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Abstract: Traditional methods for crop data collection are labor-intensive, inefficient and,
more costly compared to remote sensing (RS) techniques. This study aims to identify
key climatic variables influencing maize and wheat yields and develop predictive models
while also evaluating the performance of the CropWatch cloud yield prediction model
(CW_YPM) in major agricultural regions of Ethiopia. Climate data from 54 meteorological
stations spanning 2000-2021 were analyzed. RS data, including NDVI from MODIS at
250 m resolution, agroecological zones, and observed crop yield data, were utilized for
model prediction and validation. Correlation analysis and a stepwise modeling approach
with multiple regression models were applied. The results revealed regional variations in
the effects of climatic parameters on yields, with vapor pressure deficits showing negative
correlations and rainfall exhibiting positive correlations. Non-linear models generally out-
performed linear models in yield prediction—using both climate-only (CO) and combined
climate-NDVI data. The best CO model for maize in the Horo Guduru area achieved an
RMSE of 0.392 tons/ha, an R? of 0.94, and an index of agreement (d) of 0.984. Incorporating
NDVI improved accuracy, with the best maize model in the Illu Ababor area achieving an
RMSE of 0.477 tons/ha, an RZ of 0.91, and d of 0.976. CW_YPM also performed effectively
across the study area. This research highlights the value of integrating critical climatic
variables with the NDVI to enhance crop yield forecasting in Ethiopia, thereby-supporting
agricultural planning and food security initiatives.

Keywords: crop yield; NDVI; non-linear regression; Oromia region; CropWatch

1. Introduction

Accurate forecasting of agricultural yields for staple cereal crops, such as maize and
wheat, is vital for ensuring food security, stabilizing markets, and managing supply chains.
Robust forecasting models are particularly important for these crops, which are central
to the diets of a significant portion of the world’s population. However, developing such
models presents challenges in many developing countries due to limited data availability.
Conventional methods, such as on-site visits and manual reporting, remain the primary
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means of monitoring crop yields in these regions [1]. While reliable, these traditional
methods are time-consuming, resource-intensive, and often lack the scalability required to
address modern agricultural challenges.

Crop yield prediction is inherently complex, as yield formation depends on a wide
range of factors, including soil conditions, meteorology, environmental influences, and crop
genetics. Therefore, reliable crop yield prediction is a daunting task in agriculture [2—4]. Re-
cent studies recommend that incorporating diverse input parameters, such as vegetation in-
dices, soil moisture, leaf area index (LAI), climate variables, and the Normalized Difference
Vegetation Index (NDVI), into crop yield prediction models can enhance decision-making
for policymakers and improve crop management strategies [5-7].

There are several methods for predicting crop yields. Bingfang et al. [5] summarize
them into four main categories: regression, biomass and harvest index, crop growth models,
and data-driven/machine learning methods. Traditionally, the linear regression model has
been widely applied to establish relationships between crop yield and predictors, such as
meteorological variables (e.g., rainfall and temperature) and vegetation indices [8]. While
useful, linear regression often suffers from weak generalization capabilities. In contrast,
data-driven models, combining machine learning techniques with multi-dimensional fea-
tures, have shown promise for crops like maize and soybean in developed regions, such as
the Midwestern United States [9,10]. However, these methods depend heavily on exten-
sive datasets and advanced computational infrastructure, which are difficult to access in
developing countries. Hybrid approaches, such as the CropWatch yield prediction model
developed in China, integrate multiple indicators across global, national, and regional
scales, offering an alternative framework for yield estimation [11-13]. Ultimately, the choice
of crop yield prediction strategy must consider data availability, model performance, and
the intended purpose.

Ethiopia, the second-largest wheat producer in Africa, cereal crops dominate agricul-
tural production, covering 81% of the land used for grain farming and contributing 88%
to the total grain production [14,15]. In 2022/2023 production year, Ethiopia produced
5.5 million metric tons of wheat, accounting for 21.7% of Africa’s wheat production and
18.3% of the continent’s harvested wheat area [16]. Despite these contributions, Ethiopia
faces persistent food insecurity, exacerbated by prolonged droughts, climate change, and a
predominantly rain-fed agricultural system [6,17]. Wetter years generally correlate with
higher food production, while dry years result in lower yield production [18-21]. Com-
pounding these challenges are issues such as population pressure, inadequate disease
control, outdated farming technologies, and significant pre and post-harvest losses [22].
Addressing these vulnerabilities requires early and accurate monitoring of climate variabil-
ity and crop production to mitigate food insecurity risks.

Many attempts have been made to predict crop yield in Ethiopia. For example, Zinna
and Suryabhagavan [23] utilized time remote sensing (RS) data from SPOT VEGETATION
and other data to forecast maize crop yields in South Tigray, while Reda [24] applied RS and
GIS techniques to predict wheat yields in the Arsi zone. Debalke and Abebe [1] developed
a linear regression model incorporating eMODIS NDVI data to estimate maize yields in the
Kafa zone. Awetahegn et al. [6] demonstrated the efficiency of integrating LAI data into
the MOFOST crop model for large-scale wheat yield estimation in Ethiopia. While these
studies provide valuable insights, they often lack comprehensive analysis of key climatic
variables across Ethiopia’s diverse agricultural zones or fail to incorporate these variables
into predictive models effectively.

Moreover, many studies recommend testing polynomial and non-linear regression
models and enhancing RS and GIS approaches to identify additional factors contributing
to yield prediction variability. Milkessa and Amsalu [14] highlighted the positive impact
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of precipitation on cereal crop production and the adverse effects of rising temperatures.
However, there remains a significant gap in studies testing multiple non-linear models,
leveraging long-term climate data, or spatially addressing Ethiopia’s key agricultural
production areas. Generalizability also remains a challenge, as many models are constrained
by region-specific and data-dependent limitations.

RS presents a powerful alternative, offering timely, precise, and scalable data for crop
yield estimation. Despite its potential, RS-based approaches have been underutilized in the
Ethiopian crop yield prediction efforts. Addressing these gaps is essential for improving the
accuracy and applicability of yield forecasting models for Ethiopia’s agricultural systems.

This study focuses on maize and wheat in Ethiopia to evaluate and compare the
performance of regression-based approaches using stepwise multiple regression and RS-
based CropWatch cloud platform models for crop yield prediction, which use the Carnegie—
Ames-Stanford Approach (CASA) to calculate the net primary productivity.

It aims to identify the most effective method for predicting maize and wheat yields in
key agricultural zones of Ethiopia. The primary objectives are as follows: (1) to identify
key climatic variables that significantly influence maize and wheat yields and develop
predictive models for these crops in selected Ethiopian regions, leveraging climate data and
RS inputs, either independently or in combination, and (2) to evaluate the performance of
RS-based crop yield modules provided by the CropWatch cloud platform under Ethiopia’s
condition through customizing its application in the area.

By developing robust predictive models utilizing the CropWatch yield prediction
model, which integrates an extensive range of RS indicators at global, national, and regional
scales, this research aspires to support data-driven agricultural decision-making. The
ultimate goal is to bolster the resilience and sustainability of Ethiopia’s agricultural systems.

