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Abstract: Leaf water potential (ψleaf) is a key indicator of plant water status, but its mea-
surement is labor-intensive and limited in spatial coverage. While remote sensing has
emerged as a useful tool for estimating vegetation water status, ψleaf remains unexplored,
particularly in mixed forests. Here, we use spectral indices derived from unmanned aerial
vehicle-based hyperspectral imaging and machine learning algorithms to assess ψleaf in
a mixed, multi-species Mediterranean forest comprised of five key woody species: Pinus
halepensis, Quercus calliprinos, Cupressus sempervirens, Ceratonia siliqua, and Pistacia lentiscus.
Hyperspectral images (400–1000 nm) were acquired monthly over one year, concurrent
with ψleaf measurements in each species. Twelve spectral indices and thousands of nor-
malized difference spectral index (NDSI) combinations were evaluated. Three machine
learning algorithms—random forest (RF), extreme gradient boosting (XGBoost), and sup-
port vector machine (SVM)—were used to model ψleaf. We compared the machine learning
model results with linear models based on spectral indices and the NDSI. SVM, using
species information as a feature, performed the best with a relatively good ψleaf assessment
(R2 = 0.53; RMSE = 0.67 MPa; rRMSE = 28%), especially considering the small seasonal
variance in ψleaf (±σ = 0.8 MPa). Predictions were best for Cupressus sempervirens (R2 = 0.80)
and Pistacia lentiscus (R2 = 0.49), which had the largest ψleaf variances (±σ > 1 MPa). Ag-
gregating data at the plot scale in a ‘general’ model markedly improved the ψleaf model
(R2 = 0.79, RMSE = 0.31 MPa; rRMSE = 13%), providing a promising tool for monitoring
mixed forest ψleaf. The fact that a non-species-specific, ‘general’ model could predict ψleaf

implies that such a model can also be used with coarser resolution satellite data. Our study
demonstrates the potential of combining hyperspectral imagery with machine learning for
non-invasive ψleaf estimation in mixed forests while highlighting challenges in capturing
interspecies variability.
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1. Introduction
Forests increasingly face harsh conditions, leading to worldwide tree mortality in

the last few decades [1]. This trend is expected to aggravate under projected climate
change. Rising temperatures and altered precipitation patterns will induce severe drought
conditions in many regions [2]. Despite their adaptation capacity, many forest species
might not cope with such conditions, leading to a decline in growth rates and increased
mortality [3,4]. Monitoring forests’ water status is vital to facing such expanded adverse
effects. This requires developing accurate, efficient, and large-scale assessment methods [5].

One of the most valuable metrics for characterizing drought stress and water status in
woody species is the leaf water potential (ψleaf). ψleaf represents the degree of stability of
the water in the xylem transport conduits of the trees by becoming more negative as the
drought stress increases [6]. ψleaf is a key indicator of plant water status and can provide
valuable insights into the severity of drought stress experienced by the tree [7]. However,
measuring ψleaf in the field is a time-consuming and labor-intensive process, typically
involving the use of pressure chambers on individual leaves [8]. This approach limits the
spatial coverage and temporal resolution of ψleaf measurements, making it challenging to
capture the heterogeneity of drought stress within and across forest stands.

Remote sensing offers a promising solution to this challenge, enabling the rapid
and non-invasive assessment of vegetation status across large areas [9,10]. Hyperspectral
reflectance information obtained from satellites or drone-based sensors has been widely
used to estimate various plant traits, including the leaf area index, chlorophyll content,
water content, transpiration rate, and water use efficiency [11–19]. The physical basis for
using spectral information to estimate plant traits is based on the interaction of light with
plants’ biophysical and biochemical characteristics. Plant traits corresponding to water
content or stress can directly influence absorption in the NIR region, particularly around
the 970 nm and 1200 nm water absorption bands, as well as in the SWIR, particularly 1450,
1900, and 1950 nm [20]. Other indirect responses of water-related stress that may lead to
variations in pigment concentrations within the plant’s intercellular organelles primarily
affect reflectance in the visible range [21].

Thus, several studies have explored the potential for using spectral vegetation indices,
a mathematical combination of two or more bands derived from remote sensing data, to
assess ψleaf across vegetation types. Raj et al. [22] detailed several water absorption bands
in the visible and NIR regions useful for monitoring water-related variables like ψleaf. They
identified seven bands in the 400–1000 nm, which are sensitive to vibrational overtone
frequencies of O-H bonds of water molecules, and created four normalized indices that
showed a high correlation to the leaf water content of Maize crops. Peñuelas et al. [23]
developed the water band index based on near-infrared (NIR) reflectance (R970/R900) to
estimate ψleaf under salinity stress conditions. Stimson et al. [24] demonstrated that drought
stress in two tree species (Pinus edulis and Juniperus monosperma) could be quantified using
indices incorporating 980 nm and 1200 nm wavelength bands, significantly correlated
with the measured ψleaf. Italiano et al. [25] showed corresponding temporal patterns that
had a positive linear relationship with earlywood hydraulic diameter (linked to water
conductivity) in drought-prone Mediterranean forests using common vegetation indices
such as the NDVI, EVI, and NDWI.

Additionally, Othman et al. [26], analyzing Landsat satellite imagery, found that the
shortwave-infrared (SWIR) band ratio effectively predicted ψleaf in pecan orchards. More
recently, using three SWIR bands, Wang et al. [27] proposed a modified vegetation index
((R1740–R2370)/(R1740–R1750)), which showed a strong correlation with ψleaf across different
leaf structures. Such a myriad of studies, among others, suggest that remotely sensed
spectral data could be successfully used for monitoring ψleaf in complex systems such as
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mixed forests. Yet, such complex systems may require models that account for nonlinear
relationships between the remotely sensed data and ψleaf.

Machine learning techniques have shown great promise for modeling plant water
content and status using remote sensing data. Machine learning algorithms can effectively
capture the complex and nonlinear relationships between spectral reflectance patterns and
plant physiological traits (e.g., Li et al. [28]). Several studies have successfully applied
machine learning algorithms such as random forests (RFs), support vector machine (SVM),
and artificial neural networks (ANNs) to predict leaf water content, relative water content,
and equivalent water thickness from hyperspectral and multispectral imagery [29–31].

Despite the progress made in applying remote sensing to assess ψleaf, there remains a
gap in our understanding of how these techniques perform in diverse, mixed-species forests
at high spatial resolutions (<1 m). To the best of our knowledge, no study has combined
high-spatial-resolution remote sensing data acquired from sensors onboard unmanned
aerial vehicles (UAVs) with machine learning algorithms to predict ψleaf in mixed forest
stands. Many Mediterranean forests, for example, are characterized by a complex mosaic
of woody species with varying drought tolerances and water use strategies [32,33]. To
accurately assess the water status of these forests, it is necessary to develop remote sensing
methods that can account for such heterogeneity and species-specific ψleaf at fine spatial
scales [34]. Then, generated ψleaf maps could be used to point at specific stands or stand
areas under stress conditions, allowing for precursory intervention. This is particularly
important in places like Israel, where about half of the forested areas are planted and
managed by the Jewish National Fund (JNF [35]). Such monitoring can help detect stands
under stress and treat the stands with irrigation or thinning the stand density under
pressure [36,37].

