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Abstract: The key to building a 3D point cloud map is to ensure the consistency and
accuracy of point cloud data. However, the hardware limitations of LiDAR lead to a
sparse and uneven distribution of point cloud data in the edge region, which brings many
challenges to 3D map construction, such as low registration accuracy and high construction
errors in the sparse regions. To solve these problems, this paper proposes the I-PAttnGAN
network to generate point clouds with image-assisted approaches, which aims to improve
the density and uniformity of sparse regions and enhance the representation ability of point
cloud data in sparse edge regions for distant objects. I-PAttnGAN uses the normalized flow
model to extract the point cloud attention weights dynamically and then integrates the
point cloud weights into image features to learn the transformation relationship between
the weighted image features and the point cloud distribution, so as to realize the adaptive
generation of the point cloud density and resolution. Extensive experiments are conducted
on ShapeNet and nuScenes datasets. The results show that I-PAttnGAN significantly
improves the performance of generating high-quality, dense point clouds in low-density
regions compared with existing methods: the Chamfer distance value is reduced by about
2 times, the Earth Mover’s distance value is increased by 1.3 times, and the F1 value is
increased by about 1.5 times. In addition, the effectiveness of the newly added modules is
verified by ablation experiments, and the experimental results show that these modules
play a key role in the generation process. Overall, the proposed model shows significant
advantages in terms of accuracy and efficiency, especially in generating complete spatial
point clouds.

Keywords: point cloud generation; multimodal; 3D point cloud map

1. Introduction
Three-dimensional point clouds have important application value in the fields of em-

bodied intelligence, autonomous driving, and virtual reality. With the rapid development
of intelligent technology, 3D point cloud map construction has gradually become a research
hotspot. However, due to the limitation of sensor hardware, the current 3D point cloud
construction technology still has multiple challenges, such as sparse and uneven point
cloud data and poor ability to represent long-distance objects.

As shown in Figure 1, in a ground–air collaboration scenario (rightmost), the ground
and air agents cooperate to construct large-scale 3D maps. However, the acquired point
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cloud data usually have a low overlap area due to the difference in viewpoint between the
ground and aerial equipment. The sparsity and inhomogeneity of point cloud data and
the insufficient ability to represent distant objects bring significant reconstruction efforts.
In addition, when constructing 3D point cloud maps in extreme environments, special
substances such as snow, dust, and haze further aggravate the sparsity and inhomogeneity
of point cloud data due to their low reflection characteristics from LiDAR signals. These
factors weaken the ability of point clouds to represent distant objects and significantly
enhance the complexity of map construction, especially in the case of a water surface where
there is almost no laser signal reflected; the collected point cloud data are highly sparse,
which may have a disastrous impact on the mapping task.

Figure 1. Challenges in constructing 3D point cloud maps [1–3].

The construction of 3D point cloud maps often encounters challenges such as sparsity,
uneven distribution, and limited perceptual capabilities when dealing with long-distance
scenes of point cloud data. These factors can significantly hinder the effectiveness and
accuracy of the mapping process. A straightforward solution is to use the agents to
repeatedly collect data to fill the target area, which undoubtedly increases the overall task
load of the 3D map construction. To this end, a promising alternative is to use point cloud
generation methods based on existing point cloud data to infer and generate point cloud
regions with sparse and uneven data and poor representation ability. This method can
significantly improve the quality and integrity of point cloud data without increasing the
burden of additional collection to effectively alleviate the problems of point cloud data
sparsity and poor perception ability. Existing point cloud generation methods usually opt
for architectures such as generative models (generative adversarial networks (GANs) [4–7]
and variational autoencoders (VAE)) [8–10] to reconstruct 3D point clouds from random
noise or use Gaussian models based on existing features. These methods have shown good
performance in the generation task. However, most methods are limited to generating point
cloud data with fixed shapes, simple scenes, or specific resolutions, which have difficulties
meeting the complex and diverse requirements of real-world scenes.

Other studies attempt to use image data to generate 3D point clouds and provide
necessary prior conditions for point cloud generation by combining multimodal data.
Although the quality of the generation has improved, many challenges still remain. Firstly,
the generated data are sparse and uneven, ignoring the differences in point cloud data
distribution and focusing only on the overall shape, which is challenging to adapt to special
scene requirements. Secondly, there is the problem of data redundancy, and the repeated
generation of high-resolution and feature-dense regions when resources are limited may
lead to waste and increase the task burden. Finally, the point clouds generated by existing
generative models on real scenes often have the problems of shape distortion and excessive
noise, which limits the practical application value of the generated maps.

In this work, we propose a novel approach to point cloud generation and enhance-
ment, driven by a unique attention mechanism based on point cloud density. Our main
contributions can be summarized as follows:
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• Image-aided framework for point cloud generation: This paper proposes an inno-
vative framework that organically combines image and point cloud data to give full
play to the complementary advantages of the two data types. By fusing Generative
Adversarial Network (GAN), Variational Autoencoder (VAE) and Normalized Flows
(NFs), the prior information provided by imagedata was effectively used, and the
texture details and geometric accuracy of the generated point cloud were significantly
improved, making the generated results closer to the real scene.

• Attention generation mechanism for sparse regions: The model proposes an attention
mechanism based on point cloud density, which uses the image input information
to generate point clouds for sparse regions, solves the problems of uneven distribu-
tion and sparse boundary regions in point cloud data, and effectively reduces the
redundancy in high-density areas. Under the premise of maintaining the overall
resolution, the proposed mechanism significantly improves the detail representation
ability of sparse regions and enhances the global structural consistency and local
detail performance.

• Comprehensive experimental validation: Experimental results on synthetic datasets
(ShapeNet) and real-world datasets (nuScenes) fully demonstrate the effectiveness
of the proposed method. Experiments show that the proposed model outperforms
existing methods in key metrics such as Chamfer distance (CD), bulldozer distance
(EMD), and F1 score, and especially exhibits superior point cloud generation ability in
complex real scenes.

The remaining structure of this paper is as follows: Section 2 provides an overview
of the related literature; Section 3 explains our proposed methodology in detail; Section 4
presents the results obtained from experiments conducted on the ShapeNet and nuScenes
datasets; and finally, in Section 5, we summarize and discuss possible future directions.

