | 15.56 | - | - | - | ||
U | 26.33 | 25.76 | 25.86 | - | - | - | ||
C 3 | 14.3% (14) | N | 8.96 | 11.09 | 7.21 | 34.71 | 49.20 | 22.83 |
E | 15.41 | 19.90 | 12.27 | 40.73 | 64.52 | 30.84 | ||
U | 24.56 | 27.96 | 21.70 | 95.09 | 165.78 | 68.02 | ||
GR | 16.6% (53) | N | 3.77 | 3.77 | 3.75 | 11.44 | 11.64 | 11.27 |
E | 6.57 | 6.56 | 6.57 | 15.63 | 15.79 | 15.53 | ||
U | 8.58 | 8.61 | 8.56 | 29.47 | 30.21 | 29.33 | ||
GREC | 13.0% (85) | N | 3.62 | 3.61 | 3.61 | 10.18 | 10.23 | 10.11 |
E | 5.94 | 5.96 | 5.95 | 13.41 | 13.46 | 13.23 | ||
U | 8.53 | 8.55 | 8.53 | 26.28 | 26.40 | 26.08 |
Constellation | Duration | Static | Kinematic | ||||
---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S1 | S2 | S3 | ||
G | 30 | 72.48% | 73.06% | 73.65% | 35.69% | 36.69% | 37.47% |
60 | 95.37% | 95.88% | 96.34% | 74.82% | 75.83% | 77.14% | |
mean | 33.02 | 32.63 | 32.35 | 55.54 | 54.97 | 53.71 | |
GR | 30 | 94.21% | 94.26% | 94.36% | 84.65% | 83.91% | 84.65% |
60 | 99.75% | 99.75% | 99.80% | 98.68% | 98.73% | 98.78% | |
mean | 23.82 | 23.89 | 23.68 | 28.21 | 28.47 | 28.15 | |
GREC | 30 | 96.40% | 96.80% | 96.70% | 92.56% | 92.25% | 92.98% |
60 | 99.85% | 99.99% | 99.99% | 99.85% | 99.80% | 99.85% | |
mean | 22.11 | 21.76 | 21.95 | 24.94 | 24.97 | 24.81 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, X.; Zhang, S.; Kuang, K.; Liu, T.; Gao, K. The Impact of Eclipsing GNSS Satellites on the Precise Point Positioning. Remote Sens. 2018, 10, 94. https://doi.org/10.3390/rs10010094
Cao X, Zhang S, Kuang K, Liu T, Gao K. The Impact of Eclipsing GNSS Satellites on the Precise Point Positioning. Remote Sensing. 2018; 10(1):94. https://doi.org/10.3390/rs10010094
Chicago/Turabian StyleCao, Xinyun, Shoujian Zhang, Kaifa Kuang, Tianjun Liu, and Kang Gao. 2018. "The Impact of Eclipsing GNSS Satellites on the Precise Point Positioning" Remote Sensing 10, no. 1: 94. https://doi.org/10.3390/rs10010094
APA StyleCao, X., Zhang, S., Kuang, K., Liu, T., & Gao, K. (2018). The Impact of Eclipsing GNSS Satellites on the Precise Point Positioning. Remote Sensing, 10(1), 94. https://doi.org/10.3390/rs10010094