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Abstract: Precisely predicting vegetation backscatter involves various challenges, such
as complex vegetation structure, soil–vegetation interaction, and data availability. Deep
learning (DL) works as a powerful tool to analyze complex data and approximate the non-
linear relationship between variables, thus exhibiting potential applications in microwave
scattering problems. However, few DL-based approaches have been developed to repro-
duce vegetation backscatters owing to the lack of acquiring a large amount of training data.
Motivated by a relatively accurate single-scattering radiative transfer model (SS-RTM) and
radar measurements, we, for the first time to our knowledge, introduce a transfer learning
(TL)-based approach to estimate the radar backscatter of vegetation canopy in the case of
soybean fields. The proposed approach consists of two steps. In the first step, a simulated
dataset was generated by the SS-RTM. Then, we pre-trained two baseline networks, namely,
a deep neural network (DNN) and long short-term memory network (LSTM), using the
simulated dataset. In the second step, limited measured data were utilized to fine-tune
the previously pre-trained networks on the basis of TL strategy. Extensive experiments,
conducted on both simulated data and in situ measurements, revealed that the proposed
two-step TL-based approach yields a significantly better and more robust performance than
SS-RTM and other DL schemes, indicating the feasibility of such an approach in estimating
vegetation backscatters. All these outcomes provide a new path for addressing complex
microwave scattering problems.

Keywords: backscattering coefficient; radiative transfer model; soybean field; transfer
learning; deep neural network; long short-term memory network

1. Introduction
The accurate estimation of vegetation backscatter plays a crucial role in various appli-

cations. For instance, a better understanding of the microwave scattering mechanisms of
tree components contributes to the study of communication channel sensitivity in forested
areas and the detection of targets under the trees [1]. In addition, the applicability to predict
variation in backscattering coefficients caused by different moisture conditions at different
times could offer valuable information for crop yield estimation [2]. Therefore, accurately
modeling the backscatter from a vegetated surface has attracted widespread interest.

In contrast with surface scattering, the interactions between radar signals and vege-
tation surfaces are rather complicated to interpret because the scattering components in
a vegetation canopy usually have various sizes, shapes, and orientations. Over the past
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decades, extensive efforts were devoted to better analyzing and characterizing the backscat-
ter behavior of vegetation canopies [3–13]. In consequence, there are two main categories
of those methods, including empirical models and theoretical models. Concerning the
empirical models, the widely used one is the Water Cloud Model (WCM) [3,7,11]. In the
original WCM, Attema et al. [3] treated the canopy as an equivalent water cloud comprising
identical scatterers that are uniformly distributed within the canopy. Considering the effect
of leaf angle orientation, Kweon et al. [7] added two parameters related to the leaf angle
distribution, thus developing a modified WCM. Experimental results demonstrated that the
modified WCM accurately estimates the radar backscatters for vegetation canopies. In [11],
Mandal et al. appraised the WCM inversion capability using the multi-output support vec-
tor regression (MSVR) technique for the simultaneous retrieval of biophysical parameters
and the performance of the proposed method was evaluated with in situ measurements.
Reportedly, empirical models were only applicable to the conditions under which those
radar data were measured [14]. Therefore, such models involved significant limitations.

With all of the theoretical methods, the vector radiative transfer model (RTM) is
considered to be the typical one. Many RTM-based models have been reported in the
literature [4,5]. In 1990, Ulaby et al. [4] proposed the Michigan Microwave Canopy Scat-
tering Model (MIMICS) to predict the backscatter from a forest. According to MIMICS,
a vegetation canopy is geometrically divided into three regions: the crown region, the
trunk region, and the underlying soil surface. Each scattering component in MIMICS has
a well-defined physical meaning, thus achieving a high degree of precision. However, it
is reported that those RTM-based models are relatively accurate but quite complicated
and inconvenient since they involve many input parameters. To reduce the complexity,
Ulaby et al. [13] treated the canopy elements as equivalent spherical Rayleigh scatterers
and limited the solution to the first-order scattering, thereby simplifying the forms of the
extinction and phase matrices in RTM derivation, and obtained a simple form, namely,
the single-scattering RTM (hereafter called SS-RTM). As a result, this model decreased the
input parameters and computational complexity. In [13], the predicted values of SS-RTM
were simulated and the results showed that this model can provide good agreement with
radar observations for different vegetation canopies. It is, therefore, suitable for generating
a simulated dataset.

Essentially a research tool, deep learning (DL) approaches have been widely used in
many fields, especially for semantic segmentation [15–17], object detection [18,19], and
image recognition [20,21]. On the basis of their impressive progress, extensive efforts have
been devoted to exploring the application of DL approaches to remote sensing [22–27]
and microwave scattering problems [28–38]. With respect to the field of remote sensing,
Zhang et al. [22] proposed a DL-based method to address the limitations in extracting
cropland information from large-scale remote sensing imagery. Compared with the existing
state-of-the-art methods, the proposed network can achieve high precision and practicality
in segmenting large-area croplands. Amin et al. [23] introduced a novel DL methodology
for a tree census classification system. By means of this multi-modal training approach,
this method achieved good precision in classifying the dominant tree species of Cyprus.
Furthermore, to tackle the challenges in handling complex architectural structures and
shadow occlusions, Li et al. [25] developed a novel encoder–decoder network, and experi-
mental results demonstrated that the proposed network can achieve superior performance.
Furthermore, Paolanti et al. [27] introduced a comprehensive ethical framework designed
to assess and quantify the trustworthiness of DL methods in the field of remote sensing.
This work provides a practical tool for developers in remote sensing to ensure the respon-
sible deployment of DL. Obviously, the above-mentioned findings proved that DL-based
methods are able to obtain a better performance in remote sensing.
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In the case of microwave scattering problems, Li et al. [28], for the first time, in-
vestigated the connection between DL networks and the iterative method of nonlinear
electromagnetic inverse scattering problems. The results demonstrated that the proposed
DL-based approach outperforms remarkably conventional inverse methods in terms of
quality and computational time. To quantitatively reconstruct the unknown scatterers
from phaseless data, Xu et al. [29] proposed a learning-based inversion approach in the
frame of U-net. Both numerical and experimental tests were conducted with different DL
schemes. Zhou et al. [30] proposed a modified contrast scheme (MCS) to reconstruct both
the target objects with high contrast. Numerical results showed that, compared with other
schemes, MCS performed well in two-dimensional and three-dimensional examples in
real time after an offline training process. In our previous work [31], a multi-model fusion
network was introduced to solve the inverse problem. In this method, amplitude and phase
of the measured scattering data were applied to train the proposed scheme for the first
time, and numerical simulations showed that the proposed method can achieve a better
performance in reconstructing homogeneous and heterogeneous scatterers. In addition to
the above-mentioned reports, Xiao et al. [36] developed a hybrid approach that combines
DL and an experimental design to efficiently and accurately predict the monostatic radar
cross section (RCS) of a conducting target. Numerical results showed that the DL-based
method can reduce the predictive RMSE compared with traditional methods. Another
representative research was reported by Cao et al. [37]. They designed a U-net-based
network to perform an efficient scattering center (SC) prediction for targets with coating
defects from the input geometric image, and the results proved that the proposed method
is promising in providing efficient SC prediction in real-time scenarios. Throughout all this
research, most of the research in this field focused on developing an inversion algorithm
(namely, inverse problems) to retrieve the parameters of interest [28–34], and few studies
looked into the feasibility of applying those approaches in forward problems [35,36], e.g.,
predicting the radar backscatter of vegetation canopies. One crucial reason is that the
performance of DL-based approaches relies on a large amount of training samples. In
practice, radar measurements are the most straightforward way to obtain training data.
However, to build a ground-truth dataset that is representative of all available conditions
of vegetation canopies involving different radar configurations would require a huge
time and manpower investment. Furthermore, traditional DL-based methods, particularly
those with complex architectures, are often considered a “black box,” making it difficult
to understand how they make predictions. This lack of transparency can be a significant
drawback for scientific applications where understanding the process is as important as
the prediction itself.