2. Materials and Methods
2.1. Study Area

Ethiopia, covering a total area of 1,104,300 km?, is divided into 72 administrative zones
(Figure 1). It is located in the Horn of Africa and spans from 32°42" E to 48°12" E longitude
and 3°30” N to 14°50" N latitude. The country experiences diverse climate, with mean
annual rainfall ranging from 550 mm in the northern and eastern regions to over 2000 mm
in the western and southwestern areas. The mean annual temperature ranges from 15 to
20 °C in high-altitude regions, while it varies from 25 to 30 °C in the lowlands [6].
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Figure 1. Location map of the study area, highlighting 13 selected administrative zones known for
wheat and maize cultivation, along with the distribution of meteorological stations used in the study.
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This research focused on 13 zones within the Oromia region, a key area for maize
and wheat production in Ethiopia. These zones are situated at 5°33’59” and 10°21'34” N
latitude and 34°10'48” to 43°04'12” E longitude, encompassing a total area of 203,174.27 km?
(Figure 1). Oromia is Ethiopia’s most densely populated regional state and a critical
agricultural hub, contributing to 50% of the country’s total production of major food
crops [25]. Out of the 5.86 million hectares allocated to grain crops in Oromia, maize
cultivation accounts for 1.2 million hectares, representing 21% of the total area. Remarkably,
72% of smallholder farmers in the region engage in maize cultivation [25].

2.2. Data Used
2.2.1. Climate Variables

In this study, we analyzed climate data that included seasonal minimum (Tm), maxi-
mum (Tx), and mean (Tmean) temperatures in degrees Celsius, areal rainfall in millimeters
(ArealRF), and both minimum (VPDm) and maximum (VPDx) vapor pressure deficit in
kilopascals (KPa). The data were sourced from the National Meteorological Agency of
Ethiopia, with observations collected from 54 meteorological stations spanning from 2000
to 2021. To accurately estimate areal rainfall distribution across the study area, we adopted
the Theisen polygon approach. Missing rainfall and temperature data were supplemented
using the PDIR-Now (Dynamic Infrared Rain rate near real-time) system, available at CHRS
Data, and TAMSAT (Tropical Applications of Meteorology using SATellite) data, accessi-
ble at TAMSAT, both at 4 km resolution. Vapor pressure deficit was calculated using an
equation established by Tetens [26] (as shown in Equations (1) to (3)). We aggregated these
climate variables over the growing seasons, which run from late May to early November
for wheat and from late April to September for maize, across each administrative zone
within the study area. Figure 2 illustrates the historical climate variables for the primary
maize and wheat producing regions, covering the period from 2000 to 2021.

1727 x T
es = 0.6108 x exp(TW)) 1)
RH
e; = <100) X €s (2)
Vapor Pressure Deficit = e, — es (©)]

where ¢; = saturation vapor pressure (Kpa), ¢, = actual vapor pressure, T = temperature in
°C.If RH is in percentage, e; = 60%; otherwise, ¢, = RH*e;.
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Figure 2. Historical (2000-2021) climate variables (seasonal areal rainfall, average temperature
(Tmean), and vapor pressure deficit) of selected administrative zones: (a) Arsi from wheat growing
area (June to October) and (b) Illu Ababora from maize growing area (May to September).
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2.2.2. Satellite Imaging Data

NDVI data, calculated using near-infrared (NIR) and red bands from Landsat sensors
multispectral images, served as reliable indicator of crop growth conditions (Equation (4)).
For crop yield estimation, NDVI data from intermediate spatial resolution sensors, such as
the Moderate Resolution Imaging Spectroradiometer (MODIS), have been widely uti-
lized. Key studies, including those by Becker-Reshef, Vermote et al. [27], Mkhabela
et al. [28], Vintrou et al. [29], Kouadio et al. [30], and Johnson [31], highlight the sig-
nificance of this technology in advancing agricultural monitoring and yield forecast-
ing. In this research, MODIS NDVI dataset with a 250 m spatial resolution (available
at https:/ /Ipdaac.usgs.gov/products/mod13q1v061/ (accessed on 20 March 2024)) was
utilized to align with meteorological data. This dataset provided monthly NDVI values,
from which maximum eMODIS NDVI values for maize (May to September) and wheat
(June to October) were extracted for the years 2000 to 2021. The Google Earth Engine
(GEE) platform facilitated the processing. Cropping areas were masked using agroeco-
logical zones and the European Space Agency (ESA) WorldCereal 10m 2021 model (https:
/ /developers.google.com/earth-engine /datasets/catalog/MODIS_061_MOD13Q1, (ac-
cessed on 20 March 2024)) as described in the subsequent section.

NDVI = (NIR ~ Red) /(NIR + Red) (4)

where near-infrared (NIR) bands typically range from 700 nm to 2500 nm, and red bands
are in the visible spectrum, typically ranging from 620 nm to 750 nm.

For calibrating the CropWatch cloud yield prediction model, one of the required inputs
is to determine the starting and end of the cropping season. For this study area, Terra and
Aqua used Moderate Resolution Imaging Spectroradiometer (MODIS) Land Cover Dynam-
ics (MCD12Q2) Version 6.1 data product, which provides global land surface phenology
metrics (https://doi.org/10.5067 /MODIS/MCD120Q2.061, (accessed on 16 May 2024)) [32].
The dataset provides global land surface phenology metrics at yearly intervals, capturing
up to two detected growing cycles per year with a spatial resolution of 500 m, dating back
to 1970. Each asset contains layers detailing various vegetation metrics, including the total
number of growing cycles per year, onset of greenness, Greenup midpoint, maturity, peak
greenness, senescence, green-down midpoint, dormancy, and other related metrics over a
vegetation cycle. Additionally, the dataset includes comprehensive quality assessments
and phenology metric-specific quality indicators, which can be analyzed for designated
areas of interest. In this study, the areas of interest were defined, and the mid-Greenup and
senescence periods for each growing season were subsequently extracted using Google
Earth Engine (GEE) platform.

2.2.3. Crop Masks Data

To mask the cropped area, the agroecological zones (AEZs) were developed using the
elevation map of the study area. Gorfu and Ahmed [33] described that maize in Ethiopia
is generally grown between elevations of 1500 and 2200m, and wheat between 1500 and
3000 m. Equations (5) and (6) were used in ArcMap, employing the Digital Elevation Model
(DEM) to develop these AEZs. Additionally, the cropping areas were further defined using
the World Cereal 2021 map from the ESA, which provides global-scale annual and seasonal
crop maps at a 10 m resolution (https://esa-worldcereal.org/en, (accessed on 20 March
2024). An intersection of the AEZs with the World Cereal 2021 map was performed to
create a shapefile outlining the areas covered by crops in the study area.

