Monitoring Mangrove Phenology Based on Gap Filling and Spatiotemporal Fusion: An Optimized Mangrove Phenology Extraction Approach (OMPEA)
<p>Map of study area: (<b>a</b>) the overall distribution of study area; (<b>b1</b>–<b>b4</b>) Zhangjiangkou National Mangrove Nature Reserve (ZNR) in Fujian Province, Qi’ao Island Provincial Nature Reserve (QPR) in Guangdong Province, Beilun Estuary National Nature Reserve (BNR) in Guangxi Province, and Dongzhaigang National Mangrove Nature Reserve (DNR) in Hainan Province.</p> "> Figure 2
<p>Workflow of mangrove phenology extraction based on OMPEA.</p> "> Figure 3
<p>Landsat 8 NDVI (16-day 30 m) and denoised Landsat NDVI (16-day 30 m) generated by OMPEA. Gray pixel indicates pixel with no data.</p> "> Figure 4
<p>MODIS NDVI (1-day 500 m) and denoised MODIS NDVI (1-day 30 m) generated by OMPEA. Gray pixel indicates pixel with no data.</p> "> Figure 5
<p>The OMPEA-generated fused NDVI imagery. Gray pixel indicates pixel with no data.</p> "> Figure 6
<p>Scatter density plots and marginal histograms of fused NDVI and denoised Landsat NDVI.</p> "> Figure 7
<p>Composite scatter plots and line plots of various NDVI time series.</p> "> Figure 8
<p>Fused NDVI time-series curve and phenological parameters.</p> "> Figure 9
<p>Boxplots of mangrove phenological parameters.</p> "> Figure 10
<p>The time-series curves for fused NDVI, precipitation, temperature, and their lagged time-series curves with corresponding lag days.</p> "> Figure 11
<p>The OMPEA-generated fused NDVI in QPR from 17 January 2020 to 24 March 2021. (<b>a</b>) Description of denoised Landsat 8 NDVI in a full-time range. (<b>b</b>) Description of denoised Landsat 8 NDVI across three different time ranges, (<b>c</b>,<b>d</b>) is fused NDVI that using (<b>a</b>,<b>b</b>) as inputs, respectively. Gray pixel indicates pixel with no data.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset
2.2.1. Remote Sensing Data
2.2.2. Environmental Data
2.3. Methods
2.3.1. De-Noising Using GF–SG Algorithm
Landsat Denoising
MODIS Denoising
2.3.2. ESTARFM-like Algorithm
2.3.3. The MS Method
2.3.4. Statistical Metrics
3. Results
3.1. Image Denoising Performances
3.2. Spatiotemporal Fusion Performance Based on Gap Filling
3.3. Comparison of Reconstructed NDVI Time Series
3.4. Phenological Parameters and Lagged Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Biswas, P.L.; Biswas, S.R. Mangrove Forests: Ecology, Management, and Threats, in: Encyclopedia of the UN Sustainable Development Goals; Springer International Publishing: Cham, Switzerland, 2020; pp. 627–640. [Google Scholar] [CrossRef]
- Wang, Y.-S.; Gu, J.-D. Ecological responses, adaptation and mechanisms of mangrove wetland ecosystem to global climate change and anthropogenic activities. Int. Biodeterior. Biodegrad. 2021, 162, 105248. [Google Scholar] [CrossRef]
- Zhang, R.; Jia, M.; Wang, Z.; Zhou, Y.; Mao, D.; Ren, C.; Zhao, C.; Liu, X. Tracking annual dynamics of mangrove forests in mangrove National Nature Reserves of China based on time series Sentinel-2 imagery during 2016–2020. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102918. [Google Scholar] [CrossRef]
- Coupland, G.T.; Paling, E.I.; McGuinness, K.A. Vegetative and reproductive phenologies of four mangrove species from northern australia. Aust. J. Bot. 2005, 53, 109. [Google Scholar] [CrossRef]