Here, we address the above research gap by examining the use of high-spatial-
resolution UAV-derived hyperspectral imagery taken over a year in open-field experimental
plots to assess ψleaf in five key Mediterranean woody species. We developed machine learn-
ing models based on the hyperspectral data and field ψleaf measurements and compared
the models with commonly used spectral indices to assess ψleaf. We evaluated the ability of
spectral reflectance data and machine learning models to capture plot and species-specific
ψleaf changes. We hypothesize that (i) ψleaf would be easier to model for species with
a broader range of ψleaf values than species displaying a narrow range of values. We
also hypothesize that (ii) machine learning algorithms should significantly enhance the
ability to predict ψleaf compared to simple linear regression models using spectral indices,
particularly those based on nonlinear relationships.

2. Data and Methods
2.1. Study Site and Experimental Design

The experiment was conducted in Yishi Forest, a semi-arid mixed Mediterranean
forest in the Judean foothills, Israel [34,38]. The forest is located 4 km southwest of Beit
Shemesh, Israel (31◦43′N 34◦57′E, Figure 1). It covers an area of ~650 ha with an average
elevation of 300 m a.s.l. and a mean annual precipitation of 460 mm yr−1 (annual mean
of the last 20 years). Precipitation occurs mainly from November to May. The mean
annual temperature is 20.4 ± 6.8 ◦C, with mean winter (January–March) and summer
(June–August) temperatures of 16.5 ± 1.9 ◦C and 24.1 ± 7.9 ◦C, respectively [39]. The
predominant soil type in Yishi is terra rossa, which consists of A and C soil horizons, with
C horizon soil penetrating the cracks between the weathered limestone bedrock. Soil depth
(A horizon) is ∼21 cm, ranging from 16 to 25 cm [33].
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Figure 1. (a) The study area (marked by a red star) and the five key Mediterranean woody species
comprising Yishi Forest, which includes (b) Pine (Pinus halepensis), (c) Oak (Quercus calliprinos),
(d) Cypress (Cupressus sempervirens), (e) Carob (Ceratonia siliqua), and (f) Pistacia (Pistacia lentiscus).
(g) An RGB image derived from the hyperspectral camera onboard an M600 Pro UAV showing the
six plots in the studied area.

The vegetation in Yishi is dominated by the planted gymnosperm woody species
Pinus halepensis (Figure 1b) and Cupressus sempervirens (Figure 1d), as well as the local
Mediterranean angiosperm woody species Quercus calliprinos (Figure 1c), Ceratonia siliqua
(Figure 1e), and Pistacia lentiscus (Figure 1f). In what follows, we will refer to these key
woody species by their common English names: Pine, Cypress, Oak, Carob, and Pistacia.
These woody species were formerly studied in situ regarding their water relations and
carbon management ([33,38], respectively). The forest understory supports a variety of
annual plants that thrive from winter to spring.

Six plots, each ~0.05 ha in area, were established within the forest, comprising the
five co-occurring woody species (Figure 1g). The plots were divided into two treatments,
three plots subjected to rainfall reduction to simulate drought conditions and three control
plots under normal rainfall conditions. The rainfall reduction treatment involved installing
an open-pipe harvesting system to divert approximately 50% of incident precipitation from
the treated plots. Nevertheless, considering the drought-adapted woody species studied
here, treatment effects were not expected within the first few years, as reported for a nearby
site [40]. Therefore, treatments were not considered in the analysis of this study, but rather,
data from both treatments were used together to broaden the range in ψleaf to enable more
robust modeling.
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2.2. Field Measurements

ψleaf was measured using the pressure chamber technique [41]. This method involves
enclosing a leaf petiole in a sealed chamber and gradually increasing the pressure inside
the chamber until the sap is observed emerging from the cut surface of the petiole. The
pressure at which this occurs is equal to the negative of the leaf water potential, providing a
direct measurement of the water status within the leaf [42]. Measurements were conducted
monthly between October 2021 and March 2023 from 11:00 AM to 1:00 PM to capture
maximum daily ψleaf values across the season. ψleaf was measured once per date in all the
30 trees used in this study (five species in six plots). In a preliminary trial, we measured five
leaves per individual tree on a subset of the studied trees. Variations in ψleaf among leaves
sampled from the same tree were in the magnitude of 2–7%. A major consideration of the
field measurements was to complete all measurements within the shortest time possible
to avoid significant diurnal variations among the samples. This is paramount when
comparing individuals and species in a single day. Thus, to complete the measurements of
all 30 trees within 60–90 min (representing similar temperature, humidity, and radiation
conditions), having a single pressure chamber instrument and two workers, and following
the small ψleaf variability observed in our trial, we opted to sample a single leaf per tree
(per date). Excised leaves were immediately placed in airtight plastic bags and kept cool
to minimize measurement errors from time lags. A total of 30 leaves were sampled per
date and measured using a PMS1515 pressure chamber (PMS, Albany, OR, USA). The total
number of sampled leaves during the study period was 480 (16 months, 30 leaves per date).

2.3. UAV Platform and Spectral Data Acquisition

Hyperspectral imagery was acquired monthly concurrent with the ψleaf measurements
starting from March 2022 to February 2023, using a Nano-Hyperspec camera (Headwall
Photonics, Boston, MA, USA) mounted on a DJI Matrice 600 Pro (M600) Hexacopter. The
NanoSpec sensor is a push-broom hyperspectral nano-sensor with 274 spectral bands and
640 spatial pixels within the visible-near-infrared range from 400 nm to 1000 nm. The M600
is controlled via a handheld remote control transmitter and a ground control station with a
navigation data link, which sends waypoint navigation information to the aircraft from a
laptop computer. The M600 carries a Global Navigation Satellite System (GNSS) and an
Inertial Measurement Unit (IMU) (SBG Systems North America, Inc., Chicago, IL, USA).

The images were collected between 11:00 AM and 1:00 PM, concurrent with the ψleaf

measurements, at the height of 60 m above ground level, providing a spatial resolution of
2–3 cm per pixel. Three flights were required to cover the study area. For radiometric cali-
bration, a 3 m by 3 m in situ gray-white reflectance calibration with three strips and distinct
reflectance factors (56%, 30%, and 11% reflectance) was set up within the flight scene in
each campaign (date). For geometric corrections, a ground-based GNSS receiver—Trimble
SPS585 precision RTK (Trimble Inc., Westminster, CO, USA)—was used to collect static
geolocation data to calculate the post-processing kinematic (PPK) flight trajectory using a
smoothed best-estimated trajectory (SBET) file generated from the POSpac UAV™ Version
8.9 software tool (Applanix, Richmond Hill, ON, Canada).