Maize AEZ based on elevation = (Value > 1500) AND (Value< 2200) (5)
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Wheat AEZ based on elevation = (Value > 1500) AND (Value< 3000) 6)

2.2.4. Crop Yield and Harvest Index (HI) Data

The crop yield data collected from the Central Statistics Agency of Ethiopia (CSA)
for the years 2000 to 2021 provide a comprehensive overview of cereal yields at the zonal
(district) administrative level (Figure 3). These data are crucial for model calibration as
emphasized by Rijks et al. [34], who highlighted the importance of utilizing historical
crop yield records to develop accurate quantitative yield estimates. The CSA employs
standard statistical data collection and analysis methods to produce these estimates, which
are reported annually. In this study, the Oromia region has been selected as representative
study area, given its status as Ethiopia’s leading grain producing area, as indicated in the
CSA’s reports. The data presented in Figure 3a illustrate the variations in crop yields over
the specified period, reflecting trends and fluctuations that can inform agricultural practices
and policy decisions in the region. By focusing on such a significant agricultural zone,
this study aims to enhance understanding of yield dynamics and contribute to improved
agricultural productivity strategies in Ethiopia.
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Figure 3. Historical grain yield: (a) total grain production in regional states, Ethiopia (2019/2020 and
2020/2021; (b) maize and wheat yield data at selected administrative zones in Oromia region (2000 to
2021), Ethiopia [15].
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The harvest index (HI) for both wheat and maize in Ethiopia demonstrates notable
variability influenced by the specific crop varieties and agricultural practices employed.
Research has shown that the HI for maize ranges significantly, with values at farmers’ fields
falling between 25% and 37%, while, at the research fields, it is observed to range from
31% to 45% [35,36] This variability underscores the impact of management practices and
the choice of crop variety on yield outcomes. In a similar vein, the HI for wheat varies at
farmers’ fields, showing a range from 13% to 25%. Given this variability, the HI is utilized
as a critical parameter in the calibration process of the CropWatch yield prediction model.

2.3. Methods of Analysis
2.3.1. Method for Predicting Crop Yield

This study was undertaken following two principal analytical steps. First, Pearson’s
correlation analysis was carried out to explore the associations among climate variables,
NDVI, and crop yield. Next, a stepwise modeling approach was used, applying multiple
regression models that include linear, non-linear, and polynomial modes, to determine their
effectiveness in accurately predicting crop yield. The second approach involved using crop
yield prediction model that was calibrated based on the crop phenology and harvest index
for dominant maize and wheat growing areas of the study region. The general approaches
followed in this research are depicted in Figure 4.

Remote sensing
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Figure 4. General methodology flow chart. (RF = rainfall).

2.3.2. Correlation Analysis

In this study, we used a correlation inspection to assess the collinearity among all pre-
dictors and crop yield. Our goal was to find the most influential variables for constructing
robust prediction models. We assessed linear dependencies between pairs of variables
using Pearson’s correlation coefficient (C). A correlation value near 1 indicates a strong
interdependence, suggesting that changes in one variable are proportionally reflected in the
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other. We scrutinized seven potential variables using both Pearson’s correlation coefficient
and principal component analysis (PCA), as described by Friendly [37]. PCA helped iden-
tify key variables by explaining variance through principal components and highlighting
those variables that are highly correlated with each other and with crop yield. We used
the software package OriginPro 2018 to perform both PCA and Pearson’s correlation anal-
ysis. After identifying these variables, we evaluated them individually and collectively
to develop effective regression models for yield prediction. The correlations between the
predictor variables and the crop yield were ranked in descending order according to their
correlation coefficients. This ranking system helped in systematically selecting variables
for constructing multiple regression models. Starting with the variable that had the highest
correlation, we included the next most significant climate variables one at a time in a
stepwise manner to predict crop yields. This process aligns with the stepwise regression
approach commonly used to select relevant climate variables. The general approaches
followed in this research are depicted in Figure 4.

2.3.3. Regression Models

In the linear regression models, as described by James et al. [38], single or multiple pre-
dictors can be applied to predict yield, as indicated in Equation (7). Additionally, Equation
(8) shows how the multiple non-linear regression model is used for yield prediction.

yi=3 . Bixi 7)

where y; represents crop yield, §; is the regression coefficient of variables (predictors) x;,
and 7 is the total number of variables used.

Yy;i = Pri+Pro Xy + P1’3X12 + PryXs + P1’5X22 +... (8)

where y; represents crop yield, Pr;, are regression parameters, and X, is variable (predictor).

Multiple linear regression and non-linear regression models were constructed using
data from the period 2000 to 2021. Variables were selected based on their correlation
with crop yield and each other, prioritized by their significance. These models were then
evaluated throughout the growing season to assess their predictive accuracy. Furthermore,
we tested all possible combinations of models using climate data alone, and combinations
of climate data and NDVI, to determine the most effective approach.

2.3.4. CropWatch Crop Yield Prediction Model Overviews

A light-use efficiency model was employed to predict crop yield at the pixel level via
the CropWatch cloud platform [13]. The crop yield (kg ha-1) can be described as follows
(Equation (9)):

Y:NPPxTxpri "
1-w

10 9)

Here, NPP is net primary productivity; T is the conversion coefficient between plant
carbon content and plant dry matter mass; P is the proportion of biomass in the above-
ground part of the crop relative to the whole plant; w is the moisture content coefficient of
the crop during the storage period following harvest with 13~14%; and HI is the harvest
index. In this equation, T, P, and w were set to 2.34, 0.9, and 0.135, respectively. The
Carnegie—Ames—Stanford Approach (CASA) model was used in the CropWatch cloud
platform to calculate the NPP (gC m~2). The CASA model is driven by meteorological
data and RS data. The precipitation, minimum and maximum temperature of air at 2 m
above the surface of land, and amount of solar radiation reaching the surface of the Earth
of ERA5-Land were utilized in the model. The surface reflectance bands 1-7 and those
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from the MOD09GA and MYDO09GA, along with the NDVI, were employed in the model.
Further details can be found in [39]. The HI has a value between 0 and 1, and it should
be adjusted by the user according to statistical yield data or observed data. Similarly,
vegetation phenology extracted from MODIS Land Cover Dynamics (MCD12Q2) Version
6.1 data product was used for calibrating the yield prediction model as cropped area mask
(Figure 4).

2.3.5. Model Evaluation

We assessed the effectiveness of our developed regression models and the crop yield
prediction from the remote sensing model using statistical metrics. First, we utilized the
coefficient of determination (R?) to gauge how well the models explain the variance in
observed data (Equation (12)), effectively measuring how accurately the simulations predict
actual crop yields. Additionally, we employed the root mean square error (RMSE, Equation
(10)) to measure the precision of our predictions. We also used the modified index of
agreement (d, Equation (11)) as proposed by Yang et al. [40]. This index, which ranges from
0 to 1, standardizes the measurement of model prediction errors. A value of 1 indicates
a perfect match between predictions and observations, whereas a value of 0 signifies no
agreement at all, according to Willmott [41].

RMSE = [n7'Y0 (i~ 5] (10)
2
d=1— Z(yi_xi) - (11)
Y(lyi = %[+ [x; — X|)
RP=1- % (12)

n
SST =Y (y;i—7)°
i=1

n

SSE =} (i~ %)’
i=1
where SST = total sum of squares, SSE = residual sum of squares, n is the number of
observations, Y; is model result/simulation, ¥ is mean observed yield, ¥; is mean of
simulated yield, and X; is the observed yield.