- Wang, L.; Jia, M.; Yin, D.; Tian, J. A review of remote sensing for mangrove forests: 1956–2018. Remote Sens. Environ. 2019, 231, 111223. [Google Scholar] [CrossRef]
- Grossman, J.J. Phenological physiology: Seasonal patterns of plant stress tolerance in a changing climate. New Phytol. 2022, 237, 1508–1524. [Google Scholar] [CrossRef] [PubMed]
- You, Q.; Deng, W.; Tang, X.; Liu, Y.; Lei, P.; Chen, J.; You, H. Monitoring of mangrove dynamic change in Beibu Gulf of Guangxi based on reconstructed time series images. Sci. Total. Environ. 2024, 917, 170395. [Google Scholar] [CrossRef]
- Pastor-Guzman, J.; Dash, J.; Atkinson, P.M. Remote sensing of mangrove forest phenology and its environmental drivers. Remote Sens. Environ. 2018, 205, 71–84. [Google Scholar] [CrossRef]
- Gong, Z.; Ge, W.; Guo, J.; Liu, J. Satellite remote sensing of vegetation phenology: Progress, challenges, and opportunities. ISPRS. J. Photogramm. Remote Sens. 2024, 217, 149–164. [Google Scholar] [CrossRef]
- Younes, N.; Joyce, K.E.; Maier, S.W. All models of satellite-derived phenology are wrong, but some are useful: A case study from northern Australia. Int. J. Appl. Earth Obs. Geoinf. 2021, 97, 102285. [Google Scholar] [CrossRef]
- Berlanga-Robles, C.A.; Ruiz-Luna, A.; Villanueva, M.R.N. Seasonal trend analysis (STA) of MODIS vegetation index time series for the mangrove canopy of the Teacapan-Agua Brava lagoon system, Mexico. GIScience Remote Sens. 2018, 56, 338–361. [Google Scholar] [CrossRef]
- Songsom, V.; Koedsin, W.; Ritchie, R.J.; Huete, A. Mangrove Phenology and Environmental Drivers Derived from Remote Sensing in Southern Thailand. Remote Sens. 2019, 11, 955. [Google Scholar] [CrossRef]
- Younes, N.; Northfield, T.D.; Joyce, K.E.; Maier, S.W.; Duke, N.C.; Lymburner, L. A Novel Approach to Modelling Mangrove Phenology from Satellite Images: A Case Study from Northern Australia. Remote Sens. 2020, 12, 4008. [Google Scholar] [CrossRef]
- Zhang, X.; Friedl, M.A.; Schaaf, C.B. Sensitivity of vegetation phenology detection to the temporal resolution of satellite data. Int. J. Remote Sens. 2009, 30, 2061–2074. [Google Scholar] [CrossRef]
- Klosterman, S.T.; Hufkens, K.; Gray, J.M.; Melaas, E.; Sonnentag, O.; Lavine, I.; Mitchell, L.; Norman, R.; Friedl, M.A.; Richardson, A.D. Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using PhenoCam imagery. Biogeosciences 2014, 11, 4305–4320. [Google Scholar] [CrossRef]
- Hong, Y.; Que, X.; Wang, Z.; Ma, X.; Wang, H.; Salati, S.; Liu, J. Mangrove extraction from super-resolution images generated by deep learning models. Ecol. Indic. 2024, 159, 111714. [Google Scholar] [CrossRef]
- Cao, R.; Chen, Y.; Shen, M.; Chen, J.; Zhou, J.; Wang, C.; Yang, W. A simple method to improve the quality of NDVI time-series data by integrating spatiotemporal information with the Savitzky-Golay filter. Remote Sens. Environ. 2018, 217, 244–257. [Google Scholar] [CrossRef]
- Wagenseil, H.; Samimi, C. Assessing spatio-temporal variations in plant phenology using Fourier analysis on NDVI time series: Results from a dry savannah environment in Namibia. Int. J. Remote Sens. 2006, 27, 3455–3471. [Google Scholar] [CrossRef]
- Yang, N.; Luo, N.; Huang, N.; Wu, N.; Sun, N. Weighted Double-Logistic Function Fitting Method for Reconstructing the High-Quality Sentinel-2 NDVI Time Series Data Set. Remote Sens. 2019, 11, 2342. [Google Scholar] [CrossRef]
