Iterative Adaptive Based Multi-Polarimetric SAR Tomography of the Forested Areas
<p>TomoSAR imaging geometry.</p> "> Figure 2
<p>Scattering Scattering of a forested area. (<b>a</b>) Scattering mechanism, (<b>b</b>) Scattering distribution.</p> "> Figure 3
<p>Schematic diagram of backscattering coefficients of HH, HV, and VV polarimetric channels.</p> "> Figure 4
<p>Elevation aperture position in the BioSAR 2008 dataset.</p> "> Figure 5
<p>Implementation process of the TomoSAR 3-D imaging of the forested areas based on the proposed method.</p> "> Figure 6
<p>Polarimetric SAR image of the surveillance area (The yellow area numbers 1 and 2 respectively represent the two slices selected for the experiment).</p> "> Figure 7
<p>Amplitude and phase results after data preprocessing for the (<b>a</b>) HH, (<b>b</b>) HV, and (<b>c</b>) VV polarimetric channels.</p> "> Figure 7 Cont.
<p>Amplitude and phase results after data preprocessing for the (<b>a</b>) HH, (<b>b</b>) HV, and (<b>c</b>) VV polarimetric channels.</p> "> Figure 8
<p>The incoherent sum of the results for all polarization channels (Slice 1). (<b>a</b>) BF. (<b>b</b>) Capon. (<b>c</b>) MUSIC. (<b>d</b>) Wavelet-based <math display="inline"><semantics> <msub> <mi>L</mi> <mn>1</mn> </msub> </semantics></math>. (<b>e</b>) IAA. (<b>f</b>) The proposed method. The white line represents the LiDAR DSM.</p> "> Figure 8 Cont.
<p>The incoherent sum of the results for all polarization channels (Slice 1). (<b>a</b>) BF. (<b>b</b>) Capon. (<b>c</b>) MUSIC. (<b>d</b>) Wavelet-based <math display="inline"><semantics> <msub> <mi>L</mi> <mn>1</mn> </msub> </semantics></math>. (<b>e</b>) IAA. (<b>f</b>) The proposed method. The white line represents the LiDAR DSM.</p> "> Figure 9
<p>The incoherent sum of the results for all polarization channels (Slice 2). (<b>a</b>) BF. (<b>b</b>) Capon. (<b>c</b>) MUSIC. (<b>d</b>) Wavelet-based <math display="inline"><semantics> <msub> <mi>L</mi> <mn>1</mn> </msub> </semantics></math>. (<b>e</b>) IAA. (<b>f</b>) The proposed method. The white line represents the LiDAR DSM.</p> "> Figure 9 Cont.
<p>The incoherent sum of the results for all polarization channels (Slice 2). (<b>a</b>) BF. (<b>b</b>) Capon. (<b>c</b>) MUSIC. (<b>d</b>) Wavelet-based <math display="inline"><semantics> <msub> <mi>L</mi> <mn>1</mn> </msub> </semantics></math>. (<b>e</b>) IAA. (<b>f</b>) The proposed method. The white line represents the LiDAR DSM.</p> "> Figure 10
<p>3-D point cloud map of the entire surveillance region reconstructed by the proposed method.</p> ">
Abstract
:1. Introduction
2. Polarimetric SAR Tomography Model
2.1. Imaging Model
2.2. SM Analysis
3. Imaging Method
- (i)
- Initialization:Elevation power distribution:;Noise vector: ;Identity matrix: ;Maximum number of iterations ;Error parameter ;
- (ii)
- Iteration:While and ,
- (iii)
- Output:Reconstructed elevation reflectivity function .
4. Date Preprocessing
4.1. BioSAR 2008 Dataset
4.2. Preprocessing
- (i)
- Data registration. This requires one scene to be designated as the master image and the rest of the scenes to be aligned with the master one as slave images, ensuring that the elevation direction of multiple 2-D complex image data in each pixel cell is consistent;
- (ii)
- Interference analysis. This validates the coherence and phase information between images to ensure their suitability for 3-D imaging;
- (iii)
- Phase flattening. Due to the wide coverage of the surveillance region, spanning over 2000 m in slant range, this step aims to rectify phase discrepancies caused by slant range;
- (iv)
- Topographic phase removal. Due to significant terrain variations in the surveillance region, it is crucial to eliminate phase changes caused by terrain alterations for obtaining information about surface forests. High-precision digital elevation model (DEM) data are necessary for this step. DEM is estimated from the laser mapping of Krycklan, with the ground level subtracted. It is presented in a grid size of 0.5 m × 0.5 m, using the UTM Zone 34N geographic datum;
- (v)
- Filtering and sampling. This is employed to eliminate the noise and, hence, improve the quality of 2-D SAR images.