2.4. Spectral Data Processing

Radiometric calibration, geometric corrections, and ortho-mosaicing were applied
to the raw hyperspectral image cubes via the SpectralView software version 3.1.4 (Head-
wall Photonics, Fitchburg, MA, USA). Shades and non-vegetated areas within the image
(Figure 2a) were masked using the Quantum Geographic Information System (QGIS ver-
sion 3.32.3, Free Software Foundation, Boston, MA, USA). First, the normalized difference
vegetation index (NDVI) was calculated, and pixels with NDVI < 0.3 were excluded to
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eliminate soil and understory vegetation (Figure 2b). Then, we used near-infrared (NIR)
reflectance values below a threshold of 0.07–0.2 to eliminate shaded parts in the canopy
since these affect the spectral signal despite changes in ψleaf. We found these thresholds
suitable for that purpose following trial and error after visually inspecting the clipped RGB
(Figure 2c).
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The reflectance values of retained pixels were averaged for each tree canopy, which
was manually delineated, to obtain a single mean reflectance spectrum representing the
entire canopy. The Savitzky–Golay filter [43], with a window size of 20 bands and second-
order polynomials, was applied to eliminate potential artifacts and anomalies in the spectral
signatures caused by measurement errors (Figure 3).
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Figure 3. Spectral signatures in the 400–1000 nm range (a) before and (b) after applying the Savitzky–
Golay filter smoothing. Each line in the graph corresponds to the averaged signature over all pixels
in the canopy per each species and date.
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After the spectral data processing, the final dataset used within the modeling pipeline
resulted in a sample size of N = 246. The data were randomly split into a 70% training set
and a 30% test set for model training and evaluation purposes. This ratio is considered
useable and generic within an ML pipeline, especially if one wants a larger data sample to
evaluate the model and ensure a more robust transferability to other locations and cases.

3. Predictive Models
We followed two approaches to predict ψleaves from the hyperspectral data. First, we

used a simple regression approach, whereas the predictor is a spectral index, whether
derived in previous studies or generated in this study for all species together as well as for
individual species (see Section 3.1). For the same datasets, we also tested the best NDSI,
adding one index at a time within a multivariable linear regression (MLR) model. Second,
we used the best NDSIs generated from the hyperspectral data in three machine learning
algorithms (Section 3.2).

3.1. Spectral Indices

Twelve known spectral indices within the 400–1000 nm range were tested by conduct-
ing a simple linear regression with ψleaf. The selected indices were based on their ability to
directly and indirectly predict water-related plant traits [44–47]. The normalized difference
vegetation index (NDVI), the photochemical reflectance index (PRI), and the enhanced
vegetation index version two (EVI2) were tested for their ample use in monitoring vegeta-
tion status and dynamics, which showed to be indirectly related to water stress through
biophysical changes [44,48,49]. COSBNDI, FOSBNDI, SAPSBNDI, and WASCOSBNDI,
which were developed based on seven identified bands sensitive to the vibrational overtone
frequencies of O-H bonds of water molecules, were tested due to their strong link to leaf
water content [22]. We also used the normalized difference water stress index (NDWSI)
and the normalized difference water index (NDWI) because they have been shown to be
sensitive to plant water status via canopy structural changes [44,50]. There are several
versions of the NDWI [19,51,52]. Here, we used the one based on the 540 and 803 nm
bands (Table 1), which incorporates the responses from the visible region of the spectrum
(the green band) with canopy structural changes within the NIR region to water-related
responses since our hyperspectral data were restricted to the VIS–NIR wavelength range
(400–1000 nm). Finally, the water index (WI), developed specifically to assess ψleaf, was
tested. The WI gives information about canopy water status with a change in the 970 nm
relative to the 900 nm as the water status changes in the leaves [23]. Table 1 summarizes
the 12 spectral indices, providing their mathematical formulation.

Table 1. Previously published spectral indices used in this study to assess ψleaf.

Index Name Formula Reference

NDVI Normalized difference vegetation index ρNIR−ρR
ρNIR+ρR

[53]

PRI Photochemical reflectance index ρ531−ρ570
ρ531+ρ570

[54]
940/960 Reflectance ratio of 940 and 960 nm ρ940

ρ960
[55]

940/960/NDVI Reflectance ratio of 940/960 nm and NDVI ρ940 / ρ960
NDVI [55]

EVI2 Enhanced vegetation index 2nd version 2.5
(

ρNIR−ρR
ρNIR+(6 ρR)−(7.5 ρB)+1

)
[56]



Remote Sens. 2025, 17, 106 8 of 22

Table 1. Cont.

Index Name Formula Reference

COSBNDI Combined overtone of stretching bands—normalized
difference index

ρ660−ρ420
ρ660+ρ420

[22]

FOSBNDI Forth overtone of stretching bands—normalized
difference index

ρ529−ρ698
ρ529+ρ698

[22]

SAPSBNDI Small absorption peak of stretching bands—normalized
difference index

ρ750−ρ970
ρ750+ρ970

[22]

WASCOSBNDI Water absorption shoulder due to the combined overtone
of stretching bands—normalized difference index

ρ800−ρ847
ρ800+ρ847

[22]

NDWSI Normalized different water stress index ρ850−ρ970
ρ850+ρ970

[50]

NDWI Normalized different water index ρG−ρNIR
ρG+ρNIR

[44]
WI Water index ρ970

ρ900
[45]

Note: R is red (670 nm), G is green (540 nm), B is blue (480 nm), and NIR is near-infrared (803 nm).

We further leveraged the multiband option of our hyperspectral data (274 bands) and
calculated thousands of combinations of a normalized difference index to identify new and
possible band combinations suitable for ψleaf other than the already established 12 spectral
indices used in this study. The normalized difference spectral index (NDSI) approach uses
a two-band combination of reflectance [57]:

NDSI (unitless) =
b1 − b2
b1 + b2

(1)

where b1 and b2 are the reflectance values of any two wavelength bands. Such a normal-
ization mitigates the influence of varying illumination conditions, isolating the relative
difference between the selected bands [57].

Since each hyperspectral image contains 274 bands from 400 to 1000 nm, a total of
37,401 NDSI options could be derived from combining each pair of bands (i.e., 274 × 273 op-
tions divided by 2 to avoid duplications with inverted order) per image per individual.
Each NDSI value was used in a simple linear regression against the ψleaf. After this, we
selected the top-performing indices yielding the highest coefficient of determination (R2).
First, we excluded indices that showed a high correlation for any two bands close to each
other within a 10 nm interval. Then, we chose the index with the best correlation and added
four more local maxima indices for all species datasets (Supplementary Figure S1). This
process was conducted at the individual tree level, with spectral data analyzed separately
for each tree.