- Chamberlain, D.A.; Phinn, S.R.; Possingham, H.P. Mangrove Forest Cover and Phenology with Landsat Dense Time Series in Central Queensland, Australia. Remote Sens. 2021, 13, 3032. [Google Scholar] [CrossRef]
- Chen, Y.; Cao, R.; Chen, J.; Liu, L.; Matsushita, B. A practical approach to reconstruct high-quality Landsat NDVI time-series data by gap filling and the Savitzky-Golay filter. ISPRS. J. Photogramm. Remote Sens. 2021, 180, 174–190. [Google Scholar] [CrossRef]
- Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218. [Google Scholar] [CrossRef]
- Zhu, X.; Helmer, E.H.; Gao, F.; Liu, D.; Chen, J.; Lefsky, M.A. A flexible spatiotemporal method for fusing satellite images with different resolutions. Remote Sens. Environ. 2016, 172, 165–177. [Google Scholar] [CrossRef]
- Liu, M.; Liu, X.; Dong, X.; Zhao, B.; Zou, X.; Wu, L.; Wei, H. An Improved Spatiotemporal Data Fusion Method Using Surface Heterogeneity Information Based on ESTARFM. Remote Sens. 2020, 12, 3673. [Google Scholar] [CrossRef]
- Ma, Y.; Jiang, G.; Huang, J.; Shen, Y.; Guan, H.; Dong, Y.; Li, J.; Hu, C. Evaluating the Ability of the Sentinel-1 Cross-Polarization Ratio to Detect Spring Maize Phenology Using Adaptive Dynamic Threshold. Remote Sens. 2024, 16, 826. [Google Scholar] [CrossRef]
- Wang, Q.; Atkinson, P.M. Spatio-temporal fusion for daily Sentinel-2 images. Remote Sens. Environ. 2018, 204, 31–42. [Google Scholar] [CrossRef]
- Chen, R.; Zhang, R.; Zhao, C.; Wang, Z.; Jia, M. High-Resolution Mapping of Mangrove Species Height in Fujian Zhangjiangkou National Mangrove Nature Reserve Combined GF-2, GF-3, and UAV-LiDAR. Remote Sens. 2023, 15, 5645. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, W.; Gao, F.; Yu, C.; Feng, Y.; Gao, L.; Zhou, J.; Shi, H.; Liu, C.; Kong, D.; et al. Acidification and hypoxia in seawater, and pollutant enrichment in the sediments of qi’ao island mangrove wetlands, pearl river estuary, china. Ecol. Indic. 2024, 158, 111589. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, L.; Chen, B.; Deng, L.; Fu, B.; Yan, M.; Ji, C. Assessment of mangrove health based on pressure-state-response framework in Guangxi Beibu Gulf, China. Ecol. Indic. 2024, 167, 112685. [Google Scholar] [CrossRef]
- Zhang, Y.; Xin, K.; Sheng, N.; Xie, Z.; Liao, B. The regenerative capacity of eight mangrove species based on propagule traits in Dongzhai Harbor, Hainan Province, China. Glob. Ecol. Conserv. 2021, 30, e01788. [Google Scholar] [CrossRef]
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef]
- Hao, X.; Huang, G.; Zheng, Z.; Sun, X.; Ji, W.; Zhao, H.; Wang, J.; Li, H.; Wang, X. Development and validation of a new MODIS snow-cover-extent product over China. Hydrol. Earth Syst. Sci. 2021, 26, 1937–1952. [Google Scholar] [CrossRef]
- Lu, S.; Jia, L.; Zhang, L.; Wei, Y.; Baig, M.H.A.; Zhai, Z.; Meng, J.; Li, X.; Zhang, G. Lake water surface mapping in the Tibetan Plateau using the MODIS MOD09Q1 product. Remote Sens. Lett. 2016, 8, 224–233. [Google Scholar] [CrossRef]
- Jia, M.; Wang, Z.; Zhang, Y.; Mao, D.; Wang, C. Monitoring loss and recovery of mangrove forests during 42 years: The achievements of mangrove conservation in China. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 535–545. [Google Scholar] [CrossRef]
