Spatiotemporal Variation of Water Use Efficiency and Its Responses to Climate Change in the Yellow River Basin from 1982 to 2018
<p>Study area, vegetation type, basin boundary, and elevation.</p> "> Figure 2
<p>Temporal trends of WUE in 1982–2018. (<b>a</b>) Annual; (<b>b</b>) Grow.</p> "> Figure 3
<p>Spatial variation characteristics of WUE in the YRB. (<b>a</b>) Annual WUE in 1982–2018; (<b>b</b>) Annual WUE in 1982–2000; (<b>c</b>) Annual WUE in 2000–2018; (<b>d</b>) Grow WUE in 1982–2018; (<b>e</b>) Annual WUE in 1982–2000; (<b>f</b>) Annual WUE in 2000–2018.</p> "> Figure 4
<p>Spatial characteristics of significant variation trend of the WUE in different time periods.</p> "> Figure 5
<p>Variation in WUE in different land cover types.</p> "> Figure 6
<p>The trends of WUE for different ecosystem types in the YRB. (<b>a</b>) Farmland; (<b>b</b>) Forest; (<b>c</b>) Grassland; (<b>d</b>) Other.</p> "> Figure 7
<p>Spatial distribution of partial correlation coefficient between WUE and climate factors in the YRB from 1982 to 2018. (<b>a</b>) WUE and temperature; (<b>b</b>) WUE and precipitation; (<b>c</b>) WUE and vapor pressure deficit; (<b>d</b>) WUE and soil moisture.</p> "> Figure 8
<p>Spatial distribution of partial correlation coefficient between WUE and climate factors in the YRB from 1982 to 2018 (significance test <span class="html-italic">p</span> < 0.05). (<b>a</b>) WUE and temperature; (<b>b</b>) WUE and precipitation; (<b>c</b>) WUE and vapor pressure deficit; (<b>d</b>) WUE and soil moisture.</p> "> Figure 9
<p>WUE changes in response to GPP and ET across different time periods.</p> "> Figure 10
<p>WUE significant changes in response to GPP significant changes and ET significant changes across different time periods (significant test <span class="html-italic">p</span> < 0.05).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. GPP Dataset
2.2.2. Evapotranspiration and Soil Moisture Datasets
2.2.3. Meteorology Data
2.2.4. Land Use/Cover Data
2.3. Methods
2.3.1. Ensemble Empirical Mode Decomposition (EEMD)
2.3.2. Mann–Kendall Significant Test (M-K Test)
2.3.3. Trend Variation Analysis
2.3.4. Partial Correlation Analysis (PCA)
3. Results
3.1. Characterization of Spatiotemporal Variations
3.1.1. Temporal Trends
3.1.2. Characteristics of Spatial Variation
3.1.3. The Significance Test Analysis of WUE Variation Trend
3.2. The WUE of Different LUCC
3.2.1. WUE of Different LUCC
3.2.2. Variations in WUE in Different Ecosystems
3.3. WUE Dynamics Response to Climatic Variations
3.4. Response of WUE to GPP and ET
4. Discussion
4.1. Dynamics and Drivers of WUE
4.2. Sensitivity Analysis of WUE in the YRB
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cao, R.; Hu, Z.; Jiang, Z.; Yang, Y.; Zhao, W.; Wu, G.; Feng, X.; Chen, R.; Hao, G. Shifts in ecosystem water use efficiency on china’s loess plateau caused by the interaction of climatic and biotic factors over 1985–2015. Agric. For. Meteorol. 2020, 291, 108100. [Google Scholar] [CrossRef]