Alternatively, transfer learning (TL) is regarded as a reliable DL approach to the tasks
in which the training data are insufficient [39–45]. Pan et al. [39] focused on categoriz-
ing and reviewing the current progress on transfer learning for classification, regression,
and clustering problems that are related more closely to data mining tasks. This survey
provided a comprehensive analysis for the data mining and DL community. Considering
the “black box” nature of DL models, Yosinski et al. [40] experimentally quantified the
generality versus specificity of neurons in DL models and provided an insight in transfer-
ability. The above research demonstrated the superiority of the TL method. Meanwhile,
fine-tuning works as an effective TL strategy provides the ability to leverage the knowledge
learned from a source domain and transfer it to the target domain [39]. For instance, in
research work [46], Yu et al. presented a novel method by means of deep transfer learning
to address the estimation of fractional vegetation cover (FVC). Experiments conducted
on Sentinel-2 multispectral satellite images revealed that the proposed method outper-
formed the traditional method and two other machine learning approaches. Such results
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proved the practicability of applying a TL-based method in the field of remote sensing.
Furthermore, in order to address microwave scattering problems, some scholars have made
great contributions in this field [41–45]. To achieve target classification by resonant scat-
tering electromagnetic signals, Selver et al. [42] presented a convolutional neural network
(CNN)-based strategy. By extending such a strategy to the measured data via modern data
augmentation and TL techniques, they obtained an improved classification performance for
complex targets. In research work [44], Zhu et al. designed a novel pre-training procedure
method based on TL, combining the dual advantages of data-driven and physical-driven,
to analyze spatial object optical scattering characteristics and an integrating feature. The
results demonstrated that the proposed method outperformed other methods. Moreover,
Dai et al. [45] proposed a TL-based encoder–decoder network to break the bottleneck
in the application of DL methods in the field of electromagnetic compatibility, and the
results confirmed the effectiveness of TL. As we know, currently no report has been pre-
sented to apply the TL approach to predict the radar backscatter of vegetation canopies.
Apparently, a comprehensive investigation of the feasibility and performance of such an
approach should be undertaken, which can lead to the potential applications for microwave
scattering problems.

The objective of this work was to develop a new backscatter model of vegetation
canopies based on limited measured data, aiming to estimate vegetation backscatters
more accurately than the theoretical models under real conditions. Motivated by the
radar measurements, we proposed a two-step TL-based approach to reproduce the radar
backscatter from vegetation canopies. In the first step, a large amount of simulated data
was generated based on the SS-RTM. In addition, a zero mean Gaussian random noise with
a standard deviation of ±0.5 dB was added to the computed backscattering coefficients to
make the dataset more robust. Then, two baseline networks, namely, a deep neural network
(DNN) and long short-term memory network (LSTM), were pre-trained using the simulated
dataset. In the second step, a limited number of the measured data was used to fine-tune
the weight matrices of the previously pre-trained networks. To facilitate the assessment
of the proposed approach, three research questions were posed concerning the capability,
effectiveness, and precision. Extensive experiments were conducted on both simulated
data and in situ measurements to answer those questions. The results revealed that the
proposed novel idea opens a new gateway between conventional scattering methods and
DL approaches with various application potentials.

The structure of this paper is organized as follows. Section 2 gives the S- and C-bands’
radar data. Section 3 introduces the proposed two-step approach, and then Section 4
illustrates the detailed experimental results. Section 5 presents the discussion. Finally,
Section 6 gives the conclusion.

2. Materials
2.1. S-Band Radar Data

CRIRP 2018: As demonstrated in Figure 1a, the China Research Institute of Radiowave
Propagation (CRIRP) developed a truck-mounted scatterometer system, namely, CRIRP-
SCAT, to measure the hh polarization radar backscatters of the soybean fields at S-band (i.e.,
3.2 GHz) at a wide range of incidence angles (i.e., 20◦ to 60◦ with 5◦ interval). CRIRPSCAT
mainly consists of three parts, including an antenna module, a vector network analyzer
(VNA), and a servo module. Particularly, the antenna module was equipped with six sets
of antennas in L-, S-, C-, X-, Ku-, and Ka-bands, respectively. The computer unit was used
to send commands to the VNA to transmit signals through the antenna and then receive
the echoes from the receiving antenna for the desired data. The servo module, involving a
servo control unit and a servo motor, was used to collect the scattering echoes of point (or
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distributed) targets with different incidence angles by controlling the elevation angles of
the antenna [14]. Table 1 lists the basic configurations of the CRIRPSCAT, correlated to the
center frequency, bandwidth, antenna gain, etc.
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Table 1. Configuration of the CRIRPSCAT.

Configuration Value

Frequency (GHz) 3.2

Bandwidth (GHz) 0.2

Antenna Gain (dB) ≥18

Antenna Beamwidth (◦) ≥10

Polarization hh

Platform Height (m) 14

The operation principle of CRIRPSCAT is as follows. First, given a frequency, the VNA
transmits the generated signals to the transmission antenna via a feeder. The transmission
antenna controls the polarization mode of the signals and delivers this signal to the feeder.
Then, the antenna receives the scattering signals from the target and transmits the signals
to the VNA, which converts the received signals into the time domain and filters out edge
clutter signals to retain the valid signals, finally converting such signals to the frequency
domain to obtain the reflected power over the irradiated area. It should be noted that
CRIRPSCAT is required to be calibrated before conducting radar measurement. For details
of the calibration method, one can refer to [14].

To obtain the backscatter data from soybean fields, a radar campaign was conducted by
the CRIRP, namely, CRIRP 2018. The test site is located at 36.349◦N, 120.378◦E, in Qingdao,
Shandong province, China. This campaign measured the backscattering coefficients of the
test fields four times (11–13 and 30 September 2018). For each test time, measurements were
repeated at various azimuth angles (>16) to increase the number of independent samples.
Simultaneously to radar acquisitions, the ground-truth data related to the canopy and
surface parameters were measured and are summarized in Table 2. The first column (i.e.,
Date) represents the time when the data were measured, e.g., 9/11 denotes 11 September
2018. The dielectric constants of soil and vegetation were calculated using the formulas
reported in [47,48], respectively. The soybeans were in the fully grown stage from 9/11
to 9/13, with canopy water content all around 0.77 g/cm3. As can be seen in Figure 1b,
on 9/30, the soybeans were in the late stage of growth and the leaves were beginning to
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yellow. Furthermore, it can also be found from Table 1 that the water content dropped to
0.5 g/cm3 at 9/30.

Table 2. Ground measurements of CRIRP 2018.

Date Canopy
Height (cm)

Canopy Water
Content
(g/cm3)

Volume
Fraction
(m3/m3)

Particle
Radius

(cm)

Soil
Moisture
(cm3/cm3)

Surface rms
Height

(cm)

Correlation
Length

(cm)

9/11 70 0.77 0.68 0.18 0.16

2.04 36.7
9/12 79 0.74 0.69 0.20 0.17

9/13 80 0.76 0.69 0.21 0.17

9/30 83 0.50 0.72 0.19 0.14

2.2. C-Band Radar Data

Yueh 1992: The backscattering coefficients from soybean fields were measured at
C-band (5.3 GHz) by the Centre National d’Etudes Spatiales (CNES) in France over a wide
period in 1986 [49]. The radar measurements were conducted at different times (17, 25 July;
7, 14, 20, 28 August; 3, 12 September 1986), and each point of the dataset was measured
at three polarizations (hh, hv, and vv) for six incidence angles (i.e., 0◦ to 50◦, 10◦ interval).
Furthermore, the height of radar was fixed at 14.5 m, and the 3 dB beamwidth of radar was
9.2◦. Along with the radar measurements, extensive ground-truth data related to canopy
characteristics and ground parameters were collected. The underlying soil surface at the
test site consisted of 11.1% sand, 61.7% loam, and 27.2% clay.

Wigneron 1999: From July to October 1989, Wigneron [50] made the radar measure-
ments during the growing season of the soybean field in Avignon. The backscatter data
from the soybean fields were collected by the scatterometer designed by CNES, at C-
band (5.3 GHz) with an incidence angle of 23◦ for hh polarizations. The soil surface and
vegetation characteristics were measured and are given in [50].