- Karger, D.N.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.W.; Zimmermann, N.E.; Linder, H.P.; Kessler, M. Climatologies at high resolution for the earth’s land surface areas. Sci Data 2017, 4, 170122. [Google Scholar] [CrossRef] [PubMed]
- Nietupski, T.C.; Kennedy, R.E.; Temesgen, H.; Kerns, B.K. Spatiotemporal image fusion in Google Earth Engine for annual estimates of land surface phenology in a heterogenous landscape. Int. J. Appl. Earth Obs. Geoinf. 2021, 99, 102323. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, J.; Gao, F.; Chen, X.; Masek, J.G. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sens. Environ. 2010, 114, 2610–2623. [Google Scholar] [CrossRef]
- Descals, A.; Verger, A.; Yin, G.; Penuelas, J. A Threshold Method for Robust and Fast Estimation of Land-Surface Phenology Using Google Earth Engine. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 601–606. [Google Scholar] [CrossRef]
- Andronis, V.; Karathanassi, V.; Tsalapati, V.; Kolokoussis, P.; Miltiadou, M.; Danezis, C. Time Series Analysis of Landsat Data for Investigating the Relationship between Land Surface Temperature and Forest Changes in Paphos Forest, Cyprus. Remote Sens. 2022, 14, 1010. [Google Scholar] [CrossRef]
- Abowarda, A.S.; Bai, L.; Zhang, C.; Long, D.; Li, X.; Huang, Q.; Sun, Z. Generating surface soil moisture at 30 m spatial resolution using both data fusion and machine learning toward better water resources management at the field scale. Remote Sens. Environ. 2021, 255, 112301. [Google Scholar] [CrossRef]
- Knauer, K.; Gessner, U.; Fensholt, R.; Kuenzer, C. An ESTARFM Fusion Framework for the Generation of Large-Scale Time Series in Cloud-Prone and Heterogeneous Landscapes. Remote Sens. 2016, 8, 425. [Google Scholar] [CrossRef]
- Yang, M.; Zhou, Y.; Xie, Y.; Shao, W.; Luo, F. Accuracy Evaluation of Four Spatiotemporal Fusion Methods for Different Time Scales. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 8291–8301. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, F.; Wang, J.; Ye, Y. Evaluating a spatiotemporal shape-matching model for the generation of synthetic high spatiotemporal resolution time series of multiple satellite data. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102545. [Google Scholar] [CrossRef]
- Cao, J.; Xu, X.; Zhuo, L.; Liu, K. Investigating mangrove canopy phenology in coastal areas of China using time series Sentinel-1/2 images. Ecol. Indic. 2023, 154, 110815. [Google Scholar] [CrossRef]
- Shahzad, K.; Alatalo, J.M.; Zhu, M.; Cao, L.; Hao, Y.; Dai, J. Geographic conditions impact the relationship between plant phenology and phylogeny. Sci. Total. Environ. 2024, 945, 174083. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Jia, M.; Zhang, R.; Ren, Y.; Wen, X. Incorporating the plant phenological trajectory into mangrove species mapping with dense time series Sentinel-2 imagery and the Google Earth Engine platform. Remote Sens. 2019, 11, 2479. [Google Scholar] [CrossRef]
- Huang, K.; Yang, G.; Sun, W.; Fu, B.; Chen, C.; Meng, X.; Feng, T.; Wang, L. The phenology and water level time-series mangrove index for improved mangrove monitoring. Int. J. Appl. Earth Obs. Geoinf. 2024, 134, 104188. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Sharma, S.; Hagihara, A. Vegetative and reproductive phenology of the mangrove Kandelia obovata. Plant Species Biol. 2013, 28, 118–129. [Google Scholar] [CrossRef]