A multivariable linear regression (MLR) model was tested with the top five indices,
starting with simple regression and adding one index at a time to verify the effect of
increasing the number of unique bands on the linear regression model’s accuracy.

Finally, we averaged the spectral and ψleaf values for each plot (comprising five species)
for each sampling date. We calculated a new NDSI using these plot-level averages and
performed linear regressions between the spectral and the ψleaf data. This averaging aimed
to develop models at the plot scale (‘general’ model). However, due to the reduction in
sample size (fivefold fewer samples), machine learning models could not be applied to
this dataset.
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3.2. Machine Learning Algorithms

Only the five selected NDSIs exhibiting the highest correlation with ψleaf were used in
three machine learning algorithms: random forest (RF), extreme gradient boosting (XGB),
and support vector machine (SVM). We did not include the known spectral indices to avoid
model overfitting because some of the known indices had overlapping bands and similar
formulations as the NDSIs.

RF is an ensemble learning method that constructs multiple decision trees and aggre-
gates their predictions, accounting for variations and reducing overfitting [58]. XGB is a
scalable tree-boosting system that builds an ensemble of weak prediction models sequen-
tially, with each successive model aiming to correct the errors of its predecessor [59]. SVM
is a supervised learning algorithm that constructs hyperplanes in high-dimensional space
to maximize the margin between classes. It can handle linear and nonlinear relationships
through kernel functions, unlike RF and XGB, which are ensemble methods, thus requir-
ing a larger sample size than SVM, which can learn from small samples [60,61]. The key
parameters driving each ML algorithm are listed in Supplementary Table S1.

All models were trained on 70% of the data (training set) using fine-tuned hyperpa-
rameter (Supplementary Table S1) and cross-validation. The hyperparameter optimization
for each model was performed using the scikit-learn randomgridsearchCV module. This
module allows for the iterative search for the best combination of the algorithm-specific
parameter(s), selecting the best estimators based on the highest-ranking performance of
the models fitted. Finally, model performance was evaluated on the remaining unseen
30% (test dataset) using metrics such as the coefficient of determination (R2), the root mean
squared error (RMSE), the ratio of performance to deviation (RPD), and the mean absolute
error (MAE). An ensemble model (AVG) was also constructed by averaging the predictions
from all individual models. Feature importance analysis was conducted to identify each
model’s most influential spectral indices.

In a subsequent step, species information was incorporated as a categorical variable
using one-hot encoding and added to the input features [62]. The modeling process was
repeated, including hyperparameter tuning and performance evaluation on the test set.
The RMSE and R2 were calculated separately for each species to assess model performance
across species.

The performance of the three machine learning algorithms (RF, XGBoost, and SVM)
was compared with the performance of the linear spectral-based models. In addition, the
machine learning algorithms were compared with each other, and their robustness was
assessed using the residual prediction deviation (RPD [63,64]). RPD is defined as the ratio
of the standard deviation of the actual measured ψleaf to the RMSE. We adopted the criteria
of Mouazen et al. [65] for classifying RPD scores as follows: an RPD below 1.5 indicates that
the model is not usable, an RPD between 1.5 and 2.0 indicates a possibility to distinguish
between high- and low-value groups, and an RPD between 2.0 and 2.5 makes approximate
quantitative predictions possible. The models were classified as good and excellent for RPD
between 2.5 and 3.0 or above 3.0, respectively. Figure 4 presents the conceptual modeling
framework and schemes.
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Figure 4. Schematics of the research framework, from the data collection to the machine learning
modeling. x and y in the graph mean predictor and predicted variables, respectively. xi and xii are the
predictors using the top 5 NDSI without and with species as input features, respectively. RF, SVM,
and XGB stand for random forest, support vector machine, and extreme gradient boosting algorithms.

3.3. Statistical Analysis

The ground-truth ψleaf measurements were tested for normality at p > 0.05 sample
with the Shapiro–Wilk test using the JMP 17 Pro statistical software (SAS Institute). All
tests for statistical significance of model performance were performed within the Python
pipeline at p < 0.05.

4. Results
4.1. Leaf Water Potential Dynamics and Correlation with Spectral Indices

We observed that ψleaf in the five species fluctuated between −1 MPa and −5 MPa and
differed in magnitude as well as in their dynamics along the year (Figure 5). For example,
Pine (Pinus halepensis) had overall the lowest ψleaf, with an average value of −2.56 MPa
over the year. Pine was also the species with the lowest inter-annual variance in ψleaf, along
with the Carob (Ceratonia siliqua). In contrast, Cypress (Cupressus sempervirens) and Pistacia
(Pistacia sempervirens) had both the largest ψleaf variance over the year, reaching during the
dry months a ψleaf as low as −4.5 MPa.
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Figure 5. Seasonal variation in ψleaf throughout the study period across the five key woody species:
(a) Pine, (b) Oak, (c) Cypress, (d) Carob, and (e) Pistacia. Each boxplot represents the interquartile
range (IQR), with the horizontal line within each box indicating the median and the white diamond
symbol the mean. Whiskers extend to the lowest and highest ψleaf within 1.5 times the IQR, and
outliers are displayed as individual points. The horizontal gray dashed line represents the mean
value throughout the study period, with its value in MPa next to the line. The pink shaded strips
represent dry periods within the year.

Of the twelve known spectral indices, the best linear relationship was achieved with
NDVI for Cypress (Pearson’s R = 0.86), while the other indices displayed only moderate-to-
weak correlations with ψleaf. Pearson’s correlations show that some indices had positive
and some had negative linear relationships with ψleaf (Table 2). The correlations did not
improve when the best NDSI was used against ψleaf (with bands 750 nm and 680 nm;
Table 2). When considering all species, the linear models with the spectral indices had
poor performance, with the best index being the NDVI, together with the best NDSI, both
showing a Pearson’s R of 0.57.
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Table 2. Pearson’s correlation coefficient (r) between ψleaf and spectral indices, including the NDSI,
per species, and for all species (All). Highlighted in bold are the highest R2 scores per index and the
second-highest R2 scores in italics.

Index Pine Oak Cypress Carob Pistacia All

NDVI 0.56 0.70 0.86 0.53 0.54 0.57
PRI 0.31 −0.18 0.19 −0.18 0.55 0.09
940/960 0.20 0.24 0.31 0.29 0.48 0.29
940/960/NDVI −0.51 −0.65 −0.84 −0.38 −0.34 −0.48
EVI2 0.23 0.10 −0.08 −0.06 0.24 0.08
COSBNDI −0.32 −0.13 −0.39 −0.18 −0.63 −0.29
FOSBNDI 0.41 0.38 0.63 0.21 0.50 0.43
SAPSBNDI 0.11 0.14 0.49 0.26 0.60 0.27
WASCOSBNDI −0.22 −0.16 0.26 0.03 0.13 0.03
NDWSI 0.15 0.21 0.50 0.27 0.60 0.29
NDWI −0.52 −0.65 −0.83 −0.51 −0.67 −0.48
WI −0.21 −0.27 −0.48 −0.26 −0.60 −0.31

NDSI (680/750) 0.55 0.69 0.86 0.54 0.60 0.57

The MLR model performed slightly better than the spectral indices, with R2 = 0.40
(compared to 0.32 for the NDVI and the best NDSI). It required nine bands and five pairs to
produce the best linear regression model (Table 3).