Figure 2 shows the range of vegetation parameters for different experiments. It can
be observed that, compared with S-band radar data, measurements for C-band cover a
longer period and a wider range of conditions. For example, the canopy height varied from
0.7 to 0.83 m for CRIRP 2018 (S-band), while that for Yueh 1992 (C-band) changed from
0.2 to 0.825 m. Furthermore, Figure 3 illustrates the variation in C-band radar data with
incidence angles and vegetation parameters. It can be clearly seen in Figure 3a that the
backscattering coefficients decreased with the increase in incidence angles. As shown in
Figure 3b, the backscattering coefficients also exhibited certain relationship with vegetation
parameters. Concretely, the backscattering coefficients gradually increased with increasing
canopy water content, demonstrating a trend of positive correlation, while the opposite
relationship can be observed for canopy height.
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3. Methods
The designed architecture of the proposed two-step TL-based approach is illustrated

in Figure 4. As the name implies, this approach was formulated into the following two
steps: model pre-training and model fine-tuning. In the first step, an extensive simulated
dataset with Gaussian random noise was generated by the SS-RTM in the source domain.
Then, two baseline networks were pre-trained with the simulated dataset. In the second
step, the previously pre-trained networks were fine-tuned in the target domain with a
limited number of radar data introduced in Section 2. Finally, the TL-based predictor for
the soybean canopy was obtained.
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Figure 4. The designed architecture of the proposed two-step TL-based approach for estimating
vegetation backscatters.

3.1. SS-RTM-Based Dataset

In research work [13], Ulaby et al. considered the canopy components as equivalent
spherical Rayleigh scatterers; thus, the forms of the extinction and phase matrices in RTM
were simplified. By limiting the solution to the first-order scattering, the total backscattering
coefficients from vegetation canopy can be introduced as follows:

σ0
pq = σ0

pq1 + σ0
pq2 + σ0

pq3 + σ0
pq4

= ΥpΥqσ0
spq(θi)

+ 3a
4 cos θi

(
1 − ΥpΥq

)(
1 + Γ2

pqΥpΥq

)
+6κsdΓpqΥpΥq

(1)

where θi denotes the incidence angle, σ0
spq is the direct backscattering from the underly-

ing soil surface, Yp denotes the p-polarized one-way transmittivity of the canopy, with

exp(− κ
p
e h sec θi

)
, κ

p
e is the p-polarized extinction coefficient of the canopy, h denotes the

canopy height, Γp represents the p-polarized reflectivity of the underlying surface, and a
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represents the single-scattering albedo, with κ
p
s /κ

p
e , where κ

p
s is the scattering component

of the p-polarized extinction coefficient.
To compute σ0

spq in Equation (1), we adopt the advanced integral equation model
(AIEM) [51], which is considered as a new contribution to the surface scattering computation:

σ0
spq =

k2

2
exp[−s2(k2

z + k2
sz)]×

∞

∑
n=1

s2n

n!

∣∣∣In
pq

∣∣∣2W(n)(ksx − kx, ksy − ky) (2)

where W(n) is the Fourier transform of the nth power of the normalized surface correlation
function. It should be noted that the exponential correlation function was performed for
this paper. For a complete description of the AIEM, one can refer to [51].

Before applying the SS-RTM for generating the simulated dataset, we attempted to
validate the applicability of such a model with the measured radar data and the ground-
truth data shown in Section 2. Figures 5 and 6 illustrate the comparison between the SS-RTM
simulations and the radar data at hh-polarization for the S- and C-bands, respectively. It
was clearly observed that the SS-RTM simulations well captured the angular behavior of the
measured data for 9/11 (S-band) and 9/12 (C-band) and the values of RMSE were 2.17 dB
and 1.99 dB, respectively. As for 9/30 (S-band) and 8/14 (C-band), slight discrepancies
were observed, with higher RMSEs of 2.86 dB and 2.40 dB, respectively. Furthermore, it
also can be seen that SS-RTM simulations seemed to somewhat overestimate the measured
data for all the samples. These may be explained by the fact that: (1) SS-RTM performed
the single-scattering mechanism for this paper; however, multiple scattering mechanisms
also existed within the canopy particles. (2) There were many difficulties in the actual
measurement process, resulting in potentially inaccurate results of vegetation parameters.
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On the whole, SS-RTM was reliable in reproducing vegetation backscatter. Other
studies also verified that the SS-RTM predictions can yield excellent agreement with
the experimental observations for many scene conditions [52]. It is, therefore, suitable
for creating a simulated training dataset that covers a wide range of canopy conditions.
It should be noted that, although RTM-based methods can also be adopted to general
vegetation cover, such as wheat and corn [13,52], due to the limited radar data available to
us, we only took into account the capability in the soybean fields.

Since there were no explicit patterns related to all the variables, for the convenience of
presentation, we treat Equation (1) as the following form:

σ0
hh = SS-RTM( f , θi; s, l, mv; h, v, r, mg) (3)

where f is the frequency, θi represents the incidence angles, s and l denote the rms height
and correlation length of the soil surface, respectively, mv is the soil moisture content, and h,
v, r, and mg denote the canopy height, volume fraction, particle radius, and canopy water
content, respectively. According to Equation (3), one can generate a simulated dataset.
Table 3 illustrates the ranges and sampling intervals of those parameters. To maintain
consistency with the radar data, we restricted f at 3.2 and 5.3 GHz. Other parameters were
fixed in a reasonable range to cover different vegetation and soil surface conditions based
on the radar measurements.

Table 3. Input parameters of SS-RTM.

Frequency
3.2 GHz 5.3 GHz

Range Interval Range Interval

θi(
◦ ) 20–60 5 20–60 10

s (cm) 1.8–2.2 0.2 1–1.8 0.4

l (cm) 32–36 2 6–14 4

mv (%) 0.11–0.2 0.03 0.1–0.3 0.1

h (m) 0.7–0.8 0.05 0.3–0.7 0.2

v (%) 0.65–0.75 0.05 0.2–0.28 0.04

r (cm) 0.2 - 0.1–0.25 0.05

mg (%) 0.5–0.8 0.1 0.6–0.8 0.1

According to Equation (3) and Table 3, an extensive dataset can be simulated by using
SS-RTM. Furthermore, we added a zero mean Gaussian random noise with a standard
deviation of ±0.5 dB to the computed values of the backscattering coefficient to make
the dataset more robust. After calculations, we obtained 11,664 sets of data for S-band
and 14,580 sets for C-band, respectively. These data consisted of input parameters and
corresponding backscattering coefficients simulated by SS-RTM, as shown in Table 4. It
should be noted that, for this study, 70% of the data was randomly selected as the pre-
training dataset, 20% as the validation dataset, and the rest as the test set.

Table 4. Illustration of the dataset.

Data
Number

Input Parameters Labels

f θi s l mv mg h v r σ0
h

1 3.2 20 0.018 0.34 0.11 0.50 0.70 0.007 0.002 −7.86

2 3.2 20 0.022 0.32 0.11 0.70 0.80 0.0065 0.002 −5.49

3 3.2 25 0.020 0.32 0.20 0.60 0.80 0.007 0.002 −7.72
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Table 4. Cont.

Data
Number

Input Parameters Labels

f θi s l mv mg h v r σ0
h

. . .

11,665 5.3 30 0.018 0.14 0.20 0.60 0.70 0.002 0.0025 −7.75

11,666 5.3 20 0.01 0.10 0.30 0.60 0.70 0.0028 0.002 −3.69

11,667 5.3 20 0.014 0.06 0.30 0.70 0.30 0.0024 0.002 −5.42

. . .