3. Results

3.1. Meteorological Variables
3.1.1. Variables That Significantly Influenced Yield Prediction

The analysis conducted to identify the most influential variable for each crop type
revealed significant insights, as illustrated in Figure 5. This figure highlights the varying
correlations between predictor variables and crop yields across different zones, suggesting
that a single regression model may be inadequate for the entire study area. The diverse
impacts of climate variables on crop yields necessitate a more tailored approach to modeling.
To address this variability, this study incorporated the most significant climate variables in
combination with the NDVL This combination was evaluated for its performance against
models that used only climate data.
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Figure 5. Climate variables and Normalized Difference Vegetation Index (NDVI) correlation analysis
with (a) maize and (b) wheat yield at selected administrative zones in the study area.

The climate variables exhibited varying effects on crop yields across various zones
within the study area. Specifically, the maximum VPD (VPDx) during the growing season
was negatively correlated with both maize and wheat yields across all zones, with correla-
tion coefficients ranging from 0.68 to 0.61, as shown in Figure 5. This indicates that higher
maximum VPD levels are associated with lower crop yields, highlighting the detrimental
impact of water stress during critical growth periods. Similarly, the minimum VPD (VPDm)
also demonstrated a negative correlation with crop yields, although with varying strengths
across different zones. In the Illu Ababora zone, which is known for its significant maize
production, the C was notably high at 0.68. Conversely, in the East Wellega zone, the C was
weaker, with a coefficient of 0.22. This variability suggests that the relationship between
VPDm and crop yields may be influenced by local climatic conditions and agricultural
practices, underscoring the need for region-specific strategies to mitigate the effects of
vapor pressure deficits on crop production.

The analysis of areal rainfall and temperature effects on crop yields revealed significant
trends across the study zones for both maize and wheat. Areal rainfall demonstrated a
mostly positive correlation with crop yields in the majority of zones, with correlation
coefficients ranging from 0.65 to 0.13. This positive relationship underscores the critical
role that adequate rainfall plays in enhancing crop productivity. In contrast, the impact
of temperature on yield displayed considerable variability. The maximum temperature
(Tx) positively correlated with yields in six zones (C = 0.55 to 0.19), indicating that higher
maximum temperatures may benefit crop growth in these areas. However, in seven zones,
the correlation was negative, with coefficients ranging from 0.69 to 0.11, suggesting that
excessive heat can be detrimental to crop yields. Minimum temperature (Tm) generally had
a negative correlation with yields across most zones, with coefficients ranging from 0.65 to
0.11. However, exceptions were noted in the Arsi zone, where Tm had positive correlations
of 0.6 and 0.5, and in the West Shewa zone with coefficients of 0.31 and 0.14. The mean
temperature (Tmean) followed a similar pattern, exhibiting negative correlations in all
zones except in Arsi (C = 0.61 and 0.58) and East Shewa (C = 0.31 and 0.37), where positive
correlations were observed. These patterns highlight the complex interplay between
temperature and crop yields.

The analysis of the maximum NDVI during the growing season reveals a generally
positive correlation with maize and wheat yields across most agricultural zones. However,
it is worth noting that the influence of the NDVI on yields appears to be significantly lower
in specific regions. In East Hararge, the correlation coefficient for both maize and wheat
yields is notably low at 0.04 and 0.01, respectively. Similarly, in Illu Ababora, the NDVI’s
impact is also minimal, with correlation values of 0.19 for maize and 0.01 for wheat. This
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suggests that other factors may play a more critical role in determining crop yields in these
areas, and further investigation may be necessary to understand the underlying causes.

Seven climate variables were analyzed and ranked from highest to lowest based on
their correlation with crop yield, as determined by the correlation coefficient (C). In the Bale
zone, the climate variables influencing crop yield were ranked accordingly. For maize yield,
the rankings were as follows: NDVIx: (C = —0.59), VPDx: (C = —0.51), Tx: (C = —0.49),
Areal RF: (C = 0.48), Tmean: (C = —0.48), VPDm: (C = —0.47) and Tm: (C = —0.39). For
wheat yield, the variables were ranked as follows: Tx: (C = —0.69), Tmean: (C = —0.64),
VPDx: (C=—0.53), Tm: (C = —0.45), Areal RF: (C = 0.39), VPDm: (C = —0.39), and
NDVIx: (C = —0.06). A summary of the correlation rankings for other zones across
the study area is presented in Figure 5. Notably, in most zones, VPDx and VPDm
emerged as highly influential variables for crop yield, underscoring their critical role
in agricultural performance.

3.1.2. Selecting Important Climate Variables

Effectively predicting crop yield typically requires four to six variables. However, in
data-limited regions, a smaller set of climate variables can often yield reliable results. One
significant challenge in expanding the number of climate variables in multilinear regression
models is the risk of collinearity, which can complicate analysis and reduce model reliability.
To address this, we employed several statistical criteria to enhance model performance.
Specifically, our focus was on minimizing the MSE and RMSE, reducing the degree of
freedom (DF) and the number of predictor variables, and preventing overfitting.

During the model selection process, we carefully analyzed residual patterns between
observed and model-fitted crop yields to ensure no discernible trends were present, as such
patterns could indicate potential model deficiencies. Figure 6 presents a residual plot for
maize and wheat yields across all zonal administrations in the study area. This analysis
was crucial in identifying the most effective predictor variables, typically ranging from four
to seven per study area, based on the evaluation of the MSE, RMSE, and DF.

3.2. Regression-Based Yield Prediction Models
3.2.1. Models Using Climate Predictors

This study explored the relationship between crop yield and climate variables using
both linear and non-linear multiple regression models. Notably, only the regression coeffi-
cients from the non-linear models exhibited significant correlations, prompting us to focus
our analysis on these findings. The most effective model utilizing climate variables alone
was identified in the Horo Guduru zone for maize, achieving an RMSE of 0.392 tons/ha,
an R? of 0.94, and an index of agreement (d) of 0.984, reflecting a high degree of accuracy
(see Table 1 for details). In contrast, the least effective model was observed in the West
Hararge zone for wheat, with an RMSE of 0.562 tons/ha, an R? of 0.46, and a d value of
0.79. Despite this variation, the majority of the models based solely on climate predictors
demonstrated above-average performance, underscoring the potential of climate data for
crop yield modeling.



Remote Sens. 2025, 17,491 12 of 24

Table 1. The best selected multiple non-linear regression models constructed using climate variables
or Normalized Difference Vegetation Index (NDVI) and climate variables for maize and wheat for a
time scale of 22 years (2000-2021).