Table 3. The multivariable linear regression (MLR) model performance for the highest-scoring NDSI
combinations. Asterisks (*) represent significant correlations at p < 0.001. Highlighted in bold are the
best scores (highest R2 and lowest RMSE).

NDSI (Band1/Band2) Combinations R2 RMSE

680/750 0.33 * 0.73
680/750, 530/623 0.35 * 0.72
680/750, 530/623, 660/940 0.35 * 0.72
680/750, 530/623, 660/940, 519/750 0.35 * 0.72
680/750, 530/623, 660/940, 519/750, 605/709 0.40 * 0.70

4.2. Machine Learning Models

The nonlinear ML models (RF, SVM, and XGB) were not better than MLR, but the
performance improved when species was included as a feature (Table 4). The best model
using species as a feature was SVM, with an R2 of 0.53 and an RPD of 1.47.

Table 4. Machine learning model performance for each algorithm and the averaged model using the
three algorithms without and with species as a feature in the model. NDSI combinations of 680/750,
530/623, 605/709, 519/750, and 660/940 were used as input. All models were significant at p < 0.001.
In bold are the best statistical scores (highest R2 and RPD, and lowest MAE, RMSE).

Model
Without Species With Species

R2 MAE RMSE RPD R2 MAE RMSE RPD

RF 0.40 0.59 0.74 1.30 0.42 0.59 0.74 1.32
SVM 0.35 0.58 0.77 1.25 0.53 0.50 0.67 1.47
XGB 0.40 0.58 0.74 1.30 0.47 0.57 0.71 1.38
Averaged model 0.41 0.58 0.74 1.31 0.52 0.52 0.67 1.46
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All four models (MLR and the three ML algorithms) performed the best with similar
NDSI band combinations. However, the importance of each NDSI combination was not
the same, depending on whether the model included species (Figure 6) or did not include
species as a feature (Figure 7).
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Figure 7. Feature importance of the NDSI pair bands in the MLR model and the different ML models
when species were not included in the models.

Finally, the best ML model (SVM with species as a feature) predicted better ψleaf for
Cypress and Pistacia than for the other species and had, specifically, low R2 for Pine and
Carob (Figure 8).
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Figure 8. Performance of SVM model per species: (a) R2 of the correlation, (b) RMSE in MPa.

Table 5 summarizes the first and second-best models for each species. It is noticeable
that a simple model based on a spectral index (mostly NDVI and NDSI) could predict ψleaf

and that ML models did not significantly surpass the performance of the simple single-basis
linear model while requiring much more spectral information. In addition, only Cypress
reached a relatively high R2 in such models.

Table 5. A summary of the best and the second-best models for predicting ψleaf per species and for all
species together (All). ML models are highlighted in gray, and spectral index models in green (light
green for NDSI and dark green for vegetation index).

Pine Oak Cypress Carob Pistacia All

Best model NDVI NDVI
NDSI

SVW
(w/species) NDSI SVW

(w/species)
SVW

(w/species)

R2 0.31 0.48 0.80 0.29 0.49 0.53

2nd best model NDSI MNDVI
940/960/NDVI

NDVI
NDSI NDVI NDSI Avg ML

(w/o species)

R2 0.30 0.42 0.74 0.28 0.44 0.41

Difference 0.01 0.06 0.06 0.01 0.05 0.12
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4.3. Averaging Data at the Plot Scale

Due to the relatively moderate performance of the above species-specific models, we
tested a ‘general’ model by averaging measurements over the entire plot (i.e., including all
five species together). We found that NDSI with a band combination of 816 and 712 nm
was the best predictor for ψleaf at the plot scale (Supplementary Figure S2).

Figure 9 shows observed versus predicted ψleaf using this ‘general’ model. The R2 of
the correlation was 0.79, with a relative RMSE of 13%, significant at p < 0.001.
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Figure 9. Predicted vs. observed ψleaf for plot-aggregated data. Each dot represents the mean value
for all the species in a plot on a single date. Colors mark the months of the observed/predicted value.
The broken line represents a 1:1 line.

Figure 10, showing the modeled ψleaf using the ‘general’ model, highlights the differ-
ences in ψleaf among the species (Pine with the lowest ψleaf, most negative values, Cypress
with moderately negative ψleaf, and Carob with the least negative ψleaf values) and between
the seasons (more negative values in September, at the end of the dry season, than in May,
at the end of the rainy season).
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5. Discussion
This study explored the use of hyperspectral imaging and machine learning models

to estimate leaf water potential (ψleaf) in a mixed Mediterranean forest at a high spatial
resolution using drone imagery. We specifically hypothesized that ψleaf would be easier
to model from the spectral data for species with a broader range of ψleaf values. This
proved true since most models were much better for Cypress and Pistacia, which showed a
more comprehensive range of ψleaf values along the season than the other species. We also
hypothesized that machine learning algorithms should significantly enhance the ability to
predict ψleaf compared to simple linear regression models using spectral indices, specifically
the nonlinear models that account for more complex relationships. Indeed, our findings
show that the SVM model was slightly superior to the simpler regression models using
the spectral indices (Tables 2 and 4). However, except for Cypress and Pistacia, SVM was
not better than simple spectral indices in predicting ψleaf (Table 5). Overall, simple linear
regression with commonly used vegetation indices, like the NDVI, performed well enough
to make the complex and data-demanding SVM model superfluous. Yet, the general
performance of SVM above RF and XGB may be related to its ability to learn effectively
with small sample datasets, thus taking advantage of the sensitivity of its support vectors
to all sample data points, including outliers [61]. Also, SVM can map the dataset into high
dimensional input space, where it looks for core differences between classes using the
optimal hyperplane, which might have given it an added advantage when species were
added as part of the feature, leading to an increased R2 of 0.35 to 0.53 (Table 4).

The observed variations in ψleaf among the five species (Figure 5) align with previous
findings by Peñuelas et al. [32], reporting distinct water management characteristics in
mixed Mediterranean forest species. This variability underscores the complexity of mod-
eling water status in heterogeneous forest ecosystems. Pine exhibited the lowest average
ψleaf (–2.56 MPa) and the least inter-annual variance. In contrast, Cypress and Pistacia
demonstrated the most considerable ψleaf variance, reaching as low as –4.5 MPa during dry
months. It is not surprising, then, that the model performance was much better for these
two species. These species-specific differences in water potential dynamics highlight the
importance of considering individual species’ physiological responses when developing
forest water status assessment models or at least considering stand density and species
as factors.