26,244 5.3 50 0.01 0.14 0.30 0.70 0.30 0.0022 0.002 −9.45

3.2. DL Networks

DL can be widely used owing to its powerful capabilities in nonlinear relationship
processing and end-to-end feature extraction. More importantly, it is reported that electro-
magnetic models, combined with the use of DL networks, were regarded as a powerful tool
for addressing microwave scattering problems [53]. In this context, two baseline networks
were adopted to perform the proposed two-step approach, namely, a deep neural network
(DNN) and long short-term memory network (LSTM). The reasons we utilized a DNN and
LSTM lie in the fact that:

1. DNNs are highly effective at learning complex, nonlinear patterns from data. In
microwave scattering, the underlying relationships among the surface properties,
dielectric constants, and scattering behavior can be intricate and difficult to model
explicitly. Combined with TL, DNNs trained on an SS-RTM-based dataset can be
fine-tuned for the measured data. This allows the network to reuse its learned feature
representations, which can generalize well across different scattering conditions.

2. LSTM networks are designed to handle sequential data and capture long-term de-
pendencies. In the proposed method, we treated the input parameters as a sequence
in Equation (3). Therefore, LSTMs not only learned the nonlinear relationship be-
tween the input parameters and the radar data but also extracted the coupling rela-
tionship between the individual parameters, thus boosting the performance of the
proposed method.

3. Typically, both DNNs and LSTMs require large datasets and significant training time
to converge effectively. Combining with TL can make such models more suitable for
applications with limited data availability (i.e., vegetation backscatter problem) and
reduce the time needed to train the models.

3.2.1. DNN

As shown in Equations (1)–(3), we observed that the soybean backscatter was related
to the parameters on the right side, exhibiting a complex nonlinear relationship. DNN is
comprised of many computational units (called hidden neurons) working in parallel and
related to each other through connections characterized by multiplying factors. With the
presence of the activation functions, DNN is well suited for solving nonlinear problems.

Figure 7a shows the diagram of a DNN with an L-layer and a neuron, respectively. In
the forward-propagation process, we assume that ψ represents the set of all the parameters
of a DNN, with ψ ={ψ1, ψ2, ...,ψL}. In the l-th ( l ∈ {1, 2, ..., L}) layer, we have nl nodes
and the set of parameters can be represented by ψl= {W(l), bl}, where W(l) ∈ Rnl−1×nl and
bl ∈ Rnl×1 denote the weight matrix and the bias vector, respectively. Taking the first layer
as an example, the output of the first layer is given by

y1 = δ(W(1)x + b1) (4)
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where δ represents the activation function. To perform the nonlinear mapping of a DNN,
we took ReLU as the activation function, with δ(x) = max(0, x). ReLU is a widely used
function that learns quickly in different neural networks. Furthermore, the gradient of
this function is always a single value, either 0 or 1, which prevents the size of the gradi-
ents from reducing exponentially during back-propagation, thus alleviating the gradient
vanishing problem.

Remote Sens. 2025, 17, x FOR PEER REVIEW 11 of 29 
 

 

(1)
1 1( )y W x bδ= +  (4) 

where 𝛿   represents the activation function. To perform the nonlinear mapping of a 
DNN, we took ReLU as the activation function, with δ(x) = max(0, x). ReLU is a widely 
used function that learns quickly in different neural networks. Furthermore, the gradient 
of this function is always a single value, either 0 or 1, which prevents the size of the 
gradients from reducing exponentially during back-propagation, thus alleviating the 
gradient vanishing problem. 

(a) (b) 

Figure 7. Schematic diagram of (a) a DNN, (b) a neuron. 

More specifically, we assumed that the neuron shown in Figure 7b was the j-th 
neuron in the first layer. In Figure 7b, nx  and jy  are the input and output, respectively. 

According to Equation (3) and Table  4, we obtained that 9n = . And the calculation of 
the j-th neuron can be expressed as 

1 2 3 4

5 6 7 8 9

(

      )
j j j i j j

j j j j j j

y W f W W s W l

W mv W mg W h W v W r b

δ θ= ∗ + ∗ + ∗ + ∗ +

∗ + ∗ + ∗ + ∗ + ∗ +
 (5) 

where n
jW  and jb  are the weight and bias of the j-th neuron, respectively. Therefore, the 

output of the first layer is given by 

1
1

p

j
j

y y
=

=   (6) 

where p  is the number of neurons of the first layer. Then, 1y  can be fed into the second 
layer and so on. Through layers of abstraction, we can obtain the final output of a DNN, 
with 

( ) ( 1) (1)
1 1( ( ( ( ( ) ) )) )L L

L L Ly W W W x b b bδ δ δ−
−= + + +   (7) 

where x is equal to the input vector and can be found in Equation (3). 

3.2.2. LSTM 

An LSTM network is designed to prevent gradient explosion and disappearance 
during the training process [54]. An LSTM is very good at handling sequence data, since 
its unique internal structure makes it a DL network with nonlinear fitting ability and 
robustness stronger than other methods [54–56]. 

In addition to the nonlinear relationship, soybean backscatter also depends on many 
parameters in a coupled way, as listed in Equation (3). Accordingly, we would like to treat 
the input variables in Equation (3) as a set of orderly and mutually correlated sequences. 

Figure 7. Schematic diagram of (a) a DNN, (b) a neuron.

More specifically, we assumed that the neuron shown in Figure 7b was the j-th neuron
in the first layer. In Figure 7b, xn and yj are the input and output, respectively. According
to Equation (3) and Table 4, we obtained that n = 9. And the calculation of the j-th neuron
can be expressed as

yj = δ(W1
j ∗ f + W2

j ∗ θi + W3
j ∗ s + W4

j ∗ l+
W5

j ∗ mv + W6
j ∗ mg + W7

j ∗ h + W8
j ∗ v + W9

j ∗ r) + bj
(5)

where Wn
j and bj are the weight and bias of the j-th neuron, respectively. Therefore, the

output of the first layer is given by

y1 =
p

∑
j=1

yj (6)

where p is the number of neurons of the first layer. Then, y1 can be fed into the second layer
and so on. Through layers of abstraction, we can obtain the final output of a DNN, with

yL = δ(W(L)(δ(W(L−1)(· · · δ(W(1)x + b1) · · · ) + bL−1)) + bL) (7)

where x is equal to the input vector and can be found in Equation (3).

3.2.2. LSTM

An LSTM network is designed to prevent gradient explosion and disappearance
during the training process [54]. An LSTM is very good at handling sequence data, since
its unique internal structure makes it a DL network with nonlinear fitting ability and
robustness stronger than other methods [54–56].

In addition to the nonlinear relationship, soybean backscatter also depends on many
parameters in a coupled way, as listed in Equation (3). Accordingly, we would like to treat
the input variables in Equation (3) as a set of orderly and mutually correlated sequences.
With reference to Figure 8, the LSTM block consisted of four units, namely, an input gate, a
forget gate, a memory cell, and an output gate. The general formulas of these four units are
given by:

it = δ(Wixxt + Wihht−1 + bi) (8)
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ft = δ(W f xxt + W f hht−1 + b f ) (9)

ot = δ(Woxxt + Wohht−1 + bo) (10)

ct = ft · ct−1 + it · tanh(Wcxxt + Wchht−1 + bc) (11)

ht = ot · tanh(ct) (12)

where xt and ht denote the input and final output, respectively, tanh represents the hyper-
bolic tangent activation function, W is the weight matrix, while b is the bias (for convenience,
we ignore the subscripts), and ⊙ denotes the element-wise product.
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As illustrated previously, the simulated dataset did not contain an obvious temporal
dimension. With reference to Table 4, we took the order of the samples as the temporal
dimension to address this issue, i.e., the input at the first moment was the first set of the
samples, the input at the second moment was the second set of the samples, and so on.
This solution was proven in [14], and the details are not described here.

3.3. Model Pre-Training

A pre-training strategy is widely used in TL-based approaches and is a common
way to improve the generalization performance of neural networks. In view of this, the
previously obtained dataset was utilized to initialize the weight matrices and the bias
vectors of the DL networks mentioned above.