Climate Variables/NDVI 2 Regression Model
Gy ST 7 4 and Climate Variables R ERis L2 82d DE cl Code *
Maize ArealRF, VPDm, VPDx, 0.79 0478 0.228 9 0.937 Arsi_M
Arsi Tmean, Tm, NDVIx
VPDm, VPDx, Tmean, Tx, .
Wheat T, NDVIx 0.83 0.432 0.187 9 0.952 Arsi_ W
Maize ArealRF, VPDm, VPDx, 0.62 0.657 0.432 11 0.868 Bale_W
Bale Tmean, NDVIx
ArealRF, VPDm, VPDx,
Wheat Tmean, Tx, NDVIx 0.79 0.455 0.207 9 0.939 Bale W
Maize ArealRE, VPDm, VPDx, o7 0.792 0.628 9 0.888 West Shewa_M
Tmean, Tm, Tx
W_Shewa
Wheat ArealRF, VPDx, Tx, Tm, 0.71 0.468 0.219 11 0.907 West Shewa_W
NDVIx
Maize ArealRF, VPDm, VPDx, 0.72 0.502 0.252 11 0912 East Shewa_M
Tmean, Tx
E_Shewa ArealRF, VPDm, VPD
realRF, m, X,
Wheat Tmean, Tm, NDVIx 0.74 0.515 0.266 9 0.92 East Shewa_W
. ArealRF, VPDm, VPDMXx,
Maize Tmean, Tm, NDVIx 0.91 0.477 0.228 9 0.976 Illu Ababora_M
Il Ababora ArealRF, VPDm, VPDM
realRF, m, X,
Wheat Tmean, Tm, Tx, NDVIx 0.81 0.589 0.347 7 0.945 Illu Ababora_ W
. ArealRF, VPDx, Tmean, .
Maize Tm, NDVIx 0.89 0.440 0.193 5 0.971 West Arsi_M
W Arsi ArealRF, VPDm, VPD
realRF, m, X, i
Wheat Tmean, Tx, NDVIx 0.92 0.410 0.168 3 0.98 West Arsi_ W
. ArealRF, VPDm, VPDMXx,
Maize Tmean, Tm, NDVIx 0.83 0.459 0.211 9 0.952 North Shewa_M
N Shewa ArealRF, VPDMx, Tx, T
Wheat reatsty X X A, 0.77 0.476 0.227 11 0.929 North Shewa_W
NDVIx
. ArealRF, VPDx, Tmean, South west
Maize Tx, NDVIx 0.74 0.746 0.557 8 0.92 Shewa M
SW Shewa ArealRF, VPDm, VPD South t
realRF, m, X, outh wes
Wheat Tmean, Tx, Tm, NDVIx 0.74 0.696 0.484 4 0.918 Shewa W
Maize ArealRF, VPDm, VPDx, 0.82 0.288 0.083 9 0.949 East Hararge M
Tmean, Tx, Tm
E Hararge
ArealRF, VPDm, VPDMXx,
Wheat Tmean, Tm, Tx, NDVIx 0.52 0.615 0.378 7 0.813 East Hararge W
. ArealRF, VPDm, Tmean,
Maize Tx, NDVIx 0.76 0.329 0.109 11 0.926 West Hararge_ M
W Hararge .
ArealRF, VPDm, Tmean,
Wheat Tx, NDVIx 0.56 0.219 0.048 11 0.834 West Hararge_ W
Maize ArealRF, VPDm, VPDx, 0.77 0.742 0551 9 0.929 East Wellega_M
Tmean, Tx, Tm
E Wellega
Wheat ArealRF, VPDm, VPDMx, ) 0.291 0.085 4 0913 East Wellega_ W

Tmean, Tm, NDVIx
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Table 1. Cont.
Climate Variables/NDVI 2 Regression Model
Crop S and Climate Variables R RMSE MSE DE g Code *
Maize VPDHIL'H\D/\I;PX' Tm, 0.89 0411 0.169 7 0969  Kellem Wellega_M
K_Wellega X
Wheat ArealRF, VPDm, VPDx 0.93 0.154 0.024 4 0.982 Kellem Wellega_W
Maize ArealRF, VPDm, VPDMx, ) ¢, 0.446 0.199 7 0.948 Horo Guduru _M
Horo NDVIx
Guduru
Wheat VPDMx, Tmean, Tx, 0.79 0.408 0.167 7 0.939 Horo Guduru _W
NDVIx
* the detail regression model found as annex.
124 [ Residuals_Maize 27 [ |Residuals_Maize
1.0 [ | Residuals_Wheat 1.0 | | Residuals_Wheat
0.8 084
064 06
0.4 _ 044
S 02 EXER
3 00 2 004
4 o
0.2 0.2
044 044
06 0.6
-0.8 084
-1.0 T T T T T T T T T -1.0 T T T T T T T
2004 2006 2008 2010 2012 2014 2016 2018 2020 2006 2008 2010 2012 2014 2016 2018 2020
Observations Observations
South West Shewa Kelem Wellega
27 [ |Residuals_Maize ﬁ ] [ ]Residuals_Maize
1.0 | | Residuals_Wheat 0'8 ] [ |Residuals_Wheat
0.8 ool
0.6-]
044
04 021
é 0.2 % 0.0
@ 0.0+ 2021
® o2l & o4
0.6
-044
0.8
067 1.0
-0.8 -1.24
1.0 T T T T T T T : : T 14 T T T T T T T T T :
2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020
Observations Observations
North Shewa East Wellega
1§ ] [ | Residuals_Maize 127 [ JResiduals_Maize
] [ |Residuals_Wheat 107 [ | Residuals_Wheat
084 A 05 esiduals_Whea
064
044

Residual

-1.4 T T T T T T T T T T
2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020
Observations

Bale

Figure 6. Cont.

Residual

0.24

0.0
-0.24
-0.44
-0.64
-0.84
-1.04

-1.24
-1.4 T T T T T T T T T T 1
2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022
Observations
East Hararge



Remote Sens. 2025, 17,491

14 of 24

Residual

Residual

129 - - 124
104 [ |Residuals_Maize 101 [ |Residuals_Maize
08 [ |Residuals_Wheat 05 [ ] Residuals_Wheat
0.6 061
0.4 4 0.4
0.2 _ 02
0.0 ]
0 3 001
0.2 2 .02
-0.41 & 4]
0.6 06
0.8 08
-1.0 -1.04
-1.2 4 124
-1.4 T T T T T T T T T T J -1.4 T T T T T T T 1
2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 2006 2008 2010 2012 2014 2016 2018 2020 2022
Observations Observations
[llu Ababora West Arsi
1.2 1.2 - -
1'0 1] [ ] Residuals_Maize 1.0 L | Res!duals_Maae
o8 [ ] Residuals_Wheat 0s] [ I Residuals_Wheat
0.6 06
0.4 04
027 _ 02
[
0.0 3 00
-0.2 $-0.2
0.4 & 4]
067 06
-0.8 4
08
1.0
1.2 1.0
12
P . . . : : . . . T T .
2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 1.4 T T T T T . . 2
Observations 2006 2008 2010 2012 2014 2016 2018 2020 2022
Observations
East Shewa
West Hararge
124 1.2 4 - .
10] [ ]Residuals_Maize 101 [ |Residuals_Maize
08 [ ]Residuals_Wheat 08 ] [ |Residuals_Wheat
06 06
04 04
_o2] _02] [ H il
3 ] 0.0 T e
S 00 3 o T is —
3 % I = 0l
$-02+ 3-0.2
4
e -0.4 4 -0.4 4
-0.6 -0.6
-0.8 o -0.8 4
1.0 1.0
127 124
14 14

X T T T T T T T T T T 1
2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022
Observations

Arsi

T T T T T T T T T T 1
2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022
Observations

West Shewa

Figure 6. Residual plot for observed and model-fitted crop yield (maize and wheat) for all the study
areas in the zonal administrations.