As stated, most spectral indices showed a low correlation with ψleaf (Table 2), with
the NDVI being the best predictor, particularly for Cypress (R2 = 0.74). The other spectral
indices tested in this study exhibited suboptimal performance despite their established cor-
relation with plant water status in previous studies. This discrepancy may be attributed to
the predominant focus of these indices on leaf water content rather than ψleaf [22,44,50,56].
While the leaf water content directly influences spectral reflectance, ψleaf is a physiological
parameter that reflects plant functionality and can vary in response to various factors, in-
cluding water stress and changes in the ambient radiation environment. Elsayed et al. [55]
demonstrated the distinction between these parameters by developing indices specifically
for estimating ψleaf, independent of the leaf water content. However, the disparity be-
tween their experimental design (controlled climate chamber, handheld spectrometer, crop
plants) and ours (forest canopies, hyperspectral camera at 60 m height) may explain the
limited applicability of their indices in our study. Our results suggest that these indices
may not translate directly to forest stands under natural conditions, where factors such
as canopy structure, background soil reflectance, and atmospheric effects can influence
spectral measurements.

Though using different bands, our findings align more closely with those of Stimson
et al. [24], who studied two conifer species (Pinus edulis and Juniperus monosperma) in a forest
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setting. They found that indices incorporating 980 nm and 1200 nm wavelength bands were
significantly correlated with measured ψleaf, but the relationships differed between the two
species. This species-specific variability is consistent with our observations, where Cypress
and Pistacia showed stronger correlations with spectral indices than Pine and Carob. The
high variability in ψleaf between species is also consistent with recent findings by Italiano
et al. [25], who reported significant differences in hydraulic traits among Mediterranean
forest species.

The evaluation of machine learning models, including RF, XGB, and SVM, resulted
in the SVM being the best model, particularly when incorporating species as a feature
(Table 4). While Sadiq et al. [30] and Virnodkar et al. [31] focused on other vegetation
characteristics rather than ψleaf specifically, their work demonstrates the broader potential
of machine learning in remote sensing applications for forest assessment. In our study, the
performance varied across species, with Cypress and Pistacia showing better predictability
compared to Pine, Oak, and Carob (Figure 8). This variation may be attributed to the
higher inter-annual variance of ψleaf in Cypress and Pistacia, enabling stronger correlations
between changes in leaf water potential and spectral indices. The improved performance of
models incorporating species information highlights the importance of considering species-
specific traits in mixed forest ecosystems. However, the practical application of such
models in mixed forests remains challenging due to the difficulty in differentiating species
in the image, especially when considering the most practical remote sensing use of satellites,
which usually have a coarser spatial resolution. However, efforts seem successful in satellite
and drone-based spectral differentiation of vegetation classes and types (e.g., [66,67]).

Our ‘general’ model, averaging all species at the plot scale, has a greater potential
for satellite remote sensing use. This is because it indicates that species differentiation is
not required. This ‘general’ model is based on two bands, one within the red-edge range
(712 nm), which marks the inflection point from strong absorption by leaf chlorophyll in
the visible region to structurally dominated reflectance in the NIR, which was the second
band (816 nm) [68]. This is not surprising since band centering within the red-edge region
is very sensitive to the slightest changes in chlorophyll content due to stress or LAI changes,
resulting in either a blue shift—toward shorter wavelengths or a red shift—toward longer
wavelengths [69–71]. The red and blue bands readily saturate at relatively low chlorophyll
content or show an almost insignificant response to even small biochemical changes. Thus,
the red-edge band is more likely to respond to changes in pigmentation and leaf cell
or canopy structure. In contrast, bands within the visible regions are less sensitive to
structure [72,73].

The plot-scale approach may offer a more robust method for assessing forest water
status over larger areas, potentially bridging the gap between individual leaf measurements
and landscape-scale assessments using satellite imagery. The improved performance at the
plot scale has important implications for forest management and ecological monitoring.
It suggests that while individual tree-level predictions may be challenging due to high
variability, aggregating data at a broader scale can provide reliable estimates of forest water
status. This approach could be convenient for assessing drought stress across forest stands
or informing management decisions in planted forests, which comprise about half of the
forested areas in Israel [35].

While promising, this ‘general’ model has two main limitations. First, it was generated
at the plot scale, and the scalability to a finer scale, as shown in Figure 10, still needs to be
verified. Nevertheless, the seasonal differences with more negative ψleaf observed at the end
of the dry season than at the end of the wet season indicate that the model can reasonably
capture temporal variations in forest water status. This temporal sensitivity is crucial for
monitoring the impacts of seasonal drought and climate change on forest ecosystems, as



Remote Sens. 2025, 17, 106 18 of 22

highlighted by Allen et al. [1] and reported by IPCC [2], even though the magnitude might
be inaccurate. Moreover, the clear differentiation between species in the modeled ψleaf, in
accordance with the measured values, further strengthens our confidence in the model’s
ability to distinguish between species-specific water management strategies. The second
limitation concerns the generality of the model. In other words, how reliable can this model
be when transferred to another area? Since plots were relatively homogeneous in their
species distribution, the model might need to be adjusted with, at least, a factor considering
the stand density (when using satellite imagery) or/and by considering different species
mixing at the pixel level. However, considering that the species in our study area are
common Mediterranean species and the climate is a typical Mediterranean one, our model
may be applied to similar regions elsewhere. Nevertheless, further testing should be
conducted in different environments to ensure the model’s general applicability.

Finally, ψleaf is not a trivial parameter to detect directly and remotely. Without the
invention of the pressure chamber and applying very high pressure (>50 bar in this study),
it would have been very difficult to predict otherwise. Non-destructive ψleaf determination
in the field by a few methods is still being tested. Thus, though challenging, our remote
sensing effort to predict ψleaf proved successful and can be further used to detect ψleaf

changes across mixed forest stands. Future research should include drought-stressed plots,
which are the target of a future stress alert method.

6. Summary and Conclusions
Analysis applying vegetation indices and various ML models to the entire dataset

without incorporating species information resulted in weak to moderate correlations. The
absence of a significant advantage for more complex ML models can be explained by the
intrinsic variability in leaf spectral features across different species within the forest. When
species information was included as a feature, the correlation improved for SVM but was
still weak to be superior to the simple spectral index model.

A ‘general’ plot scale model without species-specific differentiation performed much
better. This finding is promising since the model can be used with satellite images to
derive ψleaf at a coarser yet continuous spatial resolution. The fact that a ‘general’ model
was better than all species-specific models highlights the inherent challenges of applying
accurate remote sensing techniques in mixed-species forests, where interspecies variability
is significant. These results suggest that plot-level aggregation may offer a more robust
approach for assessing forest water status over larger areas. Still, such a conclusion must
be further tested since the plots in our study area were relatively homogeneous regarding
species distribution and density. In cases where fine-scale evaluation is required, and
species classification is available, our findings indicate that the SVM model can be relatively
effective in addressing these challenges.