All the baseline networks used in this paper were mainly implemented with the
Keras framework and end-to-end pre-trained on an NVIDIA GTX 1650Ti GPU laptop. We
adopted three hidden layers for the DNN, and the number of hidden neurons was set to
32, 64, and 128, respectively. In the case of the LSTM, we implemented three blocks, and
the hidden units of these blocks were also set to 32, 64, and 128. Moreover, dropout with a
probability of 0.2 was adopted to avoid over-fitting on the simulated datasets. According
to Table 4, the dimensions of the inputs and outputs were set to 9 (i.e., columns 1–9) and
1 (i.e., columns 10), respectively. In the pre-training phase, the mean-squared error loss
function was optimized by the Stochastic Gradient Descent (SGD) [57] with momentum.
To reduce the computational complexity, the backscattering coefficients were normalized to
[0, 1]. The initial learning rate during the pre-training phase was set to 0.001. The number
of epochs was 500, and the batch size was equal to 32. The momentum was fixed to 0.9,
and weight decay was set to 1 × 10−4.
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Furthermore, two error metrics were used to quantitatively verify the performance
of the proposed approach, namely, the RMSE and Bias. Their expressions are shown
as follows:

RMSE =

√
1
m

m

∑
i=1

(yp
i − yt

i)
2

(13)

Bias =
1
m

m

∑
i=1

(yp
i − yt

i) (14)

where yp
i and yt

i are the i-th predicted result and ground truth, respectively, and m is the
number of data points.

3.4. Model Fine-Tuning

As described in the pre-training phase, the forward mapping and the input–output
discriminant relations were generated on the basis of the dataset computed by the SS-
RTM, namely, in the source domain. Since the radar data from soybean fields are rather
noisy, application of the pre-trained model for the abstract representation of various input
parameters provided robustness to the overall pre-training phase.

Concerning the fine-tuning phase, the implementation details are shown in
Algorithm 1. Concretely:

(1) Constructing Dataset for Fine-Tuning

As illustrated in Algorithm 1, the first step of the fine-tuning phase was Constructing
Dataset in the target domain, i.e., pairing the ground-truth data (denoted as Xt) with the
corresponding radar backscatter data (denoted as Yt). Mathematically, the target domain
data can be represented as

Dt =
{
(x1

t , y1
t ), (x2

t , y2
t ), . . . , (xn

t , yn
t )
}

(15)

where Dt denotes the target domain, xi
t ∈ Xt is the input parameters, while yi

t ∈ Yt is the
corresponding output, i is the number of the target domain data, and i = 1, 2, . . . , n.

(2) Initializing the Pre-Trained Network

The overall structures of the pre-trained networks were frozen, and the learned param-
eters (i.e., weight matrices and bias vectors) among each layer were fine-tuned in the target
domain with the limited measured data introduced in Section 2. For a better understanding,
we took the DNN as an example and redefined the related parameters. In particular, ψs

represented the pre-trained parameters of the DNN in the source domain, and it can be
written as follows:

ψs =
{

ψ1
s , ψ2

s , . . . , ψL
s

}
(16)

where ψl
s= {W l

s , bl
s} is the parameters of the l-th layer.

(3) Fine-Tuning the Networks

In this step, the target domain data shown in Equation (15) were fed into the pre-
trained networks. After the nonlinear mapping in the target domain, the predicted values
yL

s for the i-th set of the inputs xi
t can be expressed as:

yL
s = δ(W(L)

s (δ(W(L−1)
s (· · · δ(W(1)

s xi
t + b1

s ) · · · ) + bL−1
s )) + bL

s ) (17)

Then, the discrepancies between the predicted values yL
s and the radar data yi

t were
used to calibrate the learned parameters of the pre-trained networks based on the backward-
propagation algorithm. Note that we adopted the Huber loss function [58] in the fine-tuning
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phase, which combined the advantages of the mean-square error and mean-absolute error
loss function. With reference to the expression of Huber loss, we have:

J(ψt; xi
t; yi

t) = Lg(yi
t, yL

t ) =

{
1
2 (y

i
t − yL

t )
2, for

∣∣yi
t − yL

t
∣∣ ≤ g

g
∣∣yi

t − yL
t
∣∣− 1

2 g2, otherwise.
(18)

where g denotes the hyper-parameter and is equal to 1 in this paper. Then, SGD is used to
optimize the objective function J(ψt) by updating the parameters ψT in the opposite direc-
tion of the gradient of the objective function ∇ψt J(ψt; xi

t; yi
t) related to the parameters [57].

That is,
ψt = ψt − ηt · ∇ψt J(ψt; xi

t; yi
t) (19)

where ηt denotes the learning rate in the target domain. Since the radar data were limited,
we used a smaller learning rate, i.e., ηt= 1 × 10−4. Furthermore, the fine-tuning epoch was
set to 100, repeating this loop until the objective function converged to a global minimum.
Finally, the fine-tuned TL-based predictors were obtained. This was a desirable feature for
our approach, as later we illustrate that pre-trained and fine-tuned networks yielded an
improved performance with respect to the theoretical model (i.e., SS-RTM). It should be
clarified that, to make the fine-tuning strategy applicable to LSTM, one can simply replace
Equations (16) and (17) with their forward-propagation formulas, i.e., Equations (8)–(12).

Algorithm 1: Fine-Tuning Strategy

1: Input: The pre-trained weights, the fine-tuning epoch, the learning rate, the loss function;
2: Step 1: Constructing Dataset for Fine-Tuning

3:
Construct the ground-truth data and backscattering coefficients from in situ measurements
according to Equation (3);

4: Step 2: Initializing the Pre-Trained Network
5: Freeze the network structure;
6: Load the pre-trained weights;
7: Step 3: Fine-Tuning the Networks
8: while fine-tuning epoch is less than num_of_epoch do
9: Forward-propagate;
10: Step 3.1: Calculating the Loss Function
11: Calculate the Huber loss;
12: Backward-propagate;
13: Step 3.2: Updating the Parameters
14: Loss gradient for updating the pre-trained weights;
15: if convergence then
16: break loop;
17: end if
18: end
19: Output: Fine-tuned networks.

4. Results
As the key objective of this work was to develop an accuracy vegetation backscatter

model with sufficient training data and limited measured data, we evaluated the proposed
two-step TL-based approach on simulated data and in situ measurements and conducted
extensive experiments to answer the following research questions, namely:

RQ1: Can the pre-trained networks capture the complex relationship well between in-
put parameters and the backscatter from soybean canopy? If yes, which model gives a
better representation?
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RQ2: Fine-tuning is an efficient strategy to enhance the case of small samples, so how much
can it improve in terms of accuracy and can the DL networks stay robust after fine-tuning?
RQ3: Does the proposed two-step approach perform better than the pre-trained networks
and the SS-RTM under real conditions?

Before presenting the answers, it is important to note that PT- and FT-, which were used
in combination with the DNN or LSTM, represented the networks that were pre-trained
or fine-tuned, i.e., PT-DNN and FT-DNN denote the pre-trained DNN and fine-tuned
DNN, respectively.

4.1. Comparison with the Simulated Test Set (RQ1)

The objective of this section was not only to simply verify the feasibility of DL models
for characterizing the relationship between input parameters and backscattering coefficients
from a crop such as soybean but also to utilize the test dataset to estimate the performance
of the two pre-trained networks. In addition, two other machine learning (ML) algorithms,
i.e., Support Vector Machine (denoted as SVM) and Linear Regression (denoted as Linear)
were also employed for this section to justify the choice of DNN and LSTM.

The correlation plot for both S- and C-bands are presented in Figures 9 and 10. From
Figures 9 and 10, we can make the following observations. First, among these methods,
LSTM provided the best performance in predicting the backscattering coefficients, with the
RMSE reaching the values of 0.87 dB for S-band and 0.54 dB for C-band, respectively, thus
demonstrating the capability of LSTM in predicting backscattering coefficients. Second,
the linear model achieved the worst predictions, with the RMSE reaching the values of
1.70 dB for S-band and 2.07 dB for C-band. Such results demonstrate that there was a highly
nonlinear relationship between the input parameters and backscattering coefficients and it
is not sufficient to use a linear model. Third, concerning the performance of prediction, we
can see that SVM can yield comparable results with DNN in terms of RMSE. However, the
predicted values of SVM were more dispersed, while those for DNN were closer to the 1:1
line. This phenomenon proves that the capability of SVM is somewhat weaker than DNN
in mapping outliers. Therefore, SVM is slightly inappropriate for the context of our case.