3.2.2. Models Using NDVI and Climate Predictors

From 2000 to 2021, regression models combining climate and NDVI data were devel-
oped to predict crop yields, with their performance summarized in Table 1. For both maize
and wheat within the study area, the most effective models were constructed using multiple
non-linear regression techniques. The top-performing model for maize was observed in
Illu Ababora, achieving an RMSE of 0.477 tons/ha, an R? 0of 0.91, and a d value of 0.976.
Conversely, the least effective model for wheat was found in East Hararge, with an RMSE
of 0.615 tons/ha, an R? of 0.52, and a d value of 0.813.

When comparing models that relied solely on climate data to those incorporating both
climate data and the NDVI, significant performance improvements were observed. For
instance, in the Arsi zone, the integration of the NDVI increased the R? value for maize
from 0.71 to 0.79 and for wheat from 0.73 to 0.83. Similarly, in the South West Shewa zone,
models using only climate data achieved R? values of 0.56 for maize and 0.58 for wheat.
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With the inclusion of the NDVI, these values rose to 0.74 for both crops. This marked
improvement in predictive performance underscores the value of integrating the NDVI
with climate data, as detailed further in Table 1.

3.2.3. Selected Yield Prediction Models

Table 1 presents the top-performing regression models, comparing those relying solely
on climate predictors with models incorporating both climate data and the NDVI. The
results clearly show models combining the NDVI with climate predictors consistently
achieve higher R? and d values, along with lower RMSEs, compared to models using only
climate data (Table 1). This underscores the substantial benefit of integrating NDVI data in
improving the accuracy of crop yield prediction.

Most of the models selected in Tables 1 and A1 utilize combined climate-NDVI pre-
dictors, highlighting their superior performance. However, in specific zones such as West
Shewa, East Shewa, East Hararge, and East Wellega for maize, and Kelem Wellega for
wheat, models based solely on climate predictors remain valuable. These models are par-
ticularly effective for estimating yield gaps in these areas, demonstrating their continued
importance in yield prediction strategies.

3.3. Predicted and Observed Maize and Wheat Yield
3.3.1. Yield Estimate with Climate Predictors Only

Yield predictions based solely on climate data were generated for the entire dataset,
covering the years 2000 to 2021. As shown in Figure 7, these predictions occasionally
overestimated or underestimated yields in specific years. Despite these deviations, the
overall estimates closely matched the observed yields throughout the study period. The
model demonstrated particularly higher accuracy in predicting maize and wheat yields in
the Illu Ababora, Horo Guduru, and West Arsi zones. Additionally, it provides especially
effective for wheat yield predictions across nearly all the study areas, as highlighted in
Figure 7.

3.3.2. Yield Estimate with NDVI and Climate Predictors

An evaluation of the observed and predicted yields for maize and wheat, using two
model combinations—climate-only and climate-NDVI—is presented in Figure 7. Models
that integrated both climate data and the NDVI (as detailed in Table 1) consistently out-
performed those relying solely on climate data. This improvement is further illustrated
in Figures 8 and 9, where scatter plots of the predicted versus observed yields for the
climate-NDVI models show points closely clustered along the 1:1 line, indicating strong
predictive accuracy. In contrast, the climate-only models display a less precise alignment
with observed yields in the scatter plots. Overall, the combined climate and NDVI model
exhibited a significantly closer match to observed yields across the study period, demon-
strating enhanced predictive reliability. While a few outliers were observed, particularly in
West Shewa and North Shewa for maize and in East Shewa and West Hararge for wheat,
the combined models provided robust predictions across most areas.
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Figure 7. Comparison between observed maize and wheat yield and their corresponding predicted
yields generated by the top-performing “Climate only” and “Climate and NDVI” models across the
study region.
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Figure 8. Scatter plots for predicted versus observed maize yield, “CO = Climate only and

CaNDVI = Climate-NDVI variables” across the study area.
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Figure 9. Scatter plots for predicted versus observed wheat yield, “CO = Climate only and CaNDVI
= Climate-NDVI variables” across the study area.

3.4. Remote Sensing Cloud Platform Yield Prediction

The spatial distribution of maize and wheat yields from 2013 to 2021 in two key cereal
crop production zones of the Oromia region was estimated using the CropWatch crop yield
prediction model. The model was specifically calibrated for wheat in the Bale zone and
maize in the Illu Ababora zone. The results demonstrated a strong correlation between
the recorded yields and model predictions, with an R? value of 0.65 and an RMSE value of
0.332 tons/ha. For 2021, the maize yield prediction (Figure 10) showed that most yields per
unit area ranged spatially between 4000 and 6000 kg/ha, with an average predicted yield
of 4418 kg/ha. This closely aligned with the recorded yield of 4518 kg/ha, highlighting the
model’s accuracy in capturing spatial yield variations.
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Figure 10. Spatial distribution of maize and wheat crop yield in 2021 in two zones predicted using
CropWatch yield prediction model.
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The wheat yield prediction for the Bale zone from 2013 to 2021 was also simulated
using the same CropWatch crop yield prediction model. The results showed that the spatial
distribution of the recorded wheat yields aligned closely with the model’s predictions,
achieving an R? value of 0.67 and an RMSE of 0.16 tons/ha. The 2021 wheat yield prediction
(Figure 10) indicated that most yields per unit area ranged between 3000 and 4000 kg/ha,
with an average predicted yield of 3299 kg/ha, closely matching the recorded yield of
3505 kg/ha. Figure 11 further illustrates that the CropWatch yield prediction model accu-
rately captured both maize and wheat yields during the 2013 to 2021 period. These results
underscore the model’s potential for simulating crop yields in the study area. However, its
accuracy depends on a thorough assessment of crop phenology and harvest index, as the
model is highly sensitive to these parameters. Users should consider the actual agronomic
practices and systems in the area to ensure reliable results.
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Figure 11. Comparison of observed and predicted (CropWatch crop yield prediction model) yield for
the period 2013 to 2021: (a) maize, Illu Ababora zone; (b) wheat, Bale zone.

4. Discussion

Understanding how various climate variables influence crop growth and yield is
crucial. Climate conditions before and during the growing season such as high temperature
and water scarcity can delay planting, stress plants, and ultimately reduce yields [7].
Therefore, selecting the appropriate timeframe for analyzing climate variables in yield
prediction is essential. Capturing the variability of these conditions is critical for building
accurate yield prediction models [42]. Studies have used different periods, such as the
entire growing season [1,7,43,44] or monthly climate variable averages, for this purpose. In
this study, we focused on the growing season: late May to early November for wheat and
from late April to September for maize. This ensured alignment between data collection,
analysis periods, and the crops’ critical growth phases. Our results highlighted that both
the minimum and maximum vapor pressure deficits (VPDx and VPDm), averaged over the
growing season, were significant predictors of maize and wheat yields across all the study
areas (Figure 5). Furthermore, the mean temperature proved more significant for predicting
yields than the individual minimum or maximum temperature assessments. This aligns
with findings that temperature effects depend on crops’ optimal growth temperature. While
moderate warming may benefit certain crops, excessive heat beyond a crop’s threshold
reduces yields [45], potentially explaining inconsistent temperature yield correlation in
our analysis.