Our approach facilitates the precise monitoring of ψleaf, which can inform targeted
forest conservation efforts, adaptive management strategies, and interventions tailored to
species-specific drought vulnerabilities, thereby enhancing ecosystem resilience in the face
of increasing drought stress.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/rs17010106/s1, Supplementary Table S1. Optimized hyperparameters for
Random Forest (RF), Support Vector Ma-chine (SVM), and XGBoost (XGB); Supplementary Figure S1.
Correlation maps of all possible two-band combinations with normalized difference vegetation index
(NDSI) and the measured ψleaf (N = 246); Supplementary Figure S2. Correlation maps of all possible
two-band combinations with normalized difference vegetation index (NDSI) and the measured ψleaf

averaged over the entire plot (N = 56).
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36. Fassnacht, F.E.; Latifi, H.; Stereńczak, K.; Modzelewska, A.; Lefsky, M.; Waser, L.T.; Straub, C.; Ghosh, A. Review of studies on
tree species classification from remotely sensed data. Remote Sens. Environ. 2016, 186, 64–87. [CrossRef]

37. Pozner, E.; Bar-On, P.; Livne-Luzon, S.; Moran, U.; Tsamir-Rimon, M.; Dener, E.; Schwartz, E.; Rotenberg, E.; Tatarinov, F.; Preisler,
Y.; et al. A hidden mechanism of forest loss under climate change: The role of drought in eliminating forest regeneration at the
edge of its distribution. For. Ecol. Manag. 2022, 506, 119966. [CrossRef]

38. Rog, I.; Hilman, B.; Fox, H.; Yalin, D.; Qubaja, R.; Klein, T. Increased belowground tree carbon allocation in a mature mixed forest
in a dry versus a wet year. Glob. Change Biol. 2024, 30, e17172. [CrossRef]

39. Israel Meteorological Service. Available online: http://www.ims.gov.il (accessed on 29 December 2024).
40. Sternberg, M.; Golodets, C.; Gutman, M.; Perevolotsky, A.; Kigel, J.; Henkin, Z. No precipitation legacy effects on above-ground

net primary production and species diversity in grazed Mediterranean grassland: A 21-year experiment. J. Veg. Sci. 2017, 28,
260–269. [CrossRef]

41. Boyer, J.S. Leaf Water Potentials Measured with a Pressure Chamber. Plant Physiol. 1967, 42, 133–137. [CrossRef] [PubMed]

https://doi.org/10.1111/j.1469-8137.2010.03355.x
https://www.ncbi.nlm.nih.gov/pubmed/20659255
https://doi.org/10.1016/S0034-4257(01)00191-2
https://doi.org/10.1093/treephys/23.1.23
https://www.ncbi.nlm.nih.gov/pubmed/12511301
https://doi.org/10.1016/j.scitotenv.2020.138873
https://www.ncbi.nlm.nih.gov/pubmed/32388364
https://doi.org/10.1201/b11222
https://doi.org/10.1201/9781315159331
https://doi.org/10.1016/j.jag.2021.102393
https://doi.org/10.1080/01431169608949012
https://doi.org/10.1016/j.rse.2004.12.007
https://doi.org/10.1016/j.foreco.2023.121406
https://doi.org/10.1080/01431161.2013.873834
https://doi.org/10.1016/j.compag.2020.105337
https://doi.org/10.1016/j.compag.2023.107669
https://doi.org/10.1038/s41467-023-40226-9
https://www.ncbi.nlm.nih.gov/pubmed/37582763
https://doi.org/10.1016/j.ecolind.2023.111233
https://doi.org/10.1007/s11119-020-09711-9
https://doi.org/10.3390/f8120463
https://doi.org/10.1029/2021JG006382
https://doi.org/10.1016/j.agrformet.2019.02.014
https://doi.org/10.1016/j.forpol.2004.05.003
https://doi.org/10.1016/j.rse.2016.08.013
https://doi.org/10.1016/j.foreco.2021.119966
https://doi.org/10.1111/gcb.17172
http://www.ims.gov.il
https://doi.org/10.1111/jvs.12478
https://doi.org/10.1104/pp.42.1.133
https://www.ncbi.nlm.nih.gov/pubmed/16656476


Remote Sens. 2025, 17, 106 21 of 22

42. Ritchie, G.A.; Hinckley, T.M. The Pressure Chamber as an Instrument for Ecological Research. Adv. Ecol. Res. 1975, 9, 165–254.
[CrossRef]

43. Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36,
1627–1639. [CrossRef]

44. Azar, M.; Mulero, G.; Oppenheimer-Shaanan, Y.; Helman, D.; Klein, T. Aboveground responses to belowground root damage
detected by non-destructive sensing metrics in three tree species. Forestry 2023, 96, 672–689. [CrossRef]

45. Peñuelas, J.; Filella, I.; Biel, C.; Serrano, L.; Savé, R. The reflectance at the 950–970 nm region as an indicator of plant water status.
Int. J. Remote Sens. 1993, 14, 1887–1905. [CrossRef]

46. Sadeh, R.; Avneri, A.; Tubul, Y.; Lati, R.N.; Bonfil, D.J.; Peleg, Z.; Herrmann, I. Chickpea leaf water potential estimation from
ground and VENµS satellite. Precis. Agric. 2024, 25, 1–26. [CrossRef]

47. Helman, D.; Osem, Y.; Yakir, D.; Lensky, I.M. Relationships between climate, topography, water use and productivity in two key
Mediterranean forest types with different water-use strategies. Agric. For. Meteorol. 2017, 232, 319–330. [CrossRef]

48. Helman, D.; Bahat, I.; Netzer, Y.; Ben-Gal, A.; Alchanatis, V.; Peeters, A.; Cohen, Y. Using Time Series of High-Resolution Planet
Satellite Images to Monitor Grapevine Stem Water Potential in Commercial Vineyards. Remote Sens. 2018, 10, 1615. [CrossRef]

49. Mulero, G.; Jiang, D.; Bonfil, D.J.; Helman, D. Use of thermal imaging and the photochemical reflectance index (PRI) to detect
wheat response to elevated CO2 and drought. Plant. Cell Environ. 2023, 46, 76–92. [CrossRef] [PubMed]

50. Hunt, E.R., Jr.; Daughtry, C.; Qu, J.; Wang, L.; Hao, X. Comparison of hyperspectral retrievals with vegetation water indices for
leaf and canopy water content. Proc. SPIE Int. Soc. Opt. Eng. 2011, 8156, 5. [CrossRef]

51. Gao, B. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens.
Environ. 1996, 58, 257–266. [CrossRef]

52. McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J.
Remote Sens. 1996, 17, 1425–1432. [CrossRef]

53. Kriegler, F.J.; Malila, W.A.; Nalepka, R.F.; Richardson, W. Preprocessing Transformations and Their Effects on Multispectral
Recognition. In Proceedings of the Sixth International Symposium on Remote Sensing of Environment; Arbor, A., Ed.; University
of Michigan: Michigan, MI, USA, 1969; pp. 97–131.