- Ruan, L.; Yan, M.; Zhang, L.; Fan, X.; Yang, H. Spatial-temporal NDVI pattern of global mangroves: A growing trend during 2000–2018. Sci. Total. Environ. 2022, 844, 157075. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Treitz, P.M.; Chen, D.; Quan, C.; Shi, L.; Li, X. Mapping mangrove forests using multi-tidal remotely-sensed data and a decision-tree-based procedure. Int. J. Appl. Earth Obs. Geoinf. 2017, 62, 201–214. [Google Scholar] [CrossRef]
- Younes, N.; Joyce, K.E.; Northfield, T.D.; Maier, S.W. The effects of water depth on estimating Fractional Vegetation Cover in mangrove forests. Int. J. Appl. Earth Obs. Geoinf. 2019, 83, 101924. [Google Scholar] [CrossRef]
- Chen, J.; Jiang, C.; Wu, Z.; Long, Y.; Deng, B.; Liu, X. Numerical investigation of fresh and salt water distribution in the Pearl River Estuary during a typhoon using a fully coupled atmosphere-wave-ocean model. Water 2019, 11, 646. [Google Scholar] [CrossRef]
- Wang, W.; Xin, K.; Chen, Y.; Chen, Y.; Jiang, Z.; Sheng, N.; Liao, B.; Xiong, Y. Spatio-temporal variation of water salinity in mangroves revealed by continuous monitoring and its relationship to floristic diversity. Plant Divers. 2024, 46, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Perri, S.; Detto, M.; Porporato, A.; Molini, A. Salinity-induced limits to mangrove canopy height. Glob. Ecol. Biogeogr. 2023, 32, 1561–1574. [Google Scholar] [CrossRef]
- Yang, X.; Zhu, Z.; Kroeger, K.D.; Qiu, S.; Covington, S.; Conrad, J.R.; Zhu, Z. Tracking mangrove condition changes using dense Landsat time series. Remote Sens. Environ. 2024, 315, 114461. [Google Scholar] [CrossRef]
- Asbridge, E.; Lucas, R.; Accad, A.; Dowling, R. Mangrove Response to Environmental Changes Predicted Under Varying Climates: Case Studies from Australia. Curr. For. Rep. 2015, 1, 178–194. [Google Scholar] [CrossRef]
Region | Temperature | Precipitation | ||
---|---|---|---|---|
CCF | Lag Days | CCF | Lag Days | |
ZNR | 0.6276 * | 92 | 0.1396 * | 89 |
QPR | 0.7791 * | 55 | 0.2327 * | 100 |
BNR | 0.6576 * | 83 | 0.2057 * | 65 |
DNR | 0.5190 * | 99 | 0.2613 * | 65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, Y.; Zhou, R.; Liu, J.; Que, X.; Chen, B.; Chen, K.; He, Z.; Huang, G. Monitoring Mangrove Phenology Based on Gap Filling and Spatiotemporal Fusion: An Optimized Mangrove Phenology Extraction Approach (OMPEA). Remote Sens. 2025, 17, 549. https://doi.org/10.3390/rs17030549
Hong Y, Zhou R, Liu J, Que X, Chen B, Chen K, He Z, Huang G. Monitoring Mangrove Phenology Based on Gap Filling and Spatiotemporal Fusion: An Optimized Mangrove Phenology Extraction Approach (OMPEA). Remote Sensing. 2025; 17(3):549. https://doi.org/10.3390/rs17030549
Chicago/Turabian StyleHong, Yu, Runfa Zhou, Jinfu Liu, Xiang Que, Bo Chen, Ke Chen, Zhongsheng He, and Guanmin Huang. 2025. "Monitoring Mangrove Phenology Based on Gap Filling and Spatiotemporal Fusion: An Optimized Mangrove Phenology Extraction Approach (OMPEA)" Remote Sensing 17, no. 3: 549. https://doi.org/10.3390/rs17030549
APA StyleHong, Y., Zhou, R., Liu, J., Que, X., Chen, B., Chen, K., He, Z., & Huang, G. (2025). Monitoring Mangrove Phenology Based on Gap Filling and Spatiotemporal Fusion: An Optimized Mangrove Phenology Extraction Approach (OMPEA). Remote Sensing, 17(3), 549. https://doi.org/10.3390/rs17030549