Figure 11 illustrates the box plot of the estimated differences between the DL model
predictions and simulated results for S- and C-bands. The box plot is a statistical diagram
that shows the dispersion of data, and the statistical representations are shown in blue font
in Figure 11. Note that the labels on the horizontal coordinate in Figure 11 represent the
S-band and C-band models, i.e., S-PT-DNN denotes the pre-trained DNN of S-band. It can
be clearly observed from Figure 11 that the median of the estimated differences generally
varied in the range of 0 to 2 dB. Compared with PT-LSTM, the performance of PT-DNN
was slightly behind, especially for C-band, with the maximum difference reaching a value
of 4.2 dB. Additionally, an increased number of outliers was found for C-band but not
for S-band. These observations may involve the fact that, as the frequency increased, the
wavelength was greater than the size of the scattering components within the soybean
canopy, leading to inaccurate estimates of the SS-RTM and thus suppressing the accuracy
of the DL networks.

Overall, the preceding results convincingly support the point that the pre-trained
networks can not only process backscatter signals but also capture the intrinsic relationship
among radar echoes and input parameters, justifying the ability of such DL networks
to estimate backscattering coefficients of vegetation canopy. Moreover, the calculated
error metrics revealed that the LSTM network was even more powerful than the DNN.
That is to say, in addition to considering the nonlinear relationship among input param-
eters and backscattering coefficients, the interrelationship between input sequences was
equally significant.
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Figure 11. Box plot of the estimated differences between model predictions and simulated data.

4.2. Efficiency and Robustness of the Fine-Tuning Strategy (RQ2)

To answer RQ2, we built a dataset to verify the effectiveness of the fine-tuning strategy,
namely, the fine-tuning dataset. This dataset included CRIRP 2018 for S-band and Yueh
1992 for C-band, which are illustrated in Section 2. It is worth mentioning at this point
that the fine-tuning dataset only comprised 36 and 32 sets of the measured data for S- and
C-bands, respectively. As a result, such datasets with insufficient data are well suited for
evaluating the effectiveness of the fine-tuning strategy. In particular, 80% of the fine-tuning
set was randomly selected to fine-tune the networks; the rest tested for validation. With
reference to Algorithm 1, once the fine-tuning dataset was gradually fed into the pre-trained
networks, the validation set was used to investigate the performance of the fine-tuned
networks. Figure 12 shows the mean validation loss curves of the fine-tuning phase on the
validation set.
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Figure 12. Validation loss on the radar data for (a) S-band and (b) C-band.

As depicted in Figure 12, the horizontal coordinate started from 0, which means we
first evaluated the capabilities of the pre-trained networks with the validation dataset.
The computed losses, regarding PT-DNN and PT-LSTM, were equal to 3.39 and 2.91 for
S-band and 1.28 and 1.16 for C-band, respectively, which further proves that PT-LSTM
outperformed PT-DNN. We can also observe from Figure 12 that, during the fine-tuning
phase, the loss curves for S-band tended to drop dramatically compared to those for C-
band. This may be explained by the fact that the estimations of the pre-trained networks
significantly differed from S-band radar data, leading to a sustainable calibration of the
weight matrices. Furthermore, as the fine-tuning samples proportionally increased, the
loss curves remained relatively smooth, revealing that the weights matrices gradually
converged towards the optimal configuration. On the whole, applying the fine-tuning
strategy motivated the pre-trained networks to achieve better performance, even with only
10% of the fine-tuning samples.
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To quantify the performance improvement, the improvement ratio is defined as the
following from,

ratio =
PTRMSE − FTRMSE

PTRMSE
× 100% (20)

where PTRMSE and FTRMSE represent the RMSEs of the pre-trained and fine-tuned networks
on the validation set. Small values of the ratio correspond to large values of FTRMSE,
and large values of the ratio correspond to small values of FTRMSE. Table 5 lists the
corresponding improvement ratio. Evidently, the fine-tuned strategy significantly reduced
the RMSE on the validation set, especially for PT-LSTM at S-band, with the ratio values
increasing from 8% to 31%. In comparison with S-band, the improvement ratio for C-band
varied somewhat slowly, at approximately 15%. Consistently, this result was similar to the
trend of the loss curves plotted in Figure 12b.

Table 5. Improvement ratio of the fine-tuning strategy.

Percentage
(%)

S-Band C-Band

FT-DNN FT-LSTM FT-DNN FT-LSTM

10 9.39% 7.96% 7.02% 8.34%

20 7.77% 11.55% 8.33% 15.27%

30 15.89% 23.36% 5.90% 15.35%

40 17.09% 25.50% 4.84% 15.32%

50 19.71% 27.48% 6.70% 16.91%

60 20.62% 26.92% 8.91% 18.82%

70 21.34% 28.36% 12.92% 21.16%

80 24.69% 30.91% 18.01% 23.17%

For this section, we also evaluated the robustness of the fine-tuned networks based on
Wigneron 1999 [50], since it was not used to fine-tune the pre-trained networks. As shown
in Figure 13, a comparison of the estimated backscattering coefficients and the measured
ones is depicted for different models. It can be clearly observed that fine-tuning worked
as a robust calibration strategy, since the fine-tuned predictions were closer to the 1:1 line,
demonstrating a quite strong correlation with the measured data. In Figure 13a,b, we
can see that the RMSE values of SVM and Linear were, respectively, 2.79 dB and 3.06 dB,
proving that such models are not effective. Furthermore, compared with the pre-trained
networks, those that were fine-tuned reduced the RMSEs by 0.48, and 0.97 dB, respectively.
Concerning the robustness, DNN, SVM, and Linear seemed to be slightly worse than that
of LSTM.
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To conclude this section, it was shown that fine-tuning is a powerful and flexible
strategy to address the lack of training data in the target domain and it enables the pre-
trained networks to be more robust as well as to further enhance the performance. This has a
guiding significance for addressing microwave scattering problems without sufficient data.

4.3. Comparison with the Radar Measurements (RQ3)

For this section, we attempted to verify the performance of the proposed TL approach
with the S- and C-bands’ experimental data. Note that two sets of radar data (i.e., 9/13 for
CRIRP 2018, 9/03 for Yueh 1992, respectively) were selected for testing, while the rest of
the data were used to fine-tune the pre-trained networks.

Quantitatively, we compared the fine-tuned networks with the SS-RTM, ML algo-
rithms, and the pre-trained networks. The detailed error metrics related to the backscatter
predictions are computed in Table 6. We can make the following observations from Table 6.
First, the performance of PT-DNN was somewhat worse than SS-RTM for S-band, whereas
PT-LSTM yielded a slightly improved estimation with the lower values of RMSE and Bias
(3.50 and 3.31 dB, respectively). Second, after fine-tuning with a limited amount of the
radar data, the precision of such DL networks was enhanced, especially for FT-LSTM, with
the RMSE value reduced from 3.50 to 2.32 dB for S-band and 1.28 to 0.99 dB for C-band.
The result illustrates that using the fine-tuning strategy is an effective way to achieve higher
accuracy. Third, as for the Bias, all of those networks overestimated the measured data.
This could be explained by the fact that the fine-tuned data were insufficient for such
networks to learn the angular behavior adequately. Fourth, concerning the performance of
ML algorithms, SVM achieved better results than Linear for both S- and C-bands, however,
slightly behind LSTM. Fifth, it was clearly observed that both PT-LSTM and FT-LSTM
performed better than those for DNN, thus indicating that LSTM can not only extract
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the interrelationships between input parameters and vegetation backscatters but also its
performance was even better than the SS-RTM under real conditions.

Table 6. Error metrics for different models.