- Chang, X.; Wang, Z.; Wei, F.; Xiao, P.; Shen, Z.; Lv, X.; Shi, Y. Determining the Contributions of Vegetation and Climate Change to Ecosystem WUE Variation over the Last Two Decades on the Loess Plateau, China. Forests 2021, 12, 1442. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.-P.; Huang, Y.; Tang, X.; Zhou, G.; Wang, C.; Chang, Z.; Yan, J. Temperature dependence of ecosystem carbon, nitrogen and phosphorus residence times differs between subtropical and temperate forests in China. Agric. For. Meteorol. 2022, 326, 109165. [Google Scholar] [CrossRef]
- An, X. Responses of Water Use Efficiency to climate change in evapotranspiration and transpiration ecosystems. Ecol. Indic. 2022, 141, 109157. [Google Scholar] [CrossRef]
- Cai, L.; Fan, D.; Wen, X.; Wang, H.; Badarifu; Wang, S. Spatiotemporal tendency of agricultural water use efficiency in the northernmost Yellow River: Indicator comparison and interactive driving factors. J. Arid Environ. 2022, 205, 104822. [Google Scholar] [CrossRef]
- Du, Q.; Sun, Y.; Guan, Q.; Pan, N.; Wang, Q.; Ma, Y.; Li, H.; Liang, L. Vulnerability of grassland ecosystems to climate change in the Qilian Mountains, northwest China. J. Hydrol. 2022, 612, 128305. [Google Scholar] [CrossRef]
- Jiao, F.; Xu, X.; Zhang, M.; Gong, H.; Liu, H.; Wang, K. Contributory factors of the secular trends to changes in ecosystem water-use efficiency in China. J. Hydrol. 2022, 615, 128690. [Google Scholar] [CrossRef]
- Li, G.; Chen, W.; Li, R.; Zhang, X.; Liu, J. Assessing the spatiotemporal dynamics of ecosystem water use efficiency across China and the response to natural and human activities. Ecol. Indic. 2021, 126, 107680. [Google Scholar] [CrossRef]
- Qin, G.; Meng, Z.; Fu, Y. Drought and water-use efficiency are dominant environmental factors affecting greenness in the Yellow River Basin, China. Sci. Total Environ. 2022, 834, 155479. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Lu, J.; Chen, X. Drought offsets the vegetation greenness-induced gross primary productivity from 1982 to 2018 in China. J. Hydrol. 2024, 632, 130881. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, X.; Wang, K.; Ciais, P.; Tang, S.; Jin, L.; Li, L.; Piao, S. Responses of vegetation greenness and carbon cycle to extreme droughts in China. Agric. For. Meteorol. 2021, 298–299, 108307. [Google Scholar] [CrossRef]
- Mu, Y.; Jia, X.; Ye, Z.; Guo, X.; Hao, S.; Zha, T.; Zhang, Y.; Han, C.; Gao, S.; Xing, F.; et al. Vegetation factors and atmospheric dryness regulate the dynamics of ecosystem water use efficiency in a temperate semiarid shrubland. J. Hydrol. 2024, 639, 131644. [Google Scholar] [CrossRef]
- Yang, J.; Lu, X.; Liu, Z.; Tang, X.; Yu, Q.; Wang, Y. Atmospheric drought dominates changes in global water use efficiency. Sci. Total Environ. 2024, 934, 173084. [Google Scholar] [CrossRef]
- Yue, P.; Zhang, Q.; Zhang, L.; Yang, Y.; Wei, W.; Yang, Z.; Li, H.; Wang, S.; Sun, X. Biometeorological effects on carbon dioxide and water-use efficiency within a semiarid grassland in the Chinese Loess Plateau. J. Hydrol. 2020, 590, 125520. [Google Scholar] [CrossRef]
- Zhang, H.; Zhan, C.; Xia, J.; Yeh, P.J.F.; Ning, L.; Hu, S.; Wang, X.-S. The role of groundwater in the spatio-temporal variations of vegetation water use efficiency in the Ordos Plateau, China. J. Hydrol. 2022, 605, 127332. [Google Scholar] [CrossRef]