According to Debalke and Abebe [1] and Yadav and Geli [7], rainfall was identified
as a significant predictor of crop yield in multiple linear regression models, explaining up
to 88% of yield variability. Consistent with these findings, our study also included areal
rainfall in the models, which resulted in high coefficients of determination (R?) ranging
from 79 to 93% across the study area. The predictive accuracy of our multiple regression
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model was notably strong, with RMSE values ranging from 0.154 to 0.792 tons/ha and R?
values from 93 to 79%, as shown in Figures 8 and 9. These results are comparable to other
studies. For instance, Zinna and Suryabhagavan [23] reported an RMSE of 1.41 tons/ha
and an R? of 88% for maize yield prediction in the South Tigray zone. Similarly, Reda [24]
observed an RMSE of 0.99 tons/ha and an R? of 93% for wheat yield predictions in the East
Arsi zone.

Additionally, this study demonstrated the effectiveness of the seasonal maximum
NDVI in predicting yields for major crops such as maize and wheat in Ethiopia’s Oromia
region. The monthly maximum NDVI captured variations in climate effects on crop yields,
yielding low RMSE values and high R? values, signifying strong predictive accuracy. In
our study, the inclusion of the maximum NDVI (NDVIx) significantly enhanced model
prediction accuracy as detailed in Table 1 and Figures 8 and 9. For instance, incorporating
the NDVIx into our models improved the R? from 71% to 79% for maize and 73% to 83%
for wheat in the Arsi zone. Similar improvements were observed in West Arsi zone, where
the R? increased from 82% to 89% for maize and 83% to 91% for wheat, highlighting the
substantial benefits of including the NDVIx in yield predictions. We compared our results
with studies that utilized NDVI data for yield prediction. Zinna and Suryabhagavan [23]
found that the average NDVI was a significant predictor in their multiple linear regression
model, suggesting that the average NDVI is a highly effective parameter for field-level
yield predictions. Similarly, Rojas [46] developed a multiple linear regression using the
NDVTI to forecast maize yield in Kenya, explaining 87% of variations and achieving an
RMSE value of 0.333 tons/ha.

The results of our multiple regression model were compared with the CropWatch
model, further validating our approach. For maize yield predictions in the Illu Ababora
zone, our model, using only climate parameters, achieved an R? of 87% and an RMSE of
0.53 tons/ha. Adding the NDVI improved these metrics to an R? of 91% and an RMSE of
0.48 tons/ha. In contrast, the CropWatch yield prediction model for maize in the same zone
had an R? of 65% and an RMSE value of 0.332 tons/ha, Similarly, in the Bale zone, wheat
yield predictions improved from an R? of 76% (RMSE: 0.44 tons/ha) using climate data
alone to an R? of 79% (RMSE: 0.45 tons/ha) with the NDVI, outperforming CropWatch'’s
R? of 67% (RMSE: 0.16 tons/ha), indicating a good performance with less error compared
to the regression model.

Our model’s accuracy was validated against Ethiopian Central Statistics Agency (CSA)
ground data (Figures 8, 9 and 11). Integrating remote sensing data with climate variables
provided superior predictions, closely aligned with observed yields. This remote sensing
approach offers several advantages over traditional methods. Notably, it delivers location-
specific yield estimates earlier—by October—compared to the conventional December
timeline, aiding in timely crop management. This enhanced forecasting capability can
empower local administrations, the Central Statistics Agency, and farmers to address food
security challenges more effectively.

5. Conclusions

This study aimed to identify key climate variables that significantly influence maize
and wheat yields, enabling the development of predictive models for selected regions in
Ethiopia. The models used both climate data alone and a combination of climate data
with RS imagery. The observed crop yield data served as the dependent variable, while
six climatic predictors and NDVI values derived from RS were analyzed. Variables with
the strongest correlation, highest index of agreement, and lowest RMSE values were
selected to construct multiple non-linear regression models. The findings highlighted the
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vapor pressure deficit (minimum and maximum) as a critical factor affecting yield in the
study area.

The results demonstrated that combining climate data with the NDVI provided more
accurate predictions than using climate data alone. This aligns with the existing literature,
which suggests that integrating RS data with climate variables enhances yield prediction
accuracy. Additionally, models developed at smaller spatial scales better captured climatic
variability, leading to improved predictive performance. The calibrated result of the RS-
based CropWatch yield prediction model for maize and wheat in selected areas showed
a strong correlation between recorded yields and model predictions, offering reasonably
high accuracy comparable to other methods.

This research underscores the importance of identifying critical climate variables
and improving the timeliness and accuracy of yield forecasts in Oromia’s agricultural
systems. Accurate and early yield predictions can significantly aid Ethiopia in developing
strategies for crop management and food security. The regression models and the calibrated
CropWatch yield prediction model enable yield forecasting well before harvest, supporting
better agricultural planning and response strategies. Scaling up spatial calibration and
testing of the CropWatch model across other regions of the country is necessary. The
model’s pixel-level predictions are valuable and easy to use, although they depend on the
availability of optical RS data.

Further research is required to establish a representative harvest index value in the
area, as this factor influences the accuracy of the CropWatch yield prediction model. Explor-
ing additional crop models that incorporate biomass, harvest indices, or growth models
would be beneficial for practical applications. Future studies should also investigate yield
forecasting using advanced methods such as machine learning and data-driven algorithms.
Expanding the analysis to include a longer time series of data would enhance practical
implementation, while incorporating factors like soil characteristics would provide a more
comprehensive understanding of yield determinants.
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Appendix A

Table Al. Developed multiple non-linear regression models and code using NDVI and climate
variables, or climate variables only for maize and wheat for a time scale of 22 years (2000-2021).

Regression Model Code Developed Regression Model
Arsi M Y = —954.22 + 0.04 x ArealRF — 2.41 x VPDm — 0.46 x VPDx + 63.15 x Tmean — 18.2 x Tm + 1211.04 x
Sl NDVIx — 0.23 x VPDm? + 0.33 x VPDx2 — 1.87 x Tmean? + 0.89 x Tm? — 724.43 x NDVIx?

Y = —410.94 — 68.59 x VPDm — 48.68 x VPDx — 24.28 x Tmean + 31.53 x Tx + 588.45 x NDVx + 140.71 x

Arsi W VPDm? + 69.86 x VPDx2 + 1.96 x Tmean? — 1.14 x Tx? — 0.93 x Tm?2 — 321.83 x NDVD2

Bale W Y = 487.69 + 0.002 x ArealRF — 4.11 x VPDm + 24.60 x VPDx — 21.05 x Tmean — 546.47 x NDVIx + 1.59 x
- VPDm?2 — 14.1 x VPDx2 + 0.442 x Tmean? + 304.23 x NDVIx2

Bale W Y = 65.35 - 0.014 x ArealRF +29.44 x VPDm + 41.20 x VPDx + 9.41 x Tmean + 1.69 x Tx — 488.31 x NDVIx

—22.79 x VPDm? — 20.66 x VPDx? — 0.197 x Tmean? — 0.04 x Tx2 + 275.70 x NDVIx?