Models
9/13 (S-Band) 9/03 (C-Band)

RMSE (dB) Bias (dB) RMSE (dB) Bias (dB)

SS-RTM 3.56 3.37 2.04 2.01

SVM 2.69 1.70 1.43 −0.14

Linear 3.08 1.73 2.23 0.92

PT-DNN 3.83 3.59 1.68 1.58

PT-LSTM 3.50 3.31 1.28 0.91

FT-DNN 3.24 2.76 1.23 1.20

FT-LSTM 2.32 1.98 0.99 0.08

To visually show the performance of the proposed two-step TL approach, we took
LSTM predictions as an example, as shown in Figure 14. It can be seen in Figure 14a
that, as the incidence angle increased, the deviation between the SS-RTM simulations
and the measured data gradually increased. This may be explained by the fact that:
(1) the SS-RTM performed a single-scattering mechanism, whereas the contribution of
multiple scattering became more significant as the incidence angle increased, and (2) the
ground measurements of radar backscatter from the vegetation canopy may not always
be consistent. It was also observed that the PT-LSTM predictions almost reconstructed the
values of SS-RTM, indicating that LSTM can learn the relationship between parameters
and vegetation backscatter well. Furthermore, FT-LSTM yielded the best performance,
with the lowest RMSE value of 2.32 dB. Compared with PT-LSTM and SS-RTM, FT-LSTM
reduced the RMSEs by 1.18 and 1.24 dB. As expected, the predicted values of FT-LSTM,
on the whole, captured the angular behavior of the radar measurements for C-band (see
Figure 14b), with the lowest RMSE of 0.99 dB. Due to the fine-tuning strategy, FT-LSTM
provided better accuracy than PT-LSTM among the largest part of the angular range under
consideration. Concretely, compared with PT-LSTM and SS-RTM, the RMSE value in
this case was decreased by 0.29 and 1.05 dB, respectively. Hence, the proposed two-step
LSTM can better characterize the relationship between input parameters and vegetation
backscatter for both S- and C-bands.
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In summary, the above-mentioned outcomes indicate that the proposed two-step
approach yielded a better performance, in terms of quantitative and visual, for predicting
the backscattering coefficients from soybean fields. Meanwhile, LSTM was more suitable for
addressing the complex relationship compared with DNN, due to its distinctive structure.
This gives LSTM the applicability to reproduce the radar backscatter from other types of
vegetated cover.

5. Discussion
It is undeniable that measured data are of great importance for developing a new em-

pirical or theoretical model as well as for characterizing and estimating canopy backscatters.
However, to conduct radar campaigns involves huge resources of time and manpower, thus
resulting in insufficient amounts of measured data. Aiming to develop a more accurate veg-
etation backscatter model based on limited measured data, we, for the first time, introduce a
two-step TL-based approach, namely, model pre-training and model fine-tuning. Extensive
experiments proved that the proposed approach performs better than other methods in es-
timating backscattering coefficients. Furthermore, a comprehensive assessment of such an
approach concerning the advantages and limitations is illustrated in the following sections.

5.1. Advantages’ Assessment of the TL-Based Method
5.1.1. Sustainability

As previously mentioned, the baseline DL models were pre-trained using the dataset
simulated by SS-RTM in the pre-training process, which means those models already
learned the relationship between input parameters and canopy backscatter and they can be
reused. When the pre-trained models are fine-tuned using the measured data, the weight
matrix and bias vectors of such models are modified to make them converge in a more
accurate direction. Once additional measured data are available, the fine-tuning process is
sustainable on the previously obtained models, thus significantly reducing the calculation
expenses and time consumption. For other methods, they require end-to-end training. For
example, in research work [59], Wang et al. developed a DNN network to reproduce the
backscattering coefficients of a land surface based on AIEM. Although this method can give
relatively favorable results, a major drawback is that such a model needs to be retrained
once new data are acquired. On the contrary, the proposed TL-based method only requires
fine-tuning, thus demonstrating its superiority.

For bettering clarification, we conducted a comparison experiment to prove the effi-
ciency of the proposed method. Concretely, DNN and LSTM were selected as the end-to-end
DL models for comparison. As stated above, the pre-trained networks can be reused. There-
fore, for the proposed method, only the fine-tuning process is needed in this experiment.
Taking S-band as an example, we mixed the simulated data and the measured data to
obtain 11,700 sets of data for end-to-end training and 36 sets of the measured data for fine-
tuning, as illustrated in Section 4.2. Furthermore, the experimental settings are the same as
those in Sections 3.3 and 3.4. We listed the results of the proposed method and traditional
end-to-end DL models in Table 7. It can be clearly seen that, compared with end-to-end
DL models, the proposed method can significantly decrease the time consumption, which
was reduced by 32 times for DNN and 38 times for LSTM, respectively. Concerning the
memory, due to the sustainability of the pre-trained models, the proposed method only
updates the learned parameters, and the memory remains constant with the pre-trained
model. These findings demonstrate that the proposed method is more efficient than other
end-to-end training methods in reducing the computational cost.
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Table 7. Comparison of computational cost.

Method
End-To-End Training Proposed Method

DNN LSTM DNN LSTM

Time (s) 916.2 1414.1 28.3 37.8

Memory (KB) 176 858 - -

5.1.2. Generalizability

The reason for the generalizability of the TL-based method lies in the following aspects.
First, this paper considered two baseline networks (i.e., DNN and LSTM) and verified
their precision. Alternatively, such baselines can be replaced once other models with
better performance are available. Second, the proposed TL-based method acts more as a
uniform framework. Researchers can flexibly modify the corresponding methods within
this framework according to the problems they encounter. Taking surface scattering [59]
as an example, one can use AIEM to generate the simulated dataset for pre-training DL
models and fine-tune such models with the measured data illustrated in [59]. It is therefore
entirely generalizable to other studies with insufficient experimental data. Furthermore,
microwave scattering behavior varies significantly across different frequency bands (e.g., L,
S, C, X bands) and polarizations (e.g., HH, VV, HV). Constructing separate models for each
frequency and polarization can be computationally expensive and time consuming. TL
can be used to generalize models across frequency bands and polarizations. For example,
a model trained on L-band HH polarization can be adapted to C-band VV polarization
with minimal additional training according to the TL method. This would enable the
development of multi-frequency and multi-polarization scattering models that are more
efficient and scalable, allowing for broader applications such as multi-sensor integration.

5.1.3. Reliability

Firstly, WCM [3] is another typical model to simulate the backscatter from vegetation
canopy, as mentioned earlier. To provide justification for the choice of employing SS-RTM,
this section evaluates the performance of WCM. Note that C-band data were used to fit
the unknown parameters with Ahh = −24.73 and Bhh = 0.072. Figures 15 and 16 show the
comparison results of SS-RTM and WCM on S-band data. It can be clearly seen that the
predictions of SS-RTM outperformed those for WCM. Therefore, it is reasonable to believe
that using the training dataset generated by SS-RTM can yield better estimations.
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Secondly, we conducted an experiment to evaluate the time consumption of the
proposed method for estimating vegetation backscatter on a large scale, and the results
are listed in Table 8. From Table 8, we can see that the proposed method works more
efficiently than other models. Furthermore, from the results illustrated in Section 4, it
can be also observed that the proposed TL-based method can yield better performance
in terms of capability, effectiveness, and precision. All the above outcomes, involving
dataset generation, estimation accuracy, and efficiency of large-scale simulation, prove the
reliability of the proposed TL-based method.

Table 8. Time consumption for different methods on a large scale.

Method WCM SS-RTM
Proposed Method

DNN LSTM

Time (s) 5.37 4.15 2.86 2.95

5.2. Limitations’ Assessment of the TL-Based Method

It is well known that DL networks rely heavily on the quality of training data. There-
fore, a few additional limitations on the proposed method deserve to be clarified. First,
the backscatter from the underlying surface contributes significantly to the total radar
echoes from a canopy. Among the available methods for the computation of soil surface
backscatter, it is unknown whether the AIEM simulations can be applied directly to the soil
surface under a vegetation cover, especially under large roughness conditions (see Table 2).
Actually, in our previous work [14], we found some non-negligible discrepancies simulated
by AIEM with the measured radar data based on the radar measurements conducted by
CRIRP, and the error can be up to 4.06 dB for HH polarization and 5.13 dB for VV polariza-
tion, respectively. Those can affect the quality of the precision to some extent. In our future
work, efforts will be devoted to applying the method developed in [14] to the TL-based
method to further improve the performance.