- Zhang, T.; Peng, J.; Liang, W.; Yang, Y.; Liu, Y. Spatial-temporal patterns of water use efficiency and climate controls in China’s Loess Plateau during 2000–2010. Sci. Total Environ. 2016, 565, 105–122. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Wu, S.; Liu, L.; Zhang, Y.; Li, S. Vulnerability of the global terrestrial ecosystems to climate change. Glob. Change Biol. 2018, 24, 4095–4106. [Google Scholar] [CrossRef]
- Wei, X.; He, W.; Zhou, Y.; Ju, W.; Xiao, J.; Li, X.; Liu, Y.; Xu, S.; Bi, W.; Zhang, X.; et al. Global assessment of lagged and cumulative effects of drought on grassland gross primary production. Ecol. Indic. 2022, 136, 108646. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, Y.; Fu, F.; Song, J.; Wang, Y.; Han, Y.; Wu, T.; Fu, B. Declined terrestrial ecosystem resilience. Glob. Change Biol. 2024, 30, e17291. [Google Scholar] [CrossRef]
- Lamchin, M.; Lee, W.-K.; Jeon, S.W.; Wang, S.W.; Lim, C.H.; Song, C.; Sung, M. Long-term trend and correlation between vegetation greenness and climate variables in Asia based on satellite data. Sci. Total Environ. 2018, 618, 1089–1095. [Google Scholar] [CrossRef]
- Lamchin, M.; Wang, S.W.; Lim, C.-H.; Ochir, A.; Pavel, U.; Gebru, B.M.; Choi, Y.; Jeon, S.W.; Lee, W.-K. Understanding global spatio-temporal trends and the relationship between vegetation greenness and climate factors by land cover during 1982–2014. Glob. Ecol. Conserv. 2020, 24, e01299. [Google Scholar] [CrossRef]
- Chai, Y.; Miao, C.; Berghuijs, W.R.; Yang, Y.; Zhu, B.; Hu, Y.; Slater, L. Global reduction in sensitivity of vegetation water use efficiency to increasing CO2. J. Hydrol. 2024, 641, 131844. [Google Scholar] [CrossRef]
- Chen, F.; Yang, X.; Yu, Q.; Han, B. Quantifying the effects of diffuse photosynthetically active radiation on water use efficiency in different ecosystems. Agric. For. Meteorol. 2024, 356, 110191. [Google Scholar] [CrossRef]
- Ji, R.; Wang, C.; Wang, P.; Wang, W.; Chen, N. Quantitative analysis of spatiotemporal disparity of urban water use efficiency and its driving factors in the Yangtze River Economic Belt, China. J. Hydrol. Reg. Stud. 2024, 51, 101647. [Google Scholar] [CrossRef]
- Tesfaye, S.; Taye, G.; Birhane, E.; van der Zee, S.E.A.T.M. Spatiotemporal variability of ecosystem water use efficiency in northern Ethiopia during 1982–2014. J. Hydrol. 2021, 603, 126863. [Google Scholar] [CrossRef]
- Xue, Y.; Liang, H.; Zhang, B.; He, C. Vegetation restoration dominated the variation of water use efficiency in China. J. Hydrol. 2022, 612, 128257. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, L.; He, Y.; Cao, S.; Gusev, A.; Guo, Y.; Ran, L.; Wei, X.; Mikalai, F. Nonlinear effects of agricultural drought on vegetation productivity in the Yellow River Basin, China. Sci. Total Environ. 2024, 948, 174903. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Quan, W.; Tian, J.; Li, J.; Feng, P. Spatial and temporal variations of ecosystem water use efficiency and its response to soil moisture drought in a water-limited watershed of northern China. J. Environ. Manag. 2024, 355, 120251. [Google Scholar] [CrossRef]
- Yan, S.; Li, M.; Sun, T.; Liu, Q.; Liang, L.; Wang, X.; Li, C. The complex drought effects associated with the regulation of water-use efficiency in a temperate water-limited basin. J. Hydrol. Reg. Stud. 2021, 36, 100864. [Google Scholar] [CrossRef]
- Liu, S.; Xue, L.; Xiao, Y.; Yang, M.; Liu, Y.; Han, Q.; Ma, J. Dynamic process of ecosystem water use efficiency and response to drought in the Yellow River Basin, China. Sci. Total Environ. 2024, 934, 173339. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Ji, W.; Hou, M.; Ma, T.; Mao, J. Evaluation of efficiency and resilience of agricultural water resources system in the Yellow River Basin, China. Agric. Water Manag. 2022, 266, 107605. [Google Scholar] [CrossRef]
- Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef]
- Feng, Z.; Yang, Y.; Zhang, Y.; Zhang, P.; Li, Y. “Grain for Green” Policy and Its Impacts on Grain Supply in West China. Land Use Policy 2005, 22, 301–312. [Google Scholar] [CrossRef]
- Li, J.; Xi, M.; Wang, L.; Li, N.; Wang, H.; Qin, F. Vegetation Responses to Climate Change and Anthropogenic Activity in China, 1982 to 2018. Int. J. Environ. Res. Public Health 2022, 19, 7391. [Google Scholar] [CrossRef]
- Zhang, L.; Deng, C.; Kang, R.; Yin, H.; Xu, T.; Kaufmann, H.J. Assessing the responses of ecosystem patterns, structures and functions to drought under climate change in the Yellow River Basin, China. Sci. Total Environ. 2024, 929, 172603. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Zhu, Z.; Cao, S.; Zhao, W.; Li, M.; Wu, J. Satellite-observed increasing coupling between vegetation productivity and greenness in the semiarid Loess Plateau of China is not captured by process-based models. Sci. Total Environ. 2024, 906, 167664. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.; Wang, X.; Park, T.; Chen, C.; Lian, X.; He, Y.; Bjerke, J.W.; Chen, A.; Ciais, P.; Tømmervik, H.; et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 2019, 1, 14–27. [Google Scholar] [CrossRef]
- Xin, Y.; Yang, Y.; Chen, X.; Yue, X.; Liu, Y.; Yin, C. Evaluation of IMERG and ERA5 precipitation products over the Mongolian Plateau. Sci. Rep. 2022, 12, 21776. [Google Scholar] [CrossRef]
- Li, Y.; Xie, Z.X.; Qin, Y.C.; Zheng, Z.C. Estimating Relations of Vegetation, Climate Change, and Human Activity: A Case Study in the 400 mm Annual Precipitation Fluctuation Zone, China. Remote Sens. 2019, 11, 1159. [Google Scholar] [CrossRef]
- Liu, H.; Li, X.J.; Mao, F.J.; Zhang, M.; Zhu, D.; He, S.B.; Huang, Z.H.; Du, H.Q. Spatiotemporal Evolution of Fractional Vegetation Cover and Its Response to Climate Change Based on MODIS Data in the Subtropical Region of China. Remote Sens. 2021, 13, 913. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Li, S.C.; Motesharrei, S. Spatial and Temporal Patterns of Global NDVI Trends: Correlations with Climate and Human Factors. Remote Sens. 2015, 7, 13233–13250. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Ren, H.Y.; Zheng, C.; Zhou, R.L.; Hu, T.M.; Yang, P.Z.; Zhang, W.; Wang, Z.Q.; Li, Y.; Zhang, Z.Y.; et al. Untangling the effects of management measures, climate and land use cover change on grassland dynamics in the Qinghai-Tibet Plateau, China. Land Degrad. Dev. 2021, 32, 4974–4987. [Google Scholar] [CrossRef]
- Pang, G.; Wang, X.; Yang, M. Using the NDVI to identify variations in, and responses of, vegetation to climate change on the Tibetan Plateau from 1982 to 2012. Quat. Int. 2017, 444, 87–96. [Google Scholar] [CrossRef]
- Hawinkel, P.; Swinnen, E.; Lhermitte, S.; Verbist, B.; Van Orshoven, J.; Muys, B. A time series processing tool to extract climate-driven interannual vegetation dynamics using Ensemble Empirical Mode Decomposition (EEMD). Remote Sens. Environ. 2015, 169, 375–389. [Google Scholar] [CrossRef]
- Liu, H.; Jia, J.; Lin, Z.; Wang, Z.; Gong, H. Relationship between net primary production and climate change in different vegetation zones based on EEMD detrending—A case study of Northwest China. Ecol. Indic. 2021, 122, 107276. [Google Scholar] [CrossRef]
- Chu, H.S.; Venevsky, S.; Wu, C.; Wang, M.H. NDVI-based vegetation dynamics and its response to climate changes at Amur-Heilongjiang River Basin from 1982 to 2015. Sci. Total Environ. 2019, 650, 2051–2062. [Google Scholar] [CrossRef]
- Jiapaer, G.; Liang, S.L.; Yi, Q.X.; Liu, J.P. Vegetation dynamics and responses to recent climate change in Xinjiang using leaf area index as an indicator. Ecol. Indic. 2015, 58, 64–76. [Google Scholar] [CrossRef]
- Li, J.; Xi, M.; Pan, Z.; Liu, Z.; He, Z.; Qin, F. Response of NDVI and SIF to Meteorological Drought in the Yellow River Basin from 2001 to 2020. Water 2022, 14, 2978. [Google Scholar] [CrossRef]
- Li, H.; Zhang, H.Y.; Li, Q.X.; Zhao, J.J.; Guo, X.Y.; Ying, H.; Deng, G.R.; Wu, R.H.; Wang, S.L. Vegetation Productivity Dynamics in Response to Climate Change and Human Activities under Different Topography and Land Cover in Northeast China. Remote Sens. 2021, 13, 975. [Google Scholar] [CrossRef]
- Li, Y.; Xie, Z.X.; Qin, Y.C.; Sun, Y.Y. Temporal-Spatial Variation Characteristics of Soil Erosion in the Pisha Sandstone Area, Loess Plateau, China. Pol. J. Environ. Stud. 2019, 28, 2205–2214. [Google Scholar] [CrossRef] [PubMed]
- Eckert, S.; Hüsler, F.; Liniger, H.; Hodel, E. Trend analysis of MODIS NDVI time series for detecting land degradation and regeneration in Mongolia. J. Arid Environ. 2015, 113, 16–28. [Google Scholar] [CrossRef]
- Nemani, R.R.; Keeling, C.D.; Hashimoto, H.; Jolly, W.M.; Piper, S.C.; Tucker, C.J.; Myneni, R.B.; Running, S.W. Climate-Driven Increases in Global Terrestrial Net Primary Production from 1982 to 1999. Science 2003, 300, 1560–1563. [Google Scholar] [CrossRef]
- Wang, X.; Piao, S.; Ciais, P.; Li, J.; Friedlingstein, P.; Koven, C.; Chen, A. Spring temperature change and its implication in the change of vegetation growth in North America from 1982 to 2006. Proc. Natl. Acad. Sci. USA 2011, 108, 1240–1245. [Google Scholar] [CrossRef]
- Zhu, Z.; Piao, S.; Myneni, R.B.; Huang, M.; Zeng, Z.; Canadell, J.G.; Ciais, P.; Sitch, S.; Friedlingstein, P.; Arneth, A.; et al. Greening of the Earth and its drivers. Nat. Clim. Change 2016, 6, 791–795. [Google Scholar] [CrossRef]
- Ji, X.; Sun, Y.; Guo, W.; Zhao, C.; Li, K. Land use and habitat quality change in the Yellow River Basin: A perspective with different CMIP6-based scenarios and multiple scales. J. Environ. Manag. 2023, 345, 118729. [Google Scholar] [CrossRef]
- Wu, X.; Zhao, N.; Wang, Y.; Zhang, L.; Wang, W.; Liu, Y. Cropland non-agriculturalization caused by the expansion of built-up areas in China during 1990–2020. Land Use Policy 2024, 146, 107312. [Google Scholar] [CrossRef]