2. Related Work
The existing point cloud generation works can be roughly divided into four categories:

point cloud generation methods based on deep learning, point cloud generation assisted by
multimodal data, and point cloud generation based on physical or geometric rules. Next,
we elaborate on these methods.

2.1. Point Cloud Generation Method Based on Deep Learning

Point cloud generation methods based on deep learning have made significant
progress in computer vision and 3D reconstruction in recent years. These methods utilize
deep learning models, especially generative adversarial networks (GANs) and variational
autoencoders (VAEs), to generate or supplement sparse point cloud data. The advantage of
deep learning lies in its ability to automatically learn and extract features from large-scale
data, thereby generating higher-quality and more diverse 3D point clouds. In the following
are several standard point cloud generation methods based on deep learning.

2.1.1. Generative Adversarial Networks (GANs)

A generative adversarial network (GAN) is a type of deep learning model that gen-
erates new data through adversarial training between a generator and a discriminator.
In the point cloud generation, the generator aims to create realistic point clouds while the
discriminator determines the authenticity of the data. GANs can generate high-quality and
diverse point cloud data in complex or sparse scenarios, performing exceptionally well,
especially in generating point clouds with intense realism. For instance, PointGAN [4]
generates the 3D coordinates of point clouds and combines the local features of each point
in the point cloud for training. The generator and the discriminator compete against each
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other to produce realistic 3D point clouds. The main objective is for the discriminator to
calculate the distribution of the original samples, while the generator’s job is to generate
new samples from the real data samples. 3D-GAN [7] is a variant of GAN based on voxel
data. It achieves multi-view consistent semantic image editing by inferring camera view-
points and latent codes. The key of this method is to utilize a pre-trained estimator for
better initialization and to use the pixel-level depth calculated from NeRF parameters for
better reconstruction of the given image.

2.1.2. Variational Autoencoder (VAE)

A variational autoencoder (VAE) is a type of generative model that can learn the latent
distribution of data and generate new samples. In the point cloud generation, VAEs map the
input point cloud to the latent space through an encoder and then generate new point cloud
data from the latent space through a decoder. VAEs can effectively capture the structural in-
formation of point cloud data and generate smooth and structurally consistent point clouds.
Pointiivae [8] is a point cloud generation framework based on a variational autoencoder
(VAE) aiming to construct local relationships and enhance generation capabilities. This
framework consists of three main components: encoder, flow model, and decoder. The en-
coder is responsible for aggregating the neighborhood relationships of point clouds and
generating high-quality latent space representations, thereby capturing the local structural
information of point clouds. The flow model adopts a reversible residual coupling stack
(Reversible Residual Coupling Stack), learning complex shape features from latent codes
through reversible operations, further improving the quality of generated point clouds.
The decoder then reversely decodes the shape’s latent codes generated by the flow model,
converting them into realistic 3D point cloud data. PointIVAE can effectively model point
clouds’ local and global structures through this framework, significantly enhancing the
ability to generate point clouds. VG-VAE [11] (Venatus Geometric Variational Autoencoder)
is a model designed to capture hierarchical local and global geometric features in point
clouds without supervision. Recent studies have shown that the underlying geometric
structure in point cloud processing is crucial. Our contribution lies in the Geometric Prox-
imity Correlator (GPC) proposal and latent variational sampling techniques to effectively
extract and analyze the geometric morphology of point clouds. GPC optimizes the extrac-
tion of local geometric features, while global geometric information is captured through
variational sampling. Additionally, we combine a simplified hybrid approach of vector
algebra and 3D geometry to extract the basic geometric features of each point, thereby
providing support for unsupervised learning hypotheses. PCN [12] (Point Completion
Network) processes raw point clouds directly without relying on any predefined structural
assumptions (like symmetry) or annotations (such as semantic labels) related to the under-
lying shape. Utilizing a decoder-based architecture, it achieves detailed completions with
minimal parameters, ensuring efficient and fine-grained output.

2.1.3. Autoregressive Models

An autoregressive model is a generative model where each generated element (such
as each point in a point cloud) is conditionally generated, meaning the generation of each
point depends on the previously generated points. This model generates data sequentially,
typically by recursively predicting the distribution of the next point. Assuming each point
in the point cloud is a random variable and is generated in a particular order, the model
predicts the distribution of the next point based on the already generated points. This
approach enables the gradual refinement of the generated content, ensuring that each point
is consistent with the previous ones. Some variants of PixelCNN [13,14] are based on any
vector, including descriptive labels or tags or latent embeddings created by other networks.



Remote Sens. 2025, 17, 153 5 of 22

Moreover, they can generate diverse and realistic scenes representing different animals,
objects, landscapes, and structures. When conditioned on embeddings generated by a
convolutional network, given a single image of an unseen face, it can generate various new
portraits of the same person with different facial expressions, poses, and lighting conditions.

2.1.4. Normalizing Flows

Normalizing Flows map simple distributions (such as Gaussian distributions) to com-
plex distributions through a series of invertible transformations. Flow models can learn any
complex probability distribution with these transformations, efficiently accomplishing gen-
erative tasks. Specifically, flow models start from a simple initial distribution (such as the
standard normal distribution) and, through a series of invertible transformations, gradually
approximate the target data distribution. Each transformation step is not only differentiable
but also maintains invertibility, which enables the generated data to be mapped back to
the latent space through a reverse transformation, thus achieving efficient sampling and
training processes. Unlike traditional generative models such as variational autoencoders
(VAEs) and generative adversarial networks (GANs), flow models offer an exact probability
density estimation, thus demonstrating higher accuracy in both the generation process and
sample inference. Flow models can generate more diverse, high-quality point cloud data
by stacking multiple transformation layers. In point cloud generation tasks, flow models
can generate dense and diverse point clouds by learning the latent distribution of point
clouds. Especially when dealing with complex geometric structures, flow models can effec-
tively simulate the complexity of spatial distribution and generate point cloud data that
conform to the shapes of real-world objects. RealNVP [15] extends the capabilities of such
models by introducing real-valued non-volume preserving (real NVP) transformations,
which are a set of powerful, invertible, and learnable transformation methods, thereby
forming an unsupervised learning algorithm. This algorithm enables precise log-likelihood
calculation and accurate sample generation, supports exact inference of latent variables,
and provides an interpretable latent space. In addition, there are numerous variants based
on Glow [16–19]. The latent variable model constructed based on the affine coupling layer
of the normalizing flow can generate 3D point clouds of any size to represent the given
latent shape precisely. This model demonstrates extensive application value in multiple
fields, such as generation tasks, autoencoding, and single-view shape reconstruction.