Second, it is worth mentioning at this point that SS-RTM could be suitable for develop-
ing an extensive training dataset. Such a model, however, is derived on the basis of several
limiting assumption [13], e.g., to simplify the forms of the extinction and phase matrices,
the scatterers within the canopy were treated as equivalent spherical Rayleigh scatterers,
which means that the wavelength should be much larger than the particle size. In practice,
the particle size may not always meet this assumption. Furthermore, as stated previously,
SS-RTM performed the single-scattering mechanism for this paper. In research work [13],
Ulaby et al. reported that second- and higher-order scattering contributions are signifi-
cantly smaller than first-order (i.e., single-scattering) contributions within the RTM-based
method, and experimental results proved that this assumption is reasonable [13]. However,
in the case of dense vegetation canopies, the contribution of multiple scattering can be
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significant. Moreover, concerning the overestimations (see Figure 4), the potential reason
may lie in the inaccuracy of the measurement of vegetation parameters, and inevitably,
such errors are unavoidable. Therefore, SS-RTM is somewhat inadequate for simulating
the vegetation backscatter.

Third, it is noted that the pre-trained networks were trained with the simulated
dataset computed by SS-RTM. As stated above, SS-RTM involves some drawbacks. Despite
the fact that we added Gaussian random noise to the computed results, the simulated
dataset is somewhat inaccurate for the backscatter characterization of vegetation in real-
world conditions, thus degrading the performance of the proposed method to some extent.
Future work will be devoted to developing more accurate algorithms for vegetation canopy
backscatter in real-world conditions.

5.3. Broader Implications of the TL-Based Method
5.3.1. Increased Efficiency in Data-Limited Conditions

Many microwave scattering problems, especially in remote sensing or radar applica-
tions, require a significant amount of high-quality labeled data to develop accurate models.
However, it is difficult to achieve a representative dataset. Fortunately, TL can be used to
solve the above issue. TL-based methods can reduce the data requirements and computa-
tional costs for model training in new environments, allowing for faster deployment and
improved model performance in regions or applications with limited labeled datasets. For
instance, Yu et al. [46] found that there are few DL-based methods for estimating fractional
vegetation cover (FVC) due to the difficulty of obtaining a large amount of training data.
To address this issue, a novel method based on a TL and physical model was proposed,
and the experimental results revealed that a TL-based method can overcome the limitations
in determining the parameters of an empirical method and machine learning for FVC
estimation. More importantly, the proposed TL-based method can significantly improve
the FVC estimation accuracy with limited samples, thus demonstrating the superiority of
such a method. Furthermore, other research works also proved this point [60,61] and will
not be discussed here.

5.3.2. Adaptability to Inverse Problems

A TL-based method can be a powerful tool for solving inverse problems, particularly
when data are limited, noisy, or difficult to collect. Typically, inverse problems involve
inferring the underlying model or system from observed data, and one can range from
tasks like inverse scattering [41,43], to inverse modeling [62]. For instance, full waveform
inversion (FWI) can be highly nonlinear and underdetermined. Low-frequency information,
which can seriously affect the FWI results, may be missing from obtained data due to the
limitation of acquisition devices. Considering this issue, Jin et al. [43] developed a learning-
based method to extrapolate the low-frequency data using TL, and the results revealed
that the proposed method is efficient and effective. In research work [62], Cheng et al.
proposed an inverse modeling method for nanophotonic structures, based on a mixture
density network model enhanced by TL, and numerical results validated the proposed
method. All these findings revealed that, by transferring knowledge learned from one
problem to another, TL can reduce the amount of data needed and accelerate the process of
solving inverse problems.

5.3.3. Cross-Domain Transfer for New Applications

Microwave scattering models are often specialized for specific applications, such as
environmental monitoring or material analysis. When new applications arise, constructing
models from scratch can be slow and resource intensive. Knowledge from one domain
can be transferred to unrelated domains, including medical imaging [63–65] or structural
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health monitoring [66,67]. For example, to address the limitation of data scarcity and
costly annotation processes of medical image data, Dao et al. [65] introduced a novel
TL-based method for medical image classification, and the results demonstrated that this
approach significantly enhances image classification tasks while reducing the burden of
annotation costs. In research work [66], Shao et al. proposed a damage quantification
method combining TL in the field of aerospace structural health monitoring. The results
showed that the model after transfer was superior to the model without transfer in both
average error and maximum error, proving that a TL-based method can reduce training
time and maintain high prediction accuracy. This cross-domain transfer significantly speeds
up the development of models for emerging applications.

6. Conclusions
Accurately predicting vegetation backscatter using radar signals presents several

challenges, primarily due to the complexity of interactions between radar waves and
vegetation canopies as well as the influence of environmental factors. Motivated by DL
techniques and radar measurements, in this paper, we introduced a new two-step TL
approach to estimate the backscatter from vegetation canopy in the case of soybean fields.
These two steps implemented the model pre-training and model fine-tuning processes,
respectively. In the first step, two baseline networks were pre-trained by a simulated
training set with Gaussian random noise, which was generated for various types of soybean
canopies at different frequencies (S- and C-bands) based on the theoretical model (i.e.,
the SS-RTM). In the second step, the previously pre-trained networks were fine-tuned
with the in situ measured ground-truth data and the radar data. On the basis of three
research questions, we conducted extensive experiments to evaluate the performance of
the proposed approach, and the results are listed as follows.

Firstly, we conducted a comparative experiment on the test data. The objective of this
experiment was not only to simply verify the feasibility of DL models for characterizing
the relationship between input parameters and backscattering coefficients from a crop
such as soybean but also to utilize the test dataset to estimate the performance of the two
pre-trained networks. For S-band, the correlation plot shows that the model predictions
match well with the simulated values for both pre-trained models, with the RMSE reaching
the values of 1.63 dB and 0.87 dB, respectively. In the case of C-band, deviation between
prediction and simulation becomes apparent for PT-DNN, with an overall RMSE value
of 2.01 dB, while PT-LSTM can still yield a good performance, with the RMSE reaching
the value of 0.54 dB. We can conclude that the LSTM network is more powerful than
DNN. That is to say, in addition to considering the nonlinear relationship among input
parameters and backscattering coefficients, the interrelationship between input sequences
is equally significant.

Secondly, we constructed a fine-tuned dataset to verify the effectiveness of the fine-
tuning strategy. This dataset only comprised 36 and 32 sets of the measured data for S- and
C-bands, respectively. It was, therefore, well-suited for evaluating the effectiveness of the
fine-tuning strategy. The mean validation loss indicates that, during the fine-tuning phase,
the loss curves for S-band tend to drop dramatically compared to those for C-band and
remain relatively smooth as the fine-tuning samples proportionally increase. With respect
to the improvement ratio, the fine-tuning strategy significantly reduces the RMSE on the
validation set. Furthermore, compared with in situ measurement, fine-tuning was proved
as a robust calibration strategy.

Thirdly, we verified the performance of the proposed TL approach with the S- and
C-bands’ experimental data in terms of quantitative and visual. The computed error
indices reveal that the predictions of the proposed method yield excellent agreement with
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the experimental data under real conditions. In particular, PT-LSTM performed better
than those for DNN, thus indicating that LSTM can not only extract the interrelationships
between input parameters and vegetation backscatters but also the performance is even
better than the SS-RTM under real conditions. Similarly, in the visualized plot, FT-LSTM
yields the best performance, with the lowest RMSE value of 2.32 dB for S-band and 0.99 dB
for C-band, respectively.

The above-mentioned results revealed that the proposed TL-based approach outper-
forms the SS-RTM and other DL schemes, in terms of accuracy and robustness, demon-
strating the good capabilities of such an approach in estimating vegetation backscatters.
All these outcomes will serve a new path for further improving the TL-based method and
broaden its applicability for other types of vegetation canopies. It is worth mentioning at
this point that we only took into account capability in the soybean fields for this paper,
due to the limited radar data available to us. More importantly, the TL-based method can
be used for other vegetation canopies, such as wheat, corn, and carrot. The only required
change is that one needs to build the fine-tuned dataset corresponding to the specific
vegetation and then continue the fine-tuning process. Moreover, such a novel idea also can
be guided to address complex microwave scattering problems.
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