5. Experimental Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LiDAR | Light Detection And Ranging |
SAR | Synthetic Aperture Radar |
3-D | Three-Dimensional |
2-D | Two-Dimensional |
InSAR | Interferometric SAR |
PolInSAR | Polarimetric InSAR |
MB | Multi-Baseline |
TomoSAR | SAR Tomography |
SE | Spectral Estimation |
CS | Compressive Sensing |
BF | Beamforming |
Capon | Adaptive Beamforming |
MUSIC | Multiple Signal Classification |
SMs | Scattering Mechanisms |
IAA | Iterative Adaptive Approach |
SKP | Sum of Kronecker Product |
SLC | Single-Look Complex |
DSM | Digital Surface Model |
DEM | Digital Elevation Model |
RMSE | Root Mean Square Error |
References
- Van Tricht, K.; Gobin, A.; Gilliams, S.; Piccard, I. Synergistic use of radar Sentinel-1 and optical Sentinel-2 imagery for crop mapping: A case study for Belgium. Remote Sens. 2018, 10, 1642. [Google Scholar] [CrossRef]
- Yan, Z.; Liu, R.; Cheng, L.; Zhou, X.; Ruan, X.; Xiao, Y. A concave hull methodology for calculating the crown volume of individual trees based on vehicle-borne LiDAR data. Remote Sens. 2019, 11, 623. [Google Scholar] [CrossRef]
- Tarsha Kurdi, F.; Lewandowicz, E.; Shan, J.; Gharineiat, Z. Three-dimensional modeling and visualization of single tree LiDAR point cloud using matrixial form. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2024, 17, 3010–3022. [Google Scholar] [CrossRef]
- Hirschmugl, M.; Deutscher, J.; Sobe, C.; Bouvet, A.; Mermoz, S.; Schardt, M. Use of SAR and optical time series for tropical forest disturbance mapping. Remote Sens. 2020, 12, 727. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, Y. Radar satellite image time series analysis for high-resolution mapping of man-made forest change in Chongming Eco-Island. Remote Sens. 2020, 12, 3438. [Google Scholar] [CrossRef]
- Zebker, H.A. Goldstein, R.M. Topographic mapping from interferometric synthetic aperture radar observations. J. Geophys. 1986, 91, 4993–4999. [Google Scholar] [CrossRef]
- Xue, F.; Wang, X.; Xu, F.; Wang, R. Polarimetric SAR interferometry: A tutorial for analyzing system parameters. IEEE Geosci. Remote Sens. Mag. 2020, 8, 83–107. [Google Scholar] [CrossRef]
- Santi, E.; Paloscia, S.; Pettinato, S.; Cuozzo, G.; Padovano, A.; Notarnicola, C.; Albinet, C. Machine-Learning Applications for the Retrieval of Forest Biomass from Airborne P-Band SAR Data. Remote Sens. 2020, 12, 804. [Google Scholar] [CrossRef]
- Banda, F.; Giudici, D.; Le Toan, T.; Mariotti d’Alessandro, M.; Papathanassiou, K.; Quegan, S.; Riembauer, G.; Scipal, K.; Soja, M.; Tebaldini, S.; et al. The BIOMASS level 2 prototype processor: Design and experimental results of above-ground biomass estimation. Remote Sens. 2020, 12, 985. [Google Scholar] [CrossRef]
- Tello, M.; Cazcarra-Bes, V.; Pardini, M.; Papathanassiou, K. Forest structure characterization from SAR tomography at L-band. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2018, 11, 3402–3414. [Google Scholar] [CrossRef]
- Cazcarra-Bes, V.; Pardini, M.; Papathanassiou, K. Definition of tomographic SAR configurations for forest structure applications at L-band. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Reigber, A.; Moreira, A. First demonstration of airborne SAR tomography using multibaseline L-band data. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2142–2152. [Google Scholar] [CrossRef]
- Fornaro, G.; Serafino, F.; Lombardini, F. Three-dimensional multipass SAR focusing: Experiments with long-term spaceborne data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 702–714. [Google Scholar] [CrossRef]
- Zhu, X.; Bamler, R. Tomographic SAR inversion by L1-norm regularization-the compressive sensing approach. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3839–3846. [Google Scholar] [CrossRef]
- Lombardini, F.; Gini, F.; Matteucci, P. Application of array processing techniques to multibaseline InSAR for layover solution. In Proceedings of the 2001 IEEE Radar Conference, Atlanta, GA, USA, 3 May 2001. [Google Scholar]
- Fornaro, G.; Serafino, F.; Soldovieri, F. Three-dimensional focusing with multipass SAR data. IEEE Trans. Geosci. Remote Sens. 2003, 41, 507–517. [Google Scholar] [CrossRef]
- Zhu, X.X.; Bamler, R. Very high resolution spaceborne SAR tomography in urban environment. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4296–4308. [Google Scholar] [CrossRef]
- Gini, F.; Lombardini, F. Multilook APES for multibaseline SAR interferometry. IEEE Trans. Signal Process. 2002, 50, 1800–1803. [Google Scholar] [CrossRef]
- Gini, F.; Lombardini, F. Multibaseline cross-track SAR interferometry: A signal processing perspective. IEEE Aerosp. Electron. Syst. Mag. 2005, 20, 71–93. [Google Scholar] [CrossRef]
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Candes, E.J.; Tao, T. Near-optimal signal recovery from random projections: Universal encoding strategies. IEEE Trans. Inf. Theory 2006, 52, 5406–5425. [Google Scholar] [CrossRef]
- Nyquist, H. Certain topics in telegraph transmission theory. Trans. Am. Inst. Electr. Eng. 1928, 47, 617–644. [Google Scholar] [CrