A New Method for Automatic Glacier Extraction by Building Decision Trees Based on Pixel Statistics
<p>Distribution of mountains where the sampling sites are located.</p> "> Figure 2
<p>Distribution of spectral digital numbers (DNs) from seven land cover samples. The colored dot indicates the DNs in the land cover sample that was stretched to its maximum value during image pre-processing.</p> "> Figure 3
<p>The conceptual model diagram for land cover classification evaluation metrics.</p> "> Figure 4
<p>Cumulative distribution functions for <math display="inline"><semantics> <mrow> <mi>S</mi> <mi>W</mi> <mi>I</mi> <mi>R</mi> <mn>1</mn> <mo>−</mo> <mi>S</mi> <mi>W</mi> <mi>I</mi> <mi>R</mi> <mn>2</mn> </mrow> </semantics></math> (<b>a</b>,<b>b</b>), <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>l</mi> <mi>u</mi> <mi>e</mi> <mo>−</mo> <mi>S</mi> <mi>W</mi> <mi>I</mi> <mi>R</mi> <mn>2</mn> </mrow> </semantics></math> (<b>c</b>,<b>d</b>), <math display="inline"><semantics> <mrow> <mi>S</mi> <mi>T</mi> <mo>−</mo> <mi>B</mi> <mi>l</mi> <mi>u</mi> <mi>e</mi> </mrow> </semantics></math> (<b>e</b>,<b>f</b>) and <math display="inline"><semantics> <mrow> <mrow> <mrow> <mi>R</mi> <mi>e</mi> <mi>d</mi> </mrow> <mo>/</mo> <mrow> <mi>S</mi> <mi>W</mi> <mi>I</mi> <mi>R</mi> <mn>1</mn> </mrow> </mrow> </mrow> </semantics></math> (<b>g</b>,<b>h</b>) in Landsat 8 (<b>a</b>,<b>c</b>,<b>e</b>,<b>g</b>) and 5 (<b>b</b>,<b>d</b>,<b>f</b>,<b>h</b>). The red dotted line is the threshold determined in this study.</p> "> Figure 5
<p>Decision tree for remote sensing image pixel classification (<b>a</b>) and schematic diagram of glacier extraction multi-temporal algorithm (<b>b</b>). Thresholds for Landsat 8 images are shown outside of parentheses, and thresholds for Landsat 5 images are shown in parentheses.</p> "> Figure 6
<p>Glacier area in the Qilian Mountains. The blue area shows the glacier area in the Qilian Mountains from 2013 to 2017 extracted using this method, the thin line shows the glacier distribution data in 2015, and the brightness of the background color indicates the number of images participating in the calculation at that location. (<b>a</b>–<b>d</b>) represent four different regions in the Qilian Mountains.</p> "> Figure 7
<p>ROC curves of the results of glacier extraction using four methods. The red line shows the ROC curves of the methods in this study, and the gray line shows the other three methods. (<b>b</b>) shows a local zoom of (<b>a</b>).</p> "> Figure 8
<p>Comparison of glacier extraction results from four methods. The red line represents the RGI data, and the blue areas indicate the extracted glacier results.</p> ">
Abstract
:1. Introduction
2. Study Area
3. Data
3.1. Remote Sensing Image Data
3.2. Glacier Distribution Data
4. Methods
4.1. Extraction of Spectral Features of Land Cover Classes
4.2. Theoretical Basis of Land Cover Classification Based on Pixel Statistics
4.3. Determine the Band Index and Threshold of Cloud Extraction
4.4. Determine the Band Index and Threshold of Glacier Extraction
4.5. Construction of Multi-Temporal Glacier Extraction Decision Tree
5. Results and Discussion
5.1. Results and Validation Using Extracted Pixel Samples
5.2. Results and Validation in the Qilian Mountains
5.3. Results and Validation on a Global Scale
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Immerzeel, W.W.; Droogers, P.; De Jong, S.M.; Bierkens, M.F.P. Large-Scale Monitoring of Snow Cover and Runoff Simulation in Himalayan River Basins Using Remote Sensing. Remote Sens. Environ. 2009, 113, 40–49. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Lutz, A.F.; Andrade, M.; Bahl, A.; Biemans, H.; Bolch, T.; Hyde, S.; Brumby, S.; Davies, B.J.; Elmore, A.C. Importance and Vulnerability of the World’s Water Towers. Nature 2020, 577, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Kaser, G.; Großhauser, M.; Marzeion, B. Contribution Potential of Glaciers to Water Availability in Different Climate Regimes. Proc. Natl. Acad. Sci. USA 2010, 107, 20223–20227. [Google Scholar] [CrossRef]
- Dyurgerov, M.B.; Meier, M.F. Twentieth Century Climate Change: Evidence from Small Glaciers. Proc. Natl. Acad. Sci. USA 2000, 97, 1406–1411. [Google Scholar] [CrossRef] [PubMed]
- Lowell, T.V. As Climate Changes, so Do Glaciers. Proc. Natl. Acad. Sci. USA 2000, 97, 1351–1354. [Google Scholar] [CrossRef] [PubMed]
- Brun, F.; Berthier, E.; Wagnon, P.; Kääb, A.; Treichler, D. A Spatially Resolved Estimate of High Mountain Asia Glacier Mass Balances from 2000 to 2016. Nat. Geosci. 2017, 10, 668–673. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, A.; Bolch, T.; Mukherjee, K.; King, O.; Menounos, B.; Kapitsa, V.; Neckel, N.; Yang, W.; Yao, T. High Mountain Asian Glacier Response to Climate Revealed by Multi-Temporal Satellite Observations since the 1960s. Nat. Commun. 2021, 12, 4133. [Google Scholar] [CrossRef]
- Hugonnet, R.; McNabb, R.; Berthier, E.; Menounos, B.; Nuth, C.; Girod, L.; Farinotti, D.; Huss, M.; Dussaillant, I.; Brun, F. Accelerated Global Glacier Mass Loss in the Early Twenty-First Century. Nature 2021, 592, 726–731. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I. Climate Change 2021: The Physical Science Basis—Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2021; Volume 2. [Google Scholar]
- Miles, E.; McCarthy, M.; Dehecq, A.; Kneib, M.; Fugger, S.; Pellicciotti, F. Health and Sustainability of Glaciers in High Mountain Asia. Nat. Commun. 2021, 12, 2868. [Google Scholar] [CrossRef] [PubMed]
- Rounce, D.R.; Hock, R.; Maussion, F.; Hugonnet, R.; Kochtitzky, W.; Huss, M.; Berthier, E.; Brinkerhoff, D.; Compagno, L.; Copland, L. Global Glacier Change in the 21st Century: Every Increase in Temperature Matters. Science 2023, 379, 78–83. [Google Scholar] [CrossRef]
- Zheng, G.; Allen, S.K.; Bao, A.; Ballesteros-Cánovas, J.A.; Huss, M.; Zhang, G.; Li, J.; Yuan, Y.; Jiang, L.; Yu, T. Increasing Risk of Glacial Lake Outburst Floods from Future Third Pole Deglaciation. Nat. Clim. Change 2021, 11, 411–417. [Google Scholar] [CrossRef]
- Taylor, C.; Robinson, T.R.; Dunning, S.; Rachel Carr, J.; Westoby, M. Glacial Lake Outburst Floods Threaten Millions Globally. Nat. Commun. 2023, 14, 487. [Google Scholar] [CrossRef] [PubMed]
- Immerzeel, W.W.; Van Beek, L.P.; Bierkens, M.F. Climate Change Will Affect the Asian Water Towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef]
- Milner, A.M.; Khamis, K.; Battin, T.J.; Brittain, J.E.; Barrand, N.E.; Füreder, L.; Cauvy-Fraunié, S.; Gíslason, G.M.; Jacobsen, D.; Hannah, D.M. Glacier Shrinkage Driving Global Changes in Downstream Systems. Proc. Natl. Acad. Sci. USA 2017, 114, 9770–9778. [Google Scholar] [CrossRef] [PubMed]
- Huss, M.; Hock, R. Global-Scale Hydrological Response to Future Glacier Mass Loss. Nat. Clim. Change 2018, 8, 135–140. [Google Scholar] [CrossRef]
- Yao, T.; Bolch, T.; Chen, D.; Gao, J.; Immerzeel, W.; Piao, S.; Su, F.; Thompson, L.; Wada, Y.; Wang, L. The Imbalance of the Asian Water Tower. Nat. Rev. Earth Environ. 2022, 3, 618–632. [Google Scholar] [CrossRef]
- Paul, F.; Barrand, N.E.; Baumann, S.; Berthier, E.; Bolch, T.; Casey, K.; Frey, H.; Joshi, S.P.; Konovalov, V.; Le Bris, R. On the Accuracy of Glacier Outlines Derived from Remote-Sensing Data. Ann. Glaciol. 2013, 54, 171–182. [Google Scholar] [CrossRef]
- Tuia, D.; Volpi, M.; Copa, L.; Kanevski, M.; Munoz-Mari, J. A Survey of Active Learning Algorithms for Supervised Remote Sensing Image Classification. IEEE J. Sel. Top. Signal Process. 2011, 5, 606–617. [Google Scholar] [CrossRef]
- Singh, A.K.; Tiwari, S. Atmospheric Remote Sensing: Principles and Applications; Elsevier: Amsterdam, The Netherlands, 2022; pp. 87–92. [Google Scholar]
- Duda, T.; Canty, M. Unsupervised Classification of Satellite Imagery: Choosing a Good Algorithm. Int. J. Remote Sens. 2002, 23, 2193–2212. [Google Scholar] [CrossRef]
- Maslov, K.A.; Persello, C.; Schellenberger, T.; Stein, A. Globally Scalable Glacier Mapping by Deep Learning Matches Expert Delineation Accuracy. Nat. Commun. 2025, 16, 43. [Google Scholar] [CrossRef]
- Racoviteanu, A.E.; Paul, F.; Raup, B.; Khalsa, S.J.S.; Armstrong, R. Challenges and Recommendations in Mapping of Glacier Parameters from Space: Results of the 2008 Global Land Ice Measurements from Space (GLIMS) Workshop, Boulder, Colorado, USA. Ann. Glaciol. 2009, 50, 53–69. [Google Scholar] [CrossRef]
- Paul, F.; Bolch, T.; Kääb, A.; Nagler, T.; Nuth, C.; Scharrer, K.; Shepherd, A.; Strozzi, T.; Ticconi, F.; Bhambri, R. The Glaciers Climate Change Initiative: Methods for Creating Glacier Area, Elevation Change and Velocity Products. Remote Sens. Environ. 2015, 162, 408–426. [Google Scholar] [CrossRef]
- Paul, F.; Winsvold, S.H.; Kääb, A.; Nagler, T.; Schwaizer, G. Glacier Remote Sensing Using Sentinel-2. Part II: Mapping Glacier Extents and Surface Facies, and Comparison to Landsat 8. Remote Sens. 2016, 8, 575. [Google Scholar] [CrossRef]
- Li, J.; Zheng, B.; Yang, X.; Xie, Y.; Zhang, L.; Ma, Z.; Xu, S. Glaciers of Xizang; Science Press: Beijing, China, 1982; pp. 13–36. [Google Scholar]
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B.; et al. Different Glacier Status with Atmospheric Circulations in Tibetan Plateau and Surroundings. Nat. Clim. Change 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Bliss, A.; Hock, R.; Radić, V. Global Response of Glacier Runoff to Twenty-First Century Climate Change. J. Geophys. Res. Earth Surf. 2014, 119, 717–730. [Google Scholar] [CrossRef]
- Li, Y.J.; Ding, Y.J.; Shangguan, D.H.; Wang, R.J. Regional Differences in Global Glacier Retreat from 1980 to 2015. Adv. Clim. Change Res. 2019, 10, 203–213. [Google Scholar] [CrossRef]
- Zhang, Z.; Gu, Z.; Hu, K.; Hu, K.; Xu, Y.; Zhao, J. Spatial Variability between Glacier Mass Balance and Environmental Factors in the High Mountain Asia. J. Arid Land 2022, 14, 441–454. [Google Scholar] [CrossRef]
- Takeuchi, N. Optical Characteristics of Cryoconite (Surface Dust) on Glaciers: The Relationship between Light Absorbency and the Property of Organic Matter Contained in the Cryoconite. Ann. Glaciol. 2002, 34, 409–414. [Google Scholar] [CrossRef]
- Takeuchi, N.; Nishiyama, H.; Li, Z. Structure and Formation Process of Cryoconite Granules on Ürümqi Glacier No. 1, Tien Shan, China. Ann. Glaciol. 2010, 51, 9–14. [Google Scholar] [CrossRef]
- Bishop, M.P.; Björnsson, H.; Haeberli, W.; Oerlemans, J.; Shroder, J.F.; Tranter, M. Encyclopedia of Snow, Ice and Glaciers; Springer Science & Business Media: Dordrecht, The Netherlands, 2011; pp. 979–984. [Google Scholar]
- Zhu, M.; Yao, T.; Yang, W.; Maussion, F.; Huintjes, E.; Li, S. Energy-and Mass-Balance Comparison between Zhadang and Parlung No. 4 Glaciers on the Tibetan Plateau. J. Glaciol. 2015, 61, 595–607. [Google Scholar] [CrossRef]
- Zhu, M.; Yao, T.; Yang, W.; Xu, B.; Wu, G.; Wang, X. Differences in Mass Balance Behavior for Three Glaciers from Different Climatic Regions on the Tibetan Plateau. Clim. Dyn. 2018, 50, 3457–3484. [Google Scholar] [CrossRef]
- Wang, R.; Liu, S.; Shangguan, D.; Radić, V.; Zhang, Y. Spatial Heterogeneity in Glacier Mass-Balance Sensitivity across High Mountain Asia. Water 2019, 11, 776. [Google Scholar] [CrossRef]
- Shukla, A.; Gupta, R.P.; Arora, M.K. Estimation of Debris Cover and Its Temporal Variation Using Optical Satellite Sensor Data: A Case Study in Chenab Basin, Himalaya. J. Glaciol. 2009, 55, 444–452. [Google Scholar] [CrossRef]
- Yousuf, B.; Shukla, A.; Arora, M.K.; Jasrotia, A.S. Glacier Facies Characterization Using Optical Satellite Data: Impacts of Radiometric Resolution, Seasonality, and Surface Morphology. Prog. Phys. Geogr. Earth Environ. 2019, 43, 473–495. [Google Scholar] [CrossRef]
- Scherler, D.; Bookhagen, B.; Strecker, M.R. Spatially Variable Response of Himalayan Glaciers to Climate Change Affected by Debris Cover. Nat. Geosci. 2011, 4, 156–159. [Google Scholar] [CrossRef]
- Scherler, D.; Wulf, H.; Gorelick, N. Global Assessment of Supraglacial Debris-cover Extents. Geophys. Res. Lett. 2018, 45, 11798–11805. [Google Scholar] [CrossRef]
- Kääb, A.; Winsvold, S.H.; Altena, B.; Nuth, C.; Nagler, T.; Wuite, J. Glacier Remote Sensing Using Sentinel-2. Part I: Radiometric and Geometric Performance, and Application to Ice Velocity. Remote Sens. 2016, 8, 598. [Google Scholar] [CrossRef]
- Wójcik-Długoborska, K.A.; Bialik, R.J. The Influence of Shadow Effects on the Spectral Characteristics of Glacial Meltwater. Remote Sens. 2020, 13, 36. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Chang, X.; Luo, D.; Wang, X.; Cheng, G. Impacts of Topographic Shadows Cast by Surrounding Terrain on the Solar Irradiance on Glaciers’ Surface in High Mountain Asia (HMA). Atmos. Res. 2024, 307, 107511. [Google Scholar] [CrossRef]
- Hanshaw, M.N.; Bookhagen, B. Glacial Areas, Lake Areas, and Snow Lines from 1975 to 2012: Status of the Cordillera Vilcanota, Including the Quelccaya Ice Cap, Northern Central Andes, Peru. Cryosphere 2014, 8, 359–376. [Google Scholar] [CrossRef]
- Bolch, T. Climate Change and Glacier Retreat in Northern Tien Shan (Kazakhstan/Kyrgyzstan) Using Remote Sensing Data. Glob. Planet. Change 2007, 56, 1–12. [Google Scholar] [CrossRef]
- Burns, P.; Nolin, A. Using Atmospherically-Corrected Landsat Imagery to Measure Glacier Area Change in the Cordillera Blanca, Peru from 1987 to 2010. Remote Sens. Environ. 2014, 140, 165–178. [Google Scholar] [CrossRef]
- Paul, F.; Bolch, T.; Briggs, K.; Kääb, A.; McMillan, M.; McNabb, R.; Nagler, T.; Nuth, C.; Rastner, P.; Strozzi, T. Error Sources and Guidelines for Quality Assessment of Glacier Area, Elevation Change, and Velocity Products Derived from Satellite Data in the Glaciers_cci Project. Remote Sens. Environ. 2017, 203, 256–275. [Google Scholar] [CrossRef]
- Racoviteanu, A.E.; Williams, M.W.; Barry, R.G. Optical Remote Sensing of Glacier Characteristics: A Review with Focus on the Himalaya. Sensors 2008, 8, 3355–3383. [Google Scholar] [CrossRef] [PubMed]
- Nuimura, T.; Sakai, A.; Taniguchi, K.; Nagai, H.; Lamsal, D.; Tsutaki, S.; Kozawa, A.; Hoshina, Y.; Takenaka, S.; Omiya, S.; et al. The GAMDAM Glacier Inventory: A Quality-Controlled Inventory of Asian Glaciers. Cryosphere 2015, 9, 849–864. [Google Scholar] [CrossRef]
- Wang, X.; Ding, Y.; Liu, S.; Jiang, L.; Wu, K.; Jiang, Z.; Guo, W. Changes of Glacial Lakes and Implications in Tian Shan, Central Asia, Based on Remote Sensing Data from 1990 to 2010. Environ. Res. Lett. 2013, 8, 044052. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, S. Response of Glacier Mass Balance to Climate Change in the Tianshan Mountains during the Second Half of the Twentieth Century. Clim. Dyn. 2016, 46, 303–316. [Google Scholar] [CrossRef]
- Sun, M.; Liu, S.; Yao, X.; Guo, W.; Xu, J. Glacier Changes in the Qilian Mountains in the Past Half-Century: Based on the Revised First and Second Chinese Glacier Inventory. J. Geogr. Sci. 2018, 28, 206–220. [Google Scholar] [CrossRef]
- Zhu, M.; Yao, T.; Thompson, L.G.; Wang, S.; Yang, W.; Zhao, H. What Induces the Spatiotemporal Variability of Glacier Mass Balance across the Qilian Mountains. Clim. Dyn. 2022, 59, 3555–3577. [Google Scholar] [CrossRef]
- Gardelle, J.; Berthier, E.; Arnaud, Y. Slight Mass Gain of Karakoram Glaciers in the Early Twenty-First Century. Nat. Geosci. 2012, 5, 322–325. [Google Scholar] [CrossRef]
- Rankl, M.; Kienholz, C.; Braun, M. Glacier Changes in the Karakoram Region Mapped by Multimission Satellite Imagery. Cryosphere 2014, 8, 977–989. [Google Scholar] [CrossRef]
- Farinotti, D.; Immerzeel, W.W.; de Kok, R.J.; Quincey, D.J.; Dehecq, A. Manifestations and Mechanisms of the Karakoram Glacier Anomaly. Nat. Geosci. 2020, 13, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Thayyen, R.J.; Gergan, J.T. Role of Glaciers in Watershed Hydrology: A Preliminary Study of a “Himalayan Catchment”. Cryosphere 2010, 4, 115–128. [Google Scholar] [CrossRef]
- Nela, B.R.; Singh, G.; Kulkarni, A.V. Ice Thickness Distribution of Himalayan Glaciers Inferred from DInSAR-Based Glacier Surface Velocity. Environ. Monit. Assess. 2023, 195, 15. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; He, Y.; Wang, C.; Wang, X.; Xin, H.; Zhang, W.; Cao, W. Spatial and Temporal Trends of Temperature and Precipitation during 1960–2008 at the Hengduan Mountains, China. Quat. Int. 2011, 236, 127–142. [Google Scholar] [CrossRef]
- Wang, X.; Chai, K.; Liu, S.; Wei, J.; Jiang, Z.; Liu, Q. Changes of Glaciers and Glacial Lakes Implying Corridor-Barrier Effects and Climate Change in the Hengduan Shan, Southeastern Tibetan Plateau. J. Glaciol. 2017, 63, 535–542. [Google Scholar] [CrossRef]
- Ivy-Ochs, S.; Kerschner, H.; Reuther, A.; Preusser, F.; Heine, K.; Maisch, M.; Kubik, P.W.; Schlüchter, C. Chronology of the Last Glacial Cycle in the European Alps. J. Quat. Sci. Publ. Quat. Res. Assoc. 2008, 23, 559–573. [Google Scholar] [CrossRef]
- Paul, F.; Rastner, P.; Azzoni, R.S.; Diolaiuti, G.; Fugazza, D.; Le Bris, R.; Nemec, J.; Rabatel, A.; Ramusovic, M.; Schwaizer, G. Glacier Shrinkage in the Alps Continues Unabated as Revealed by a New Glacier Inventory from Sentinel-2. Earth Syst. Sci. Data Discuss. 2020, 12, 1805–1821. [Google Scholar] [CrossRef]
- Ma, J.; Song, C.; Wang, Y. Spatially and Temporally Resolved Monitoring of Glacial Lake Changes in Alps During the Recent Two Decades. Front. Earth Sci. 2021, 9, 723386. [Google Scholar] [CrossRef]
- Ebrahimi, S.; Marshall, S.J. Parameterization of Incoming Longwave Radiation at Glacier Sites in the Canadian Rocky Mountains. J. Geophys. Res. Atmos. 2015, 120, 12536–12556. [Google Scholar] [CrossRef]
- RGI Consortium. Randolph Glacier Inventory—A Dataset of Global Glacier Outlines: Version 7.0. National Snow and Ice Data Center. 2023. Available online: https://nsidc.org/data/nsidc-0770/versions/7 (accessed on 27 December 2024).
- Li, Z.; Li, H.; Chen, Y. Mechanisms and Simulation of Accelerated Shrinkage of Continental Glaciers: A Case Study of Urumqi Glacier No. 1 in Eastern Tianshan, Central Asia. J. Earth Sci. 2011, 22, 423–430. [Google Scholar] [CrossRef]
- Hewitt, K. Glaciers of the Karakoram Himalaya: Glacial Environments, Processes, Hazards and Resources; Springer Science & Business Media: Dordrecht, The Netherlands; Heidelberg, Germany; New York, NY, USA; London, UK, 2014; pp. 82–93. [Google Scholar]
- Colucci, R.R.; Guglielmin, M. Precipitation-Temperature Changes and Evolution of a Small Glacier in the Southeastern European Alps during the Last 90 Years. Int. J. Climatol. 2015, 35, 2783–2797. [Google Scholar] [CrossRef]
- Lewis, D.; Smith, D. Dendrochronological Mass Balance Reconstruction, Strathcona Provincial Park, Vancouver Island, British Columbia, Canada. Arct. Antarct. Alp. Res. 2004, 36, 598–606. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Li, J. Glacier Outlines over the Qilian Mountain Area (1980–2015); National Tibetan Plateau Data Center. 2019. Available online: https://cstr.cn/18406.11.Geogra.tpdc.270234 (accessed on 27 December 2024).
- Pfeffer, W.T.; Arendt, A.A.; Bliss, A.; Bolch, T.; Cogley, J.G.; Gardner, A.S.; Hagen, J.-O.; Hock, R.; Kaser, G.; Kienholz, C.; et al. The Randolph Glacier Inventory a Globally Complete Inventory of Glaciers. J. Glaciol. 2014, 60, 537–552. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Object-Based Cloud and Cloud Shadow Detection in Landsat Imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Rastner, P.; Bolch, T.; Notarnicola, C.; Paul, F. A Comparison of Pixel-and Object-Based Glacier Classification with Optical Satellite Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 7, 853–862. [Google Scholar] [CrossRef]
- Baumann, S.; Anderson, B.; Chinn, T.; Mackintosh, A.; Collier, C.; Lorrey, A.M.; Rack, W.; Purdie, H.; Eaves, S. Updated Inventory of Glacier Ice in New Zealand Based on 2016 Satellite Imagery. J. Glaciol. 2021, 67, 13–26. [Google Scholar] [CrossRef]
- Pan, C.G.; Pope, A.; Kamp, U.; Dashtseren, A.; Walther, M.; Syromyatina, M.V. Glacier Recession in the Altai Mountains of Mongolia in 1990–2016. Geogr. Ann. Ser. Phys. Geogr. 2018, 100, 185–203. [Google Scholar] [CrossRef]
- Kochtitzky, W.; Edwards, B. Comments on ‘Area Changes of Glaciers on Active Volcanoes in Latin America’ by Reinthaler and Others (2019). J. Glaciol. 2020, 66, 520–522. [Google Scholar] [CrossRef]
- Huang, L.; Li, Z.; Zhou, J.M.; Zhang, P. An Automatic Method for Clean Glacier and Nonseasonal Snow Area Change Estimation in High Mountain Asia from 1990 to 2018. Remote Sens. Environ. 2021, 258, 112376. [Google Scholar] [CrossRef]
Mountains | Glacier Number | Glacier Area (km2) | Glacier Type |
---|---|---|---|
Tianshan Mountains | 15,000 | 12,400 | Continental glacier [66] |
Qilian Mountains | 2700 | 1600 | Subcontinental glacier [26] |
Karakoram | 13,700 | 22,800 | Subcontinental glacier [67] |
Himalayas | 19,500 | 19,600 | Maritime glacier [26] |
Hengduan Mountains | 4300 | 4300 | Maritime glacier [26] |
European Alps | 3900 | 2100 | Maritime glacier [68] |
Rocky Mountains | 18,900 | 14,600 | Maritime and continental glacier [69] |
Satellites | Land Cover Classes | Tianshan Mountains | Qilian Mountains | Karakoram | Himalaya | Hengduan Mountains | European Alps | Rocky Mountains |
---|---|---|---|---|---|---|---|---|
Landsat 8 | Clean glacier | 978,362 | 1,211,484 | 2,013,543 | 90,928 | 101,963 | 335,132 | 805,331 |
Shadowed glacier | 40,523 | – | 9275 | 12,095 | 7372 | – | – | |
Debris-covered glacier | 63,826 | – | 118,248 | 8539 | – | 112,208 | – | |
Bare land | 139,250 | 223,324 | 195,306 | 45,279 | 60,731 | 41,350 | – | |
Vegetation | 225,840 | 732,481 | 42,824 | 49,918 | 306,310 | 152,694 | 464,901 | |
Water | – | 411,781 | 47,953 | 147,609 | 14,343 | 56,780 | 288,561 | |
Cloud | 200,668 | 322,917 | 401,019 | 633,774 | 67,617 | 199,350 | – | |
Landsat 5 | Clean glacier | 459,210 | 1,535,959 | 1,215,181 | 351,686 | 106,214 | 370,599 | 805,331 |
Shadowed glacier | 56,611 | – | 88,705 | 38,982 | 15,361 | – | – | |
Debris-covered glacier | 76,176 | – | 35,456 | 17,348 | – | 112,590 | – | |
Bare land | 115,373 | 110,389 | 188,255 | 114,916 | 12,958 | 73,306 | – | |
Vegetation | 178,314 | 217,247 | 116,135 | 87,677 | 197,934 | 170,128 | 465,624 | |
Water | – | 339,947 | – | 115,757 | 14,101 | 66,148 | 288,561 | |
Cloud | 231,638 | 462,767 | 35,311 | 173,878 | 130,125 | 225,804 | – |
Separated Samples | Band Indices | Landsat 8 | Landsat 5 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Clean Glacier | Shadowed Glacier | Debris-Covered Glacier | Water | Bare Land | Vegetation | Clean Glacier | Shadowed Glacier | Debris-Covered Glacier | Water | Bare Land | Vegetation | ||
Cloud | 0.994 | 0.998 | 0.995 | 0.995 | 0.982 | 0.993 | 0.996 | 0.998 | |||||
0.997 | 0.998 | 0.997 | 0.999 | ||||||||||
0.996 | 0.998 | 0.991 | 0.994 | ||||||||||
0.996 | 0.999 | 0.991 | 0.998 | ||||||||||
0.996 | 0.997 | 0.997 | 0.998 | ||||||||||
0.996 | 0.997 | 0.997 | 0.998 | ||||||||||
Cloud-free surrounding environment | ST | 0.970 | 0.995 | 0.988 | 0.964 | 0.978 | 0.982 | ||||||
0.986 | 0.804 | 0.958 | 0.980 | 0.941 | 0.973 | ||||||||
0.981 | 0.831 | 0.953 | 0.979 | 0.907 | 0.956 | ||||||||
0.977 | 0.821 | 0.963 | 0.978 | 0.909 | 0.966 | ||||||||
0.983 | 0.519 | 0.938 | 0.976 | 0.869 | 0.929 | ||||||||
0.983 | 0.372 | 0.938 | 0.978 | 0.869 | 0.933 | ||||||||
0.972 | 0.450 | 0.898 | 0.979 | 0.753 | 0.950 | ||||||||
0.931 | 0.160 | 0.778 | 0.962 | 0.632 | 0.851 | ||||||||
0.970 | 0.539 | 0.904 | 0.970 | 0.807 | 0.905 | ||||||||
0.969 | 0.446 | 0.905 | 0.972 | 0.813 | 0.909 |
Separated Samples | Band Indices | Landsat 8 | Landsat 5 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Clean Glacier | Shadowed Glacier | Debris-Covered Glacier | Water | Bare Land | Vegetation | Clean Glacier | Shadowed Glacier | Debris-Covered Glacier | Water | Bare Land | Vegetation | ||
Cloud | 0.088 ** | 0.122 ** | 0.093 ** | 0.114 *** | 0.016 ** | 0.059 ** | 0.058 ** | 0.045 *** | |||||
0.063 *** | 0.063 *** | 0.062 *** | 0.088 *** | ||||||||||
0.061 *** | 0.069 *** | 0.009 *** | 0.030 *** | ||||||||||
0.060 *** | 0.079 *** | 0.010 *** | 0.045 *** | ||||||||||
0.009 *** | 0.009 *** | 0.025 *** | 0.011 *** | ||||||||||
0.008 *** | 0.008 *** | 0.025 *** | 0.011 *** | ||||||||||
Cloud-free surrounding environment | ST | 0.093 * | 0.160 * | 0.146 * | 0.063 * | 0.056 * | 0.092 * | ||||||
0.147 * | – | 0.045 * | 0.404 * | – | 0.098 * | ||||||||
0.133 * | – | 0.029 * | 0.213 * | – | 0.040 * | ||||||||
0.140 * | – | 0.057 * | 0.211 * | – | 0.064 * | ||||||||
0.042 * | – | – | 0.064 * | – | – | ||||||||
0.042 * | – | – | 0.076 * | – | – | ||||||||
0.039 * | – | – | 0.056 * | – | – | ||||||||
– | – | – | 0.026 * | – | – | ||||||||
0.037 * | – | – | 0.034 * | – | – | ||||||||
0.038 * | – | – | 0.032 * | – | – |
Band Indices | Land Cover Samples | Landsat 8 | Landsat 5 | ||||
---|---|---|---|---|---|---|---|
Best Threshold | Minimum Reasonable Threshold | Maximum Reasonable Threshold | Best Threshold | Minimum Reasonable Threshold | Maximum Reasonable Threshold | ||
Clean glacier ** | 721 | 300 | 1174 | 2148 | 1979 | 2346 | |
Shadowed glacier ** | 489 | −46 | 1268 | 1446 | 837 | 2391 | |
Debris-covered glacier ** | 736 | 347 | 1265 | 1274 | 850 | 2400 | |
Water *** | 758 | 140 | 1248 | 778 | 441 | 1999 | |
Bare land *** | 517 | −341 | 3021 | 3126 | 883 | 26,949 | |
Vegetation *** | 318 | −131 | 3033 | 2557 | 823 | 27,713 | |
Clean glacier * | 24,850 | 19,092 | 28,525 | 22,197 | 8833 | 26,474 | |
Shadowed glacier | 30,017 | – | – | 26,539 | – | – | |
Debris-covered glacier * | 27,271 | 26,894 | 28,368 | 24,964 | 23,710 | 26,760 | |
Clean glacier * | 1.926 | 1.522 | 2.453 | 2.039 | 1.723 | 2.417 | |
Shadowed glacier | 1.020 | – | – | 1.135 | – | – | |
Debris-covered glacier | 1.481 | – | – | 1.633 | – | – |
Satellites | Land Cover Samples | Confusion Matrix for the Results of This Method | Producer’s Accuracy | |||||
---|---|---|---|---|---|---|---|---|
Glacier | Cloud-Free Surrounding Environment | Cloud | This Study | NDSI | ||||
Landsat 8 | Clean glacier | 629,024 | 6182 | 1290 | 0.988 | 0.982 | 0.969 | 0.959 |
Shadowed glacier | 10,129 | 19,355 | 4 | 0.344 | 0.118 | 0.090 | 0.083 | |
Debris-covered glacier | 30,830 | 3261 | 65 | 0.903 | 0.788 | 0.646 | 0.611 | |
Bare land | 1960 | 246,072 | 68 | 0.992 | 0.999 | 1 | 1 | |
Vegetation | 3 | 299,681 | 84 | 0.999 | 0.999 | 0.992 | 1 | |
Water | 359 | 85,697 | 2 | 0.996 | 0.996 | 1 | 0.998 | |
Cloud | 1728 | 102 | 403,872 | 0.995 | – | – | – | |
Kappa | 0.970 | 0.933 | 0.908 | 0.900 | ||||
Landsat 5 | Clean glacier | 725,518 | 11,312 | 6668 | 0.976 | 0.985 | 0.980 | 0.964 |
Shadowed glacier | 53,513 | 7904 | 27 | 0.871 | 0.466 | 0.337 | 0.156 | |
Debris-covered glacier | 64,058 | 5331 | 3 | 0.923 | 0.929 | 0.861 | 0.620 | |
Bare land | 412 | 77,324 | 12 | 0.995 | 0.999 | 0.999 | 0.999 | |
Vegetation | 68 | 613,645 | 26 | 0.999 | 0.999 | 0.995 | 1 | |
Water | 798 | 69,707 | 0 | 0.989 | 0.908 | 1 | 1 | |
Cloud | 2331 | 10 | 209,525 | 0.989 | – | – | – | |
Kappa | 0.968 | 0.932 | 0.916 | 0.872 |
Methods | Rate Threshold | Positive Prediction Value | True Positive Rate | Kappa |
---|---|---|---|---|
This study | 0.85 | 0.918 | 0.940 | 0.924 |
0.75 | 0.901 | 0.928 | 0.909 | |
0.75 | 0.911 | 0.902 | 0.900 | |
NDSI | 0.65 | 0.889 | 0.890 | 0.882 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Cheng, H.; Liu, J.; Su, X.; Wang, Y.; Qiao, B.; Wang, Y.; Wang, N. A New Method for Automatic Glacier Extraction by Building Decision Trees Based on Pixel Statistics. Remote Sens. 2025, 17, 710. https://doi.org/10.3390/rs17040710
Liu X, Cheng H, Liu J, Su X, Wang Y, Qiao B, Wang Y, Wang N. A New Method for Automatic Glacier Extraction by Building Decision Trees Based on Pixel Statistics. Remote Sensing. 2025; 17(4):710. https://doi.org/10.3390/rs17040710
Chicago/Turabian StyleLiu, Xiao, Hongyi Cheng, Jiang Liu, Xianbao Su, Yuchen Wang, Bin Qiao, Yipeng Wang, and Nai’ang Wang. 2025. "A New Method for Automatic Glacier Extraction by Building Decision Trees Based on Pixel Statistics" Remote Sensing 17, no. 4: 710. https://doi.org/10.3390/rs17040710
APA StyleLiu, X., Cheng, H., Liu, J., Su, X., Wang, Y., Qiao, B., Wang, Y., & Wang, N. (2025). A New Method for Automatic Glacier Extraction by Building Decision Trees Based on Pixel Statistics. Remote Sensing, 17(4), 710. https://doi.org/10.3390/rs17040710