2.2. Multimodal-Assisted Point Cloud Generation

Multimodal-assisted point cloud generation, which fuses data such as images, depth
maps, and LiDAR from various sensors, supplements the missing information in a single
modality, generating complete, accurate, and diverse point cloud data. This approach is
efficient in complex environments and for generating sparse point clouds. Xie et al. [20] pro-
posed a context-aware fusion module that adaptively selected high-quality reconstructed
parts (such as table legs) from different coarse 3D volumes to generate the fused 3D volume.
Finally, the fused volume was optimized using a refinement condition to produce the final
output. Image2Point [21] transfers an image pre-training model to a point cloud model by
replicating or dilating weights. With a minimal effort to fine-tune the transformed image-p
model (FIP) only on the input, output, and normalization layers, it achieves competitive
performance in 3D point cloud classification. In addition, there are some unique methods.
For instance, Ziyi Wang et al. [22] achieved the transfer of pre-trained knowledge from the
2D domain to 3D point cloud tasks through Point-to-Pixel Prompting and Pixel-to-Point
Distillation. Firstly, Point-to-Pixel Prompting converted point clouds into color images that
retained geometric information and processed them using pre-trained 2D image models.
Then, Pixel-to-Point Distillation transferred the knowledge of 2D image models to point
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cloud models in the feature space, enhancing their inference efficiency and capability. This
cross-modal transfer enables point cloud tasks to benefit directly from the pre-trained
knowledge of 2D models.

2.3. Point Cloud Generation Based on Physical or Geometric Rules

Point cloud generation methods based on physical and geometric rules generate re-
alistic and accurate point cloud data by simulating the physical processes or geometric
structure features of the real world. Among them, the generation methods based on geomet-
ric features usually rely on the geometric properties of point cloud data, such as the relative
positions between points, standard directions, curvatures, and other spatial geometric
features. These methods typically do not depend on images or external information but
focus on using existing point cloud data or structural geometric knowledge to generate
new point clouds. For instance, GCN assumes that particular objects in space have known
geometric shapes (such as circles, squares, etc.), and then point clouds conforming to these
shapes can be generated based on these geometric features. By modeling the geometric
features of objects, the generated point clouds will naturally follow these constraints in
space, ensuring they conform to the physical forms in the real world. Additionally, con-
sidering objects’ planar, curved, or volumetric characteristics, geometric transformations
(such as rotation, translation, scaling, etc.) can be used to generate new point cloud data,
satisfying the spatial distribution of these geometric shapes. The normal and curvature of
the point cloud are typically exploited to generate more surface details. During the point
cloud generation process, by adjusting the normal and curvature features of the point cloud,
more similar point clouds can be generated, or more complex structures can be created.
Besides the methods for generating point clouds based on geometric rules, there are also
methods for generating point cloud data based on physical models. These methods usually
rely on the principles of physics (such as mechanics, fluid mechanics, electromagnetism,
etc.) to model and predict the structure and form of objects or scenes and then generate
point cloud data by simulating objects’ physical behavior or physical processes. For exam-
ple, Vinicius Mikuni et al. [23] proposed a fast point cloud diffusion technique based on
diffusion models to address issues such as continuous coordinates, permutation invariance,
and random dimensions in particle physics data generation. It achieved high precision
while enhancing the generation speed by gradual denoising through diffusion models
and introducing progressive distillation techniques to accelerate the generation process.
This method could accurately reproduce the complex characteristics of proton–proton
collision hadron jets, surpassing existing models and demonstrating the advantages of
diffusion models in particle physics data generation. Liu Yang et al. [24] proposed a method
called Physical Information Generative Adversarial Network (PI-GAN), which integrated
physical laws into the generative adversarial network (GAN) architecture and utilized
automatic differentiation and Stochastic Differential Equations (SDEs) to solve forward,
inverse, and mixed stochastic problems. PI-GAN employed a Wasserstein GAN (WGAN-
GP) [25] to enhance generation stability and combined multiple feedforward deep neural
networks (DNNs) and SDE-induced neural networks to generate stochastic processes that
conformed to physical laws. Experiments showed that PI-GAN could efficiently generate
high-dimensional stochastic processes, especially when dealing with SDE problems up to
30 dimensions, demonstrating outstanding accuracy and effectiveness, with computational
costs increasing at a low polynomial rate as sensor data grew.

3. Methods
This study addresses the issues of sparsity and uneven distribution in point cloud

data by leveraging prior knowledge from image data. Unlike most point cloud generation
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methods, which focus solely on global representation, our approach enhances the repre-
sentation of distant objects. It improves the accuracy of sparse region representation while
simultaneously strengthening the shape features of the point cloud during the generation
process. By incorporating a point cloud density-based attention mechanism, the model
selectively emphasizes distant objects and sparse regions, thereby capturing global shapes
and fine details more accurately.

In 3D map construction, the precision and detail of the map are directly impacted
by the quality of the point cloud data. Our method fills in sparse areas and restores
missing information, ensuring that even low-overlap or sparse regions contribute to the
map with high accuracy, improving the overall map quality and detail restoration process.
Experimental results based on publicly available 3D point cloud datasets show that our
approach effectively addresses the challenges of sparse data representation and edge
detail recovery in real-world scenarios, providing substantial performance improvements.
The specific implementation of the method and related experiments are described in the
following subsections.

3.1. Overall Architecture

The overall architecture of the proposed model integrates multiple components de-
signed to address the challenges in point cloud generation, particularly for sparse and
non-uniform regions. The architecture combines elements of generative adversarial net-
works (GANs), variational autoencoders (VAEs), point cloud density-based attention mech-
anisms, and normalizing flow models. This multi-module approach allows for the effective
generation of high-quality point clouds while accounting for the spatial and structural
characteristics of the data. The proposed model consists of two main modules: the
generator module and the discriminator module. These modules work in an GAN, where
the generator aims to produce realistic point clouds, and the discriminator evaluates their
authenticity. Below is an overview of this architecture’s key components and functionalities.
The generator generates realistic point cloud samples from latent space representations. It
incorporates several advanced techniques to improve point cloud generation, particularly
for challenging regions with low-density or non-uniform structures. The discriminator’s
role is to differentiate between real and generated point clouds, providing adversarial
feedback to the generator. The generator and discriminator are trained antagonistically,
where the generator tries to minimize the gap between generated and real point clouds,
while the discriminator aims to correctly distinguish between them. This adversarial
training process improves the quality of the generated point clouds over time. The model
operates as follows:

• The generator produces a point cloud by first encoding latent variables through the
VAE and then refining the result using the density-based attention mechanism and
normalizing flows.