54. Gamon, J.A.; Peñuelas, J.; Field, C.B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency.
Remote Sens. Environ. 1992, 41, 35–44. [CrossRef]

55. Elsayed, S.; Mistele, B.; Schmidhalter, U. Can changes in leaf water potential be assessed spectrally? Funct. Plant Biol. 2011, 38,
523–533. [CrossRef]

56. Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote
Sens. Environ. 2008, 112, 3833–3845. [CrossRef]

57. Inoue, Y.; Peñuelas, J.; Miyata, A.; Mano, M. Normalized difference spectral indices for estimating photosynthetic efficiency
and capacity at a canopy scale derived from hyperspectral and CO2 flux measurements in rice. Remote Sens. Environ. 2008, 112,
156–172. [CrossRef]

58. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
59. Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Association for Computing
Machinery: New York, NY, USA, 2016; Volume 13, pp. 785–794.

60. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
61. Kok, Z.H.; Mohamed Shariff, A.R.; Alfatni, M.S.M.; Khairunniza-Bejo, S. Support Vector Machine in Precision Agriculture: A

review. Comput. Electron. Agric. 2021, 191, 106546. [CrossRef]
62. Pinhanez, C.S.; Cavalin, P.R. Exploring the Advantages of Dense-Vector to One-Hot Encoding of Intent Classes in Out-of-Scope

Detection Tasks. arXiv 2022, arXiv:2205.09021.
63. Agussabti; Rahmaddiansyah; Satriyo, P.; Munawar, A.A. Data analysis on near infrared spectroscopy as a part of technology

adoption for cocoa farmer in Aceh Province, Indonesia. Data Br. 2020, 29, 105251. [CrossRef]
64. Sahoo, M.M.; Perach, O.; Shachter, A.; Gonda, I.; Porwal, A.; Dudai, N.; Herrmann, I. Spectral estimation of carnosic acid content

in in vivo rosemary plants. Ind. Crops Prod. 2022, 187, 115292. [CrossRef]
65. Mouazen, A.M.; De Baerdemaeker, J.; Ramon, H. Effect of wavelength range on the measurement accuracy of some selected soil

constituents using visual-near infrared spectroscopy. J. Near Infrared Spectrosc. 2006, 14, 189–199. [CrossRef]
66. Weil, G.; Lensky, I.M.; Resheff, Y.S.; Levin, N. Using Near-Surface Observations for Optimizing the Timing of Overhead Image

Acquisition for Applied Mapping of Woody Vegetation Species. In Proceedings of the IGARSS 2018–2018 IEEE International
Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 5398–5401.

67. Weil, G.; Lensky, I.M.; Levin, N. Using ground observations of a digital camera in the VIS-NIR range for quantifying the phenology
of Mediterranean woody species. Int. J. Appl. Earth Obs. Geoinf. 2017, 62, 88–101. [CrossRef]

68. Croft, H.; Chen, J.M. Leaf Pigment Content. Compr. Remote Sens. 2018, 3, 117–142. [CrossRef]

https://doi.org/10.1016/S0065-2504(08)60290-1
https://doi.org/10.1021/ac60214a047
https://doi.org/10.1093/forestry/cpad002
https://doi.org/10.1080/01431169308954010
https://doi.org/10.1007/s11119-024-10129-w
https://doi.org/10.1016/j.agrformet.2016.08.018
https://doi.org/10.3390/rs10101615
https://doi.org/10.1111/pce.14472
https://www.ncbi.nlm.nih.gov/pubmed/36289576
https://doi.org/10.1117/12.895293
https://doi.org/10.1016/S0034-4257(96)00067-3
https://doi.org/10.1080/01431169608948714
https://doi.org/10.1016/0034-4257(92)90059-S
https://doi.org/10.1071/FP11021
https://doi.org/10.1016/j.rse.2008.06.006
https://doi.org/10.1016/j.rse.2007.04.011
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/BF00994018
https://doi.org/10.1016/j.compag.2021.106546
https://doi.org/10.1016/j.dib.2020.105251
https://doi.org/10.1016/j.indcrop.2022.115292
https://doi.org/10.1255/jnirs.614
https://doi.org/10.1016/j.jag.2017.05.016
https://doi.org/10.1016/b978-0-12-409548-9.10547-0


Remote Sens. 2025, 17, 106 22 of 22

69. Thenkabail, P.S.; Lyon, J.G.; Huete, A. Hyperspectral Remote Sensing of Vegetation. CRC Press: Boca Raton, FL, USA, 2016;
ISBN 978-1-4398-4538-7.

70. Xie, Q.; Dash, J.; Huang, W.; Peng, D.; Qin, Q.; Mortimer, H.; Casa, R.; Pignatti, S.; Laneve, G.; Pascucci, S.; et al. Vegetation
Indices Combining the Red and Red-Edge Spectral Information for Leaf Area Index Retrieval. IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens. 2018, 11, 1482–1492. [CrossRef]

71. Guyot, G.; Baret, F.; Major, D.J. High spectral resolution: Determination of spectral shifts between the red and infrared. Int. Arch.
Photogramm. Remote Sens. 1988, 11, 750–760. [CrossRef]

72. Kumar, L.; Schmidt, K.; Dury, S.; Skidmore, A. Imaging Spectrometry and Vegetation Science BT—Imaging Spectrometry: Basic Principles
and Prospective Applications; Meer, F.D., van der, J., De, S.M., Eds.; Springer: Dordrecht, The Netherlands, 2001; pp. 111–155, ISBN
978-0-306-47578-8.

73. Dong, T.; Liu, J.; Shang, J.; Qian, B.; Ma, B.; Kovacs, J.M.; Walters, D.; Jiao, X.; Geng, X.; Shi, Y. Assessment of red-edge vegetation
indices for crop leaf area index estimation. Remote Sens. Environ. 2019, 222, 133–143. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/JSTARS.2018.2813281
https://doi.org/10.1093/mind/VII.25.101
https://doi.org/10.1016/j.rse.2018.12.032

	Introduction 
	Data and Methods 
	Study Site and Experimental Design 
	Field Measurements 
	UAV Platform and Spectral Data Acquisition 
	Spectral Data Processing 

	Predictive Models 
	Spectral Indices 
	Machine Learning Algorithms 
	Statistical Analysis 

	Results 
	Leaf Water Potential Dynamics and Correlation with Spectral Indices 
	Machine Learning Models 
	Averaging Data at the Plot Scale 

	Discussion 
	Summary and Conclusions 
	References