- Xu, D.; Wang, Z. Identifying land restoration regions and their driving mechanisms in inner Mongolia, China from 1981 to 2010. J. Arid Environ. 2019, 167, 79–86. [Google Scholar] [CrossRef]
- Zhuang, J.; Li, Y.; Bai, P.; Chen, L.; Guo, X.; Xing, Y.; Feng, A.; Yu, W.; Huang, M. Changed evapotranspiration and its components induced by greening vegetation in the Three Rivers Source of the Tibetan Plateau. J. Hydrol. 2024, 633, 130970. [Google Scholar] [CrossRef]
- Deng, X.; Zhang, L. Spatio-temporal disparity of water use efficiency and its influencing factors in energy production in China. Ecol. Inform. 2022, 71, 101779. [Google Scholar] [CrossRef]
- Dong, G.; Zhao, F.; Chen, J.; Qu, L.; Jiang, S.; Chen, J.; Shao, C. Divergent forcing of water use efficiency from aridity in two meadows of the Mongolian Plateau. J. Hydrol. 2021, 593, 125799. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, W.; Cescatti, A.; Forzieri, G. Climate-driven vegetation greening further reduces water availability in drylands. Glob. Change Biol. 2022, 29, 1628–1647. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Qin, Y.; Rong, P. Evolution of potential evapotranspiration and its sensitivity to climate change based on the Thornthwaite, Hargreaves, and Penman–Monteith equation in environmental sensitive areas of China. Atmos. Res. 2022, 273, 106178. [Google Scholar] [CrossRef]
- Luo, W.; Muraina, T.O.; Griffin-Nolan, R.J.; Ma, W.; Song, L.; Fu, W.; Yu, Q.; Knapp, A.K.; Wang, Z.; Han, X.; et al. Responses of a semiarid grassland to recurrent drought are linked to community functional composition. Ecology 2023, 104, e3920. [Google Scholar] [CrossRef]
- Huang, M.-T.; Zhai, P.-M. Impact of extreme seasonal drought on ecosystem carbon–water coupling across China. Adv. Clim. Chang. Res. 2024, 15, 914–923. [Google Scholar] [CrossRef]
- Li, T.; Xia, J.; Zhang, L.; She, D.; Wang, G.; Cheng, L. An improved complementary relationship for estimating evapotranspiration attributed to climate change and revegetation in the Loess Plateau, China. J. Hydrol. 2021, 592, 125516. [Google Scholar] [CrossRef]
- Li, X.; Zha, T.; Liu, P.; Bourque, C.P.A.; Jia, X.; Tian, Y.; Jin, C.; Wei, X.; Liu, X.; Zhao, H.; et al. Interannual variation in gross ecosystem production and evapotranspiration in a temperate semiarid grassland undergoing vegetation recovery. Agric. For. Meteorol. 2023, 341, 109672. [Google Scholar] [CrossRef]
- Li, W.; Migliavacca, M.; Forkel, M.; Denissen, J.M.C.; Reichstein, M.; Yang, H.; Duveiller, G.; Weber, U.; Orth, R. Widespread increasing vegetation sensitivity to soil moisture. Nat. Commun. 2022, 13, 3959. [Google Scholar] [CrossRef]
- McDowell, N.G.; Coops, N.C.; Beck, P.S.; Chambers, J.Q.; Gangodagamage, C.; Hicke, J.A.; Huang, C.Y.; Kennedy, R.; Krofcheck, D.J.; Litvak, M.; et al. Global satellite monitoring of climate-induced vegetation disturbances. Trends Plant Sci. 2015, 20, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Tian, S.; You, W.; Jiang, Z. Reconstruction of continuous GRACE/GRACE-FO terrestrial water storage anomalies based on time series decomposition. J. Hydrol. 2021, 603, 127018. [Google Scholar] [CrossRef]
Upstream | Midstream | Downstream | |||||||
---|---|---|---|---|---|---|---|---|---|