• The discriminator evaluates the authenticity of the generated point cloud by compar-
ing it to real samples and computing the corresponding loss.

• Both the generator and discriminator are updated iteratively. The generator aims to
deceive the discriminator by improving the realism of the generated point clouds,
while the discriminator strives to distinguish between real and fake samples correctly.

The proposed architecture provides a robust framework for generating high-quality
point clouds by integrating advanced techniques such as GANs, VAEs, attention mech-
anisms, and normalizing flows. The key advantage of this architecture is its ability to
generate point clouds that accurately reflect the structural characteristics of real-world data,
especially in regions that are challenging for traditional methods. The overall architecture
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is illustrated in Figure 2, which shows the interactions between the generator, discriminator,
and the key components involved in the training process.

Figure 2. Overall architecture. In the generation module, the attention weight is calculated
according to the point cloud density and weighted fusion is performed with the image data. Then,
the Normalized Flows (NFs) model was used to learn the reversible transformation from complex
distribution to simple Gaussian distribution. Finally, a Variational AutoEncoder (VAE) was used
to model the two distributions as conditional distributions. Method In the discrimination module,
the inference results of the generation module are classified and compared, and the gap between
the generated point cloud data and the real point cloud data is calculated.

3.2. Point Cloud Generator

The generator consists of two domain-specific encoders and a decoder based on
Normalizing Flows (NFs), as shown in Figure 3. In training, the image encoder ψ and point
cloud encoder ϕ work together to extract latent features from the input data. Specifically,
the point cloud encoder ϕ, based on PointNet++ [26], first processes the 3D point cloud
data X. The point cloud encoder computes the mean µX and standard deviation σX of the
point cloud data, which are then used to generate a latent variable zpc. This latent variable
represents the high-dimensional abstract shape of the point cloud data. The goal of the
point cloud encoder ϕ is to learn the distribution of the latent variable qϕ(zpc|X) using a
variational autoencoder (VAE), thereby approximating the true posterior distribution of the
point cloud data p(zpc|X). The latent variable zpc serves as prior knowledge for subsequent
generative tasks, representing the underlying structure of the point cloud.

On the other hand, the image encoder ψ, which is based on ResNet [27], processes
the image data associated with the point cloud. This encoder extracts rich features from
the image, which are then fused with the point cloud features to enhance the generation
process, especially in scenarios where visual data can provide useful priors for point cloud
generation. The combined latent features from both encoders are subsequently passed to
the decoder for point cloud generation.

zpc = µX + σX · ϵ, ϵ ∼ N (0, I)

where µX and σX are the mean and standard deviation computed from the point cloud data
X, and ϵ is noise sampled from the standard Gaussian distribution N (0, I).
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Figure 3. The point cloud generator in our model generates two important components: the Kull-
back–Leibler divergence term DKL, which measures the difference between the approximate and true
posterior distributions, and the normalizing flow model loss LNFs, which helps optimize the latent
space transformations. The different arrows indicate the flow of data through the generator, and the
red box highlights the key components of the generator’s architecture.

Next, we incorporate image features to enhance the point cloud generation process.
Before processing the image, we first divide the point cloud data into a 3D grid (i.e., voxels)
and count the number of points within each voxel. This statistical information allows us to
calculate the density ρi of each voxel, which is defined as the ratio of the number of points
to the volume of the voxel. The formula is given by:

ρi =
nk
Vk

where ρi represents the density of the ith voxel, nk is the number of points in voxel k,
and Vk is the volume of that voxel. This formula quantifies the spatial sparsity or density
of the point cloud and provides valuable information for subsequent feature fusion and
generation processes, especially with respect to the spatial distribution of the point cloud.

After calculating the voxel density information, we use the image encoder ψ to extract
the latent features zimage from the image I. Next, each voxel density ρi is used to weight
the image features zimage, resulting in the weighted image latent features zimage_weighted.
Specifically, the density of the point cloud determines the weighting factor for each image
feature. To ensure that image regions corresponding to sparser point cloud areas receive
more attention during feature fusion, we use the inverse of the point cloud density as the
weighting factor:

attention_weightsi =
1

ρi + ϵ

where ϵ is a small constant to avoid division by zero. The weighted fusion is expressed as:

zimage_weighted =
N

∑
i=1

attention_weightsi · zimagei

Here, zimagei
denotes the ith element of the image latent features, and attention_weightsi

is the weighting factor computed from the point cloud density. The point cloud den-
sity ρi reflects the sparsity or density of each voxel. With this method, sparser point
cloud regions are assigned more prominent weighting factors, ensuring that the image
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features corresponding to these areas significantly influence the generation process. Fi-
nally, the weighted image latent features zimage_weighted are mapped into the latent space
along with the point cloud latent features zpc, generating the image-conditioned latent
distribution pψ(zimage_weighted|I).

To enhance the expressiveness of the generative model, we employ Normalizing
Flows (NFs) to model the complex distribution of latent variables. This is achieved by
using invertible transformations, such as affine coupling layers, to map a simple prior
distribution (e.g., a standard Gaussian distribution N (0, 1)) to the complex point cloud dis-
tribution p(X). The transformation process is performed by maximizing the log-likelihood
of the data, specifically using Maximum Likelihood Estimation (MLE) to optimize the
transformation function of the latent space, thereby improving the generative capability
of the model. During the training of the normalizing flow, both the forward and inverse
transformations are core operations. The inverse transformation (from p(X) to the standard
Gaussian distribution N (0, 1)) is given by:

zpc = f−1
θ (X), f−1

θ : p(X) → N (0, 1)

This inverse transformation maps the complex point cloud distribution p(X) to the
standard normal distribution N (0, 1), such that the latent variable zpc follows a standard
normal distribution. Conversely, the forward transformation (from the standard Gaussian
distribution N (0, 1) to the point cloud distribution p(X) is expressed as:

X = fθ(zpc), fθ : N (0, 1) → p(X)

This forward transformation allows the normalizing flow model to transform the
standard normal distribution N (0, 1) into the target point cloud distribution p(X) .