Y =134.9 -0.08 x ArealRF + 57.81 x VPDm — 50.02 x VPDx — 151.9 x Tmean +101.46 x Tx — 191.96 x
VPDm? + 40 — 44 x VPDx? + 0.46 x Tmean? — 0.68*Tx? + 3.29*Tm?2

Y =-1060.7 + 0.01 x ArealRF — 39.14 x VPDx + 2.14 x Tx — 18.6 x Tm + 2595.5 x NDVIx + 55.3 x VPDx? —
0.1 x Tx? + 0.98 x Tm?2-1488.8 x NDVIx?

Y = —210.25 + 0.02 x ArealRF — 52.59 x VPDm +2.42 x VPDx+ 56.96 x Tmean -24.34 x Tx +65.49 x VPDm?
-3.99 x VPDx? — 1.6 x Tmean? +0.51 x Tx2

Y =368.91 + 0.02 x ArealRF — 34.6 x VPDm — 1.53 x VPDx + 9.01 x Tmean — 42.24 x Tm — 523.8 X
NDVIx + 43.9 x VPDm? — 0.62 x VPDx? — 0.26 x Tmean? +1.95 x Tm? + 320.4 x NDVIx?

Y = —2101.03 — 0.03 x ArealRF + 28.51 x VPDm +5.1 x VPDx +39.42 x Tmean — 0.28 x Tm +3995.97 x
NDVIx — 147.54 x VPDm? — 14.9 x VPDx? — 1.1 x Tmean? — 2269.04 x NDVIx?

Y = —3670.51 — 0.03 x ArealRF + 76.6 x VPDm — 21.7 x VPDx +14.97 x Tmean — 2.73 x Tmax — 0.8 x Tm
Il Ababora_ W +8063.5 x NDVIx — 281.6 x VPDm?2 + 25.8 x VPDx%Z — 0.5 x Tmean? + 0.1 x Tx2 + 0.07 x Tm? — 4525.63 x
NDVIx?

Y = —7.67 + 0.03 x ArealRF + 28.17 x VPDx — 3.33 x Tmean — 21.32 x Tm +205.41 x NDVIx — 88.58 x
VPDx2 + 0.10 x Tmean? + 1.71 x Tm? — 110.19 x NDVx?

Y = —596.99 + 0.1 x ArealRF — 10.5 x VPDm — 94.6 x VPDx +10.8 x Tmean + 4.5 x Tx +11 x NDVIx +105.4
x VPDm?2 + 399.9 x VPDx? — 0.44 x Tmean? — 0.2 x Tx? — 623.2 x NDVIx?

Y =108.9 + 0.01 x ArealRF — 14.6 x VPDm — 5.4 x VPDx — 7.4 x Tmean + 6.6 x Tm — 237.01 x NDVIx +
19.82 x VPDm2 +1.95 x VPDx2 + 0.22 x Tmean2 — 0.3 x Tm2 +158.60 x NDVIx2

Y = —188 +0.002 x ArealRF — 5.7 x VPDx — 3.2 x Tx + 2.45 x Tm +463.14 x NDVIx +2.62 x VPDx? +0.1 x
TxZ — 0.09 x Tm? — 256.9 x NDVx?

Y = —570.5 + 0.02 x ArealRF + 30.72 x VPDx +229.8 x Tmean — 133.5 x Tx + 31.5 x NDVIx — 24.6 x VPDx2
— 5.7 x Tmean? + 2.5 x Tx? + 7.2 x NDVIx?

Y = —0.6 x ArealRF — 140.5 x VPDm — 79.7 x VPDx + 85.53 x Tmean — 23.1 x Tx — 1037.7 x NDVIx +245
x VPDm? + 89 x VPDx? +2.02 x Tmean? — 1.13 x Tx* — 3.2 x Tm? + 634 x NDVIx?

Y = —194.07 + 0.017 x ArealRF — 23.25 x VPDm + 26.65 x VPDx + 4.71 x Tmean + 17.09 x Tx — 3.99 x Tm
+55.98 x VPDm2 — 37.89 x VPDx2 — 0.09 x Tmean2 — 0.44 x Tx2 + 0.14 X Tm2

Y =252.8 — 0.03 x ArealRF — 6.72 x VPDm + 28.41 x VPDx + 10.62 x Tmean — 18.3 x Tx — 4.7 x Tm -297.5
x NDVIx + 10.2 x VPDm? — 28.3 x VPDx? — 0.3 x Tmean? +0.42 x Tx% +0.2 x Tm2 + 179.7 x NDVIx?

Y =57.9 — 0.003 x ArealRF — 7.02 x VPDm — 492.75 x NDVIx — 15.33 x Tmean +20.8 x Tx +11.2 x
VPDm? + 317.1 x NDVIx? + 0.35 x Tmean? — 0.35 x Tx?

Y = —121.94 + 0.002 x ArealRF — 2.4 x VPDm — 18.4 x Tmean +8.1 x Tx +471.03 x NDVIx +2.2 x VPDm?
+0.41 x Tmean? — 0.13 x Tx? -262.3 x NDVIx?

Y = —734.89 — 0.04 x ArealRF — 122.71 x VPDm — 16.39 x VPDx — 73.93 x Tmean + 112.25 x Tx + 66.83 X
VPDm? + 8.15 x VPDx? + 1.18 x Tmean? — 1.84 x Tx? + 0.59 x Tm?

Y =204.5 + 0.004 x ArealRF + 100.3 x VPDm — 35.8 x VPDx + 16.2 x Tmean — 32.2 x Tm — 383.2 x NDVIx
— 3465 x VPDm? + 57.2 x VPDx? — 0.41 x Tmean? + 1.3 x Tm? + 229.4 x NDVIx?

Y = —1841.6 + 466.8 x VPDm — 60.4 x VPDx +18 x Tm + 3872.1 x NDVIx — 1203.9 x VPDm?2 +71.0
xVPDx2 — 0.65 x Tm2 — 2226.9 x NDVIx?

Kellem Wellega_ W Y =7.49 + 0.03 x ArealRF — 137.62 x VPDm — 21.27 x VPDx + 348.6 x VPDm? + 26.74 x VPDx?

Y =3790.8 — 0.07 x ArealRF + 1224.1 x VPDm +15.5 x VPDx — 9350.9 x NDVIx — 3027.4 x VPDm? — 14.5
x VPDx2 +5660 x NDVx?2

Y = —2973 — 96.5 x VPDx +18.6 x Tmean — 7.8 x Tx + 6824.6 x NDVIx +103.5 x VPDx? — 0.42 x Tmean? +
0.13 x Tx? — 4002.3 x NDVIx?
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