Mean | Max | Min | Mean | Max | Min | Mean | Max | Min | |
Annual | 1.04 | 1.24 | 0.75 | 0.81 | 0.97 | 0.59 | 0.95 | 1.18 | 0.78 |
Grow | 0.90 | 1.06 | 0.67 | 0.70 | 0.83 | 0.52 | 0.84 | 1.04 | 0.69 |
Spring | 1.08 | 1.63 | 0.66 | 1.48 | 1.87 | 1.20 | 1.46 | 1.82 | 0.90 |
Summer | 1.36 | 1.57 | 1.02 | 1.15 | 1.35 | 0.82 | 1.48 | 1.87 | 1.20 |
Autumn | 1.93 | 2.38 | 1.38 | 2.38 | 2.84 | 1.99 | 2.42 | 2.91 | 2.04 |
Winter | 0.29 | 0.58 | 0.03 | 0.15 | 0.32 | 0.02 | 0.41 | 0.84 | 0.11 |
Slope | Zc | WUE Trend | Different Periods of Time | ||
---|---|---|---|---|---|
1982–2018 | 1982–2000 | 2000–2018 | |||
≥0.0005 | ≥1.96 | Significantly increase | 47.07 | 8.23 | 45.35 |
≥0.0005 | −1.96–1.96 | Slightly increase | 21.03 | 55.35 | 16.92 |
–0.0005–0.0005 | −1.96–1.96 | Stable | 4.32 | 4.78 | 4.11 |
<−0.0005 | −1.96–1.96 | Slightly decrease | 12.94 | 29.82 | 15.05 |
<−0.0005 | ≤–1.96 | Significantly decrease | 14.64 | 1.82 | 18.57 |
WUE Change | GPP and ET Change | 1982–2018 | 1982–2000 | 2000–2018 | |||
---|---|---|---|---|---|---|---|
Area | Total | Area | Total | Area | Total | ||
WUE decrease | GPP ↓ and ET ↓ | 1.10 | 29.61 | 7.35 | 39.76 | 3.51 | 34.07 |
GPP ↓ and ET ↑ | 7.55 | 12.64 | 12.81 | ||||
GPP ↑ and ET ↓ | 0.02 | 1.42 | 0.30 | ||||
GPP ↑ and ET ↑ | 20.94 | 18.35 | 17.45 | ||||
WUE increase | GPP ↓ and ET ↓ | 0.03 | 70.39 | 0.67 | 60.24 | 0.37 | 65.93 |
GPP ↓ and ET ↑ | 0.04 | 0.35 | 0.73 | ||||
GPP ↑ and ET ↓ | 0.30 | 5.55 | 1.36 | ||||
GPP ↑ and ET ↑ | 70.02 | 53.67 | 63.47 |
WUE Change | GPP and ET Change | 1982–2018 | 1982–2000 | 2000–2018 | |||
---|---|---|---|---|---|---|---|
Area | Total | Area | Total | Area | Total | ||
WUE significant decrease | GPP ↓ and ET ↓ | 0.22 | 4.65 | 0.02 | 0.07 | 0.20 | 0.73 |
GPP ↓ and ET ↑ | 1.42 | 0.04 | 0.50 | ||||
GPP ↑ and ET ↓ | / | / | / | ||||
GPP ↑ and ET ↑ | 3.01 | / | 0.04 | ||||
WUE significant increase | GPP ↓ and ET ↓ | / | 45.55 | / | 6.14 | / | 18.89 |
GPP ↓ and ET ↑ | / | / | / | ||||
GPP ↑ and ET ↓ | / | / | / | ||||
GPP ↑ and ET ↑ | 45.55 | 6.14 | 18.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Qin, F.; Wang, Y.; Zhao, X.; Yu, M.; Chen, S.; Jiang, J.; Wang, L.; Yan, J. Spatiotemporal Variation of Water Use Efficiency and Its Responses to Climate Change in the Yellow River Basin from 1982 to 2018. Remote Sens. 2025, 17, 316. https://doi.org/10.3390/rs17020316
Li J, Qin F, Wang Y, Zhao X, Yu M, Chen S, Jiang J, Wang L, Yan J. Spatiotemporal Variation of Water Use Efficiency and Its Responses to Climate Change in the Yellow River Basin from 1982 to 2018. Remote Sensing. 2025; 17(2):316. https://doi.org/10.3390/rs17020316
Chicago/Turabian StyleLi, Jie, Fen Qin, Yingping Wang, Xiuyan Zhao, Mengxiao Yu, Songjia Chen, Jun Jiang, Linhua Wang, and Junhua Yan. 2025. "Spatiotemporal Variation of Water Use Efficiency and Its Responses to Climate Change in the Yellow River Basin from 1982 to 2018" Remote Sensing 17, no. 2: 316. https://doi.org/10.3390/rs17020316
APA StyleLi, J., Qin, F., Wang, Y., Zhao, X., Yu, M., Chen, S., Jiang, J., Wang, L., & Yan, J. (2025). Spatiotemporal Variation of Water Use Efficiency and Its Responses to Climate Change in the Yellow River Basin from 1982 to 2018. Remote Sensing, 17(2), 316. https://doi.org/10.3390/rs17020316