We model the entire generation process conditionally, i.e., generating point cloud
data X given the latent variables zpc and zimage_weighted. To achieve this, we use a varia-
tional autoencoder (VAE) to infer the input data, calculating the mean and variance of
the latent space and thereby defining the distribution of the latent variables. Specifically,
the conditional likelihood of the point cloud data is given by:

pθ(X|zimage_weighted) = N (X|µX , σX)

where µX and σX are the conditional generation parameters computed based on the latent
variable zimage_weighted. During training, we jointly optimize the VAE and normalizing
flows (NFs) models to maximize the Evidence Lower Bound (ELBO) while simultaneously
incorporating the Maximum likelihood estimation(MLE) to adjust the model parameters.

For the VAE part, our objective is to maximize the ELBO, with the optimization
objective expressed as:

LVAE = Eqϕ(zpc|X)[ln pθ(X|z)]− DKL[qϕ(zpc|X)||pψ(zimage_weighted|I)]

Here, the first term is the reconstruction error Eqϕ(zpc|X)[ln pθ(X|z)], also known as
the generative error, which measures the difference between the generated point cloud
X and the real point cloud. Minimizing this term makes the generated point cloud
progressively closer to the real point cloud. The second term is the KL divergence
DKL[qϕ(zpc|X)||pψ(zimage_weighted|I)], which constrains the variational posterior qϕ(zpc|X)

to be close to the prior distribution pψ(zimage_weighted|I). Minimizing this term encour-
ages the posterior distribution to approximate the true posterior, thereby enhancing the
generative capability of the model.
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During the flow model training, we optimize the normalizing flow transformation
function fθ by maximizing the log-likelihood. The objective function is given by:

LNFs = Eqϕ(zpc|X)[ln pθ(X|z)]

Here, Eqϕ(zpc|X)[ln pθ(X|z)] represents the reconstruction error, which measures the
difference between the generated point cloud X and the real point cloud through the latent
variable zpc. By maximizing this objective function, the normalizing flow learns the invert-
ible transformation from the standard normal distribution (or other prior distributions) to
the target distribution (i.e., the point cloud data distribution). The final joint loss function
for the entire model combines the VAE reconstruction error, the KL divergence, and the
normalizing flow log-likelihood objective:

L = ∑
X
Eqϕ(zpc|X)[ln pθ(X|z)]− DKL[qϕ(zpc|X)||pψ(zimage_weighted|I)]

The first term ∑X Eqϕ(zpc|X)[ln pθ(X|z)] represents the goal of fitting the real point
cloud through the latent variable zpc, while the second term is the KL divergence, which
constrains the variational posterior distribution. Without the generative model, the Maxi-
mum Likelihood Estimation (MLE) directly maximizes the log-likelihood during training
to optimize the generative model.

By maximizing the log-likelihood and minimizing the KL divergence through MLE,
the model can generate point clouds that closely match the real data distribution while
preserving the structural information of the latent space. This process effectively improves
the model’s generative capability.

3.3. Points Cloud Discriminator

After the generator’s inference, we successfully simulated the distribution of point
clouds in the real world and generated highly realistic sample data. To further enhance
the sample quality and train the generator more effectively, we adopted the generative
adversarial network (GAN) framework, which consists of a generator and a discriminator.
In the discriminator, we aimed to distinguish between the fake point clouds generated
by the generator and the real point clouds, as shown in Figure 4. To achieve this, we
chose the Chamfer Distance (CD) as the metric for measuring the similarity between 3D
point clouds. Unlike traditional pixel- or voxel-based metrics, the Chamfer Distance can
accurately measure the differences between point sets, thereby providing a more precise
evaluation of the similarity between generated and real point clouds. The Chamfer Distance
(CD) is defined in Equation (1):

CD(P, Q) =
1
|P| ∑

p∈P
min
q∈Q

∥p − q∥2 +
1
|Q| ∑

q∈Q
min
p∈P

∥p − q∥2 (1)

where P and Q are two point clouds (one generated, one real), |p − q| is the Euclidean
distance between a point p ∈ P and a point q ∈ Q, and |P| and |Q| represent the number
of points in each point cloud. The goal of the Chamfer Distance is to penalize the generator
when the generated point clouds significantly differ from the real data, prompting it to
generate more realistic point clouds over time.
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Figure 4. The point cloud discriminator utilizes the loss function LD, which plays a critical role in
adversarial training by quantifying the discriminator’s success in correctly identifying real point
cloud data as real and generated point cloud data as fake. The minimization of LD helps the model
improve the realism of the generated point clouds. The red box highlights the key part of the
discriminator’s architecture.

To evaluate the effectiveness of the discriminator, we designed a loss function to
promote the adversarial behavior between the generator and the discriminator. In the
GAN framework, the generator’s objective was to minimize the Chamfer Distance, thereby
reducing the difference between the generated and real data. On the other hand, the dis-
criminator aimed to maximize that difference. Through this adversarial process, both the
generator and discriminator improved iteratively. In our experiments, we incorporated a
feature extractor to extract higher-level features from the point clouds, which were then fed
into the discriminator. This ensured that the discriminator considered not only the point
coordinates but also the higher-level semantic features, thereby enhancing its ability to
evaluate the quality of generated data.

To further evaluate the effectiveness of the discriminator, we used a loss function
to promote the adversarial behavior between the generator and the discriminator. In the
GAN framework, the generator aimed to deceive the discriminator by generating the most
realistic fake point clouds, while the discriminator attempted to distinguish between real
and fake data. The generator’s objective was to minimize the Chamfer Distance and reduce
the difference between the generated and real point clouds, while the discriminator tried to
maximize that difference. This adversarial training process encouraged the generator to
improve its generation capabilities continuously.

The optimization process for training the discriminator can be represented as:

LD = −EPreal [log D(Preal)]−EP̂[log(1 − D(P̂))] (2)

where Preal is the real point cloud sampled from the real dataset, P̂ is the fake point cloud
generated by the generator, and D(P) is the discriminator’s probability P of being a real
point cloud. The discriminator’s loss function LD aims to maximize the probability D(Preal)

of real point clouds being classified as real while minimizing the probability D(P̂) of fake
point clouds being classified as real. By minimizing this loss function, the discriminator
improves its ability to distinguish between generated and real point clouds, thus enhancing
the quality of the generator’s generated point clouds.

3.4. Glossary

This section provides a list of symbols used in this paper, along with their correspond-
ing definitions (Table 1).
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Table 1. Symbols and definitions.

Symbol Definition

I Weighted image feature distribution
P Point cloud feature distribution

VAE Variational inference
NFs Normalizing flow model

GAN Generative adversarial network
ϕ Point cloud encoder
ψ Image encoder
ρi Voxel density
i Voxel

point_cloud_densities Point cloud data density
image_data Image data

fused_feature Fused feature
attention_weights Attention weights

nk Number of points in voxel k
Vk Volume of voxel k

N(0, 1) Gaussian distribution
F Affine coupling layer
z Latent vector
θ Forward transformation of affine coupling layer

θ−1 Inverse transformation of affine coupling layer
ELBO Maximizing the negative Evidence Lower Bound (ELBO)

KL Kullback–Leibler divergence (KL divergence)
MLE Maximum likelihood estimation
CD Chamfer distance

qϕ(zpc|X) Approximate posterior distribution of point cloud
pψ(zimage_weighted|I) Prior distribution conditioned on the image data

Preal Real point cloud data
P̂ Generated pseudo-point cloud data

G(z) Output of the generator
DKL Kullback–Leibler divergence loss
LVAE Variational inference loss
LNFs Normalizing flow model loss
LD Discriminator loss
G Generator
D Discriminator
L Generator loss

4. Experiments
The general training objectives and algorithms presented in the previous section lay

the foundation for formulating specific point cloud tasks. Next, we adjusted the training
objectives for the point cloud generation capability and the feasibility of generation in real
scenarios, respectively. Regarding section organization, we first introduce the experimental
environment; the datasets used the evaluation metrics and other relevant information about
the experimental setup. Subsequently, we demonstrate the model’s generation capabilities
on multiple datasets and prove its advantages and effectiveness in different tasks through
quantitative and qualitative analyses. Finally, we discuss the limitations of this method and
propose further optimization directions.

4.1. Experimental Setup

This section outlines the setup and experimental procedures used to evaluate the
performance of our proposed model. Our experiments were designed to assess the model’s
feasibility and effectiveness in synthetic and real-world scenarios. The primary goals of the
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experiments were to validate the model’s point cloud generation capabilities, compare it
against benchmark models, and analyze its performance using various evaluation metrics.

The experiments were conducted on a machine equipped with a single Nvidia 3090
GPU (NVIDIA Corporation, Santa Clara, CA, USA), running the CUDA 12.1 driver and
using the PyTorch deep learning framework. The GPU had 24 GB of video memory, which
was sufficient for processing the large datasets used in the experiments. The model’s
point cloud generation capabilities were first tested on the synthetic ShapeNet dataset,
followed by real-world data from the nuScenes dataset. Both datasets were selected for
their relevance to point cloud generation tasks in different settings: ShapeNet for controlled,
synthetic data and nuScenes for complex, real-world data.

4.1.1. Dataset

We evaluated the model’s performance using two distinct datasets: the ShapeNet-
Core.v1 dataset and the nuScenes dataset. These datasets were selected for their com-
plementary nature: ShapeNet provides a controlled environment, while nuScenes offers
real-world complexity.

ShapeNetCore.v1 is a well-established synthetic dataset containing an extensive col-
lection of 3D object models across 55 categories and corresponding 2D images. This dataset
was chosen because it offered complete and aligned image–point cloud pairs, which were
crucial for training and evaluating the model. It also provided a robust foundation for
comparing our model’s performance against existing point cloud generation methods.

nuScenes is a real-world, multimodal dataset used extensively in autonomous driving
research. It contains data collected from multiple cities and includes synchronized LiDAR,
camera, radar, and IMU sensors. This dataset was particularly valuable for evaluating our
model in real-world scenarios, as it featured complex urban environments with varying
levels of point cloud sparsity. The nuScenes dataset was ideal for assessing the model’s
ability to handle the challenges of outdoor, real-time point cloud generation.

4.1.2. Evaluation Metrics

To assess the performance of our model, we employed several quantitative and qualita-
tive metrics to evaluate the similarity between generated and real point clouds. The metrics
used were the Chamfer Distance (CD), Earth Mover’s Distance (EMD), and the F1 score.
Each of these metrics focused on different aspects of the model’s performance.

• Chamfer Distance (CD): this metric measures the average squared Euclidean distance
between points in two sets of point clouds, measuring spatial similarity between the
generated and real data.

DCD(P, Q) =
1

NP
∑
p∈P

min
q∈Q

∥p − q∥2 +
1

NQ
∑

q∈Q
min
p∈P

∥q − p∥2

• Earth Mover’s Distance (EMD): the EMD quantifies the minimum amount of work
required to transform one distribution of points into another, effectively capturing the
geometric and topological differences between two point clouds.

DEMD(P, Q) = min
f :P→Q

∑
p∈P

∥p − f (p)∥
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• F1 Score: The F1 score is the harmonic mean of precision and recall, and it evaluates
the accuracy of object recognition and segmentation in point cloud data. This metric is
critical when dealing with sparse and complex point cloud data.

DF1(P, Q) = 2 × Precision × Recall
Precision + Recall

where precision and recall are defined as:

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

Here, TP represents true positives, FP denotes false positives, and FN refers to false
negatives.

These metrics helped evaluate the quality and fidelity of the generated point clouds,
ensuring that the model accurately reconstructed object shapes, recovered missing details,
and aligned well with the real data.

4.1.3. Training Process

During the training phase, when trained on ShapeNetCore.v1 the model input con-
tains an image and a corresponding point cloud from the same object category. However,
when training on nuScenes, each training sample includes eight image samples and one
point cloud sample. The image features were extracted using ResNet [28], while the point
cloud features were extracted using PointNet++ [26]. These features were concatenated
and passed into the model as input. The Adam optimizer was used to adjust the learning
rate and minimize the loss function, facilitating effective learning of the point cloud genera-
tion task. When real-world data were used, only 2500 sampling points were selected for
training to reduce computational complexity. We visualized the generated point clouds for
evaluation to provide qualitative insights into the model’s performance.

4.2. Evaluation

This section comprehensively evaluates the model’s effectiveness through a series of
experiments. Given the current limited research on point cloud generation in sparse regions
and real-world scenarios, we selected two representative and widely used techniques in the
field as benchmark methods: the flow-based model PointFlow [18] and diffusion probability
model [29], which is renowned for its strong generative capabilities. These methods have
demonstrated outstanding representativeness and effectiveness in point cloud generation
tasks. Moreover, many existing related works can be regarded as their variants, often
accompanied by higher model complexity. This complexity poses higher demands on
computing resources when generating point clouds in extreme environments or under
resource-constrained conditions. Therefore, we chose representative models with lower
computing resource requirements to verify the feasibility and advantages of our method.

Firstly, we evaluated the performance of our model on the ShapeNet synthetic dataset
and compared it with existing point cloud generation methods, specifically including the
flow-based method PointFlow [18] and the GAN-based diffusion model Diffusion [29]. This
comparison aimed to assess our model’s quality and efficiency in generating realistic and
high-quality point clouds. The experimental results showed that our model outperformed
the benchmark methods across multiple key evaluation metrics, such as the Chamfer
Distance (CD), Earth Mover’s Distance (EMD), and F1 score. These metrics were used
to evaluate the spatial alignment, geometric accuracy, and recognition capability of the
generated point clouds, further confirming the superiority of our approach.
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Additionally, we performed classification on the generated point clouds using Point-
Net++ [26] to further assess the feasibility of our model in real-world scenarios. Af-
ter generating the point clouds, we applied PointNet++ to classify them and compared the
classification performance with that of the original point cloud data. The results demon-
strated that the classification accuracy improved by 3% after integrating the generated point
clouds. This indicated that our model not only generated high-quality point clouds but
also enhanced the utility of the generated data in downstream tasks such as classification.

Next, we evaluated our model’s feasibility in generating point clouds for real-world
scenarios by conducting experiments on the nuScenes dataset, which contains real-world
data from outdoor, unknown environments. Unlike the ShapeNet dataset, which is syn-
thetic, the nuScenes dataset includes data from autonomous driving, providing a more
complex and diverse set of scenarios for point cloud generation. The input format for the
nuScenes dataset consisted of eight images and a single point cloud file, which differed
from the single image and point cloud pairs used in the ShapeNet dataset. This allowed
us to assess our model’s ability to handle more complex real-world data, and the results
further demonstrated the effectiveness of our model in generating high-quality point clouds
in real-world environments.

Furthermore, we conducted an ablation study on the nuScenes dataset to explore
the impact of the point cloud density-based attention mechanism in our model. That
mechanism helped to enhance the model’s performance in generating sparse point cloud
data in edge regions. By visualizing the generated point clouds and comparing them with
baseline models such as PointFlow [18] and Diffusion [29], we observed that our model was
particularly effective at improving the representation of distant objects and edge features.
The ablation experiments’ results further validated the attention mechanism’s importance
in generating more accurate and detailed point cloud data, particularly in sparse regions.

4.2.1. Point Cloud Generator

The experimental comparison of our model’s performance with baseline methods, such
as PointFlow and Diffusion, demonstrated the effectiveness of our approach in point cloud
generation. Specifically, the results showed that our model significantly outperformed
the baseline methods regarding the Earth Mover’s Distance (EMD), indicating better
overall alignment and accuracy of the generated point clouds. Furthermore, our model
also achieved superior performance in the Chamfer Distance (CD) and F1 score metrics,
which assessed the spatial proximity and object recognition capability of the generated
point clouds.

As shown in Table 2, these experiments demonstrated that our model had outstand-
ing capabilities in the point cloud generation task and significantly outperformed the
benchmark methods (such as PointFlow and Diffusion Probabilistic Model).

Table 2. Evaluation on the ShapeNet simulation dataset.

ShapeNet Dataset CD × 103 EMD × 102 F1

PointFlow 10.22 6.58 -
Diffusion Probabilistic Model 3.25 10.21 34.06

Ours 2.32 8.81 79.81

In this experiment, we evaluated the performance of our model by performing a
point cloud classification task on the generated point cloud data. Specifically, we fused
the generated point clouds with the original point cloud data and then conducted the
classification task to assess whether this fusion could improve classification performance.
The results showed that, compared to the baseline classification performance using only
the original point cloud data, the classification accuracy increased by 3% after integrating
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the generated point clouds. This improvement indicated that the generated point cloud
data enhanced classification performance, particularly when the original point cloud
data were sparse or incomplete. As shown in Table 3, the quantitative results clearly
demonstrated the positive impact of the generated point clouds on classification accuracy,
further validating the effectiveness of our model in improving point cloud classification in
practical applications.

Table 3. Classification accuracy of the generated results.

Classification Accuracy avg_accuracy mIOU avg_mIOU

Pointnet++ 0.94447 0.87544 0.82647 0.85540
Ours 0.96194 0.90984 0.86556 0.88709

This result highlights the advantages of our generative model in terms of data com-
pleteness and feature representation and its ability to supplement sparse regions in the
point clouds, thereby enhancing the classification model’s understanding and recognition
of the data. While the 3% improvement may seem modest, it is significant in scenarios
involving complex environments or incomplete data, such as autonomous driving, air–
ground collaboration, and extreme conditions. The generated point clouds effectively fill
in gaps in the original data, improving system stability and robustness. Additionally, this
experiment demonstrates that our model improves point cloud classification accuracy
and supports subsequent tasks, such as 3D map construction. In practical applications,
the generated point clouds contribute to data robustness and completeness, providing
more reliable inputs for high-precision task execution. Overall, the results validate the
superiority of our model in generating and enhancing 3D point cloud data, offering strong
evidence for its broad applicability in real-world scenarios.

4.2.2. Real-World Point Cloud Generation in Outdoor Unknown Environments

In this experiment, we evaluated the feasibility of our model using the nuScenes real-
world dataset to test its ability to generate point clouds in unknown outdoor environments.
We compared our method with existing generation methods, particularly PointFlow [18]
and Diffusion Probabilistic models [29], both of which are designed for real-scene point
cloud generation. Additionally, we provide visual comparisons that clearly demonstrate
the performance of our method in these challenging scenarios, as shown in Figure 5.
Regarding the generation quality, our method produced more apparent shape features
with more uniform point cloud distribution and higher resolution. It maintained higher
geometric accuracy, especially when capturing complex shapes and structures in intricate
outdoor environments. Moreover, our method exhibited strong robustness across various
environmental conditions, consistently generating stable point clouds. Importantly, our
model excelled at handling sparse areas, effectively filling in regions that other methods
may overlook. These advantages enables our model to generate more reliable point clouds
for practical applications, particularly in real-world scenarios.

In contrast, PointFlow demonstrated limited effectiveness in generating real-world
scenes, with results indistinguishable from noise. Although PointFlow achieved relatively
good results on synthetic datasets, it failed to capture clear shape features in complex real
environments, leading to generated results that lacked clarity and structure. Consequently,
PointFlow’s performance in generating real-world point clouds was inferior to our model,
especially in detail recovery and handling sparse areas.
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Figure 5. Visual results of our method and the benchmark method on nuScenes when comparing the
generation effects of 3D point cloud data. The red box highlights the key area of interest, showing
the visualization results of our model. This part illustrates the model’s performance, specifically
emphasizing the key features and improvements of the generated 3D point cloud data compared to
the benchmark method.

On the other hand, while the Diffusion Probabilistic Model could initially present
some shape features when generating point clouds, they still produced a significant amount
of noise. This indicates that under the same conditions, our model converged faster and
generated point clouds more efficiently. Despite the Diffusion Probabilistic Model’ ability to
capture basic shape contours in some cases, the noise problem degraded the quality of the
generated point clouds and limited their performance in complex scenarios. In comparison,
our method significantly outperformed the Diffusion Probabilistic Model in generation
efficiency, producing high-quality point clouds more quickly while effectively reducing
noise and improving geometric accuracy and structural clarity. Through comparisons
with PointFlow and Diffusion Probabilistic Model, our model demonstrated significant
advantages in point cloud generation quality, efficiency, and robustness, particularly in
complex outdoor unknown environments.

4.2.3. Ablation Study

In this ablation experiment, we investigated the impact of the point cloud density-
based attention module by comparing the model’s performance with and without the
attention mechanism. We conducted experiments on the nuScenes dataset, where the
model was fed with trained point cloud and image data. We then evaluated the model with
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and without the attention module. The results demonstrated a noticeable degradation in
point cloud quality and a significant change in the generation process when the attention
module was removed.

The experimental results showed that the attention module was crucial for generating
point cloud data in sparse regions, particularly at the edges. The model struggled to
accurately represent distant objects without the attention mechanism, resulting in point
clouds with blurred geometric details. On the other hand, with the attention module
enabled, the model could better represent distant objects, and the generated point clouds
exhibited notable improvements in geometric fidelity and shape features, especially in
complex scenes. As shown in Figure 6, the generated point clouds were more precise and
more accurate in terms of both geometric details and shape representation.

Figure 6. Results of ablation experiments conducted on the nuScenes dataset. To better demonstrate
the role of the attention module in generating point cloud shape features, we visualized the infer-
ence results of these ablation experiments and compared them with the baseline model. Among
them, “Ours + attention” represents the complete model structure, and “Ours” represents the model
without the attention structure. The circled regions highlight areas where the point cloud’s feature
representation ability significantly declines after removing the attention mechanism.

Furthermore, we compared the results of the ablation model with baseline models,
such as PointFlow [18] and Diffusion Probabilistic Models [29]. The results demonstrated
that the model with the attention mechanism outperformed the baseline models, partic-
ularly in capturing distant objects and enhancing geometric features. This validated the
effectiveness of the attention module in improving model performance, particularly in
generating high-quality point clouds in complex real-world scenarios.
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These experiments underscore the critical role of the point cloud density-based atten-
tion mechanism in generating point clouds for sparse regions, enhancing geometric features,
and improving model robustness. The findings provide strong evidence supporting the
effectiveness of our method in practical applications.

5. Discussion
I-PAttnGAN performed exceptionally well in point cloud generation, especially in

sparse areas, capable of generating highly accurate and complete 3D point clouds suit-
able for practical scenarios. The combination of image-assisted input and the attention
mechanism significantly enhanced the model’s generation ability, making it excel in recon-
structing missing regions. Notably, in the case of point clouds with sparse edges, this model
excelled in preserving shape features, and the joint use of image data and the attention
mechanism enabled the model to intelligently focus on key areas when dealing with sparse
data, thereby improving the overall quality of the generated point clouds.

Compared with existing point cloud generation methods (such as those based on
flow and diffusion models), I-PAttnGAN demonstrated significant advantages in both
generation quality and training efficiency. Its ability to utilize the attention mechanism
enabled it to prioritize the processing of important regions in the point cloud, thereby
achieving a more accurate and efficient reconstruction process.

However, the method adopted by I-PAttnGAN, namely, the point cloud attention
module based on key regions of the image, is highly dependent on the quality of the input
image. The model’s performance may significantly decline when the input image is of poor
quality, occluded, or contains occlusions. In such cases, the generated point clouds may
have incomplete or inaccurate structures, which could adversely affect downstream tasks
such as map construction. This issue is particularly prominent in real-world applications,
as point cloud data often come from various sources, and the related images may not
always meet the quality standards required for achieving optimal performance.

Furthermore, when confronted with noisy data in complex and unknown outdoor
scenes, the model’s adaptability will decline. A large amount of noise in point cloud
data further increases the difficulty, especially when the environmental background and
scene features change significantly. Therefore, when applied to diverse real-world datasets,
the model’s performance may drop, limiting its ability to handle the inherent variations in
different scene types.

To address these challenges, future research efforts can focus on enhancing the model’s
robustness to low-quality or noisy input data, for instance, by integrating multi-perspective
data, depth maps, or advanced denoising techniques. Additionally, exploring methods to
improve the model’s adaptability to different scenarios, such as through domain adaptation
strategies or using more general training data, may help extend the applicability of I-
PAttnGAN to a broader range of practical applications.

6. Conclusions
The I-PAttnGAN method proposed in this study effectively enhanced the represen-

tation ability of long-distance point clouds in real scenarios by introducing image feature
guidance, compensating for their sparsity. This helped solve related problems in extreme
environments, such as point cloud missing and demonstrated outstanding performance
in challenging tasks like lake surface reconstruction. Additionally, this method lays a
solid foundation for special functions that rely on low-overlap areas for registration in
air–ground collaborative scenarios.

Future work will focus on low-overlap point cloud registration, enhancing registration
accuracy and robustness, and supporting a broader range of practical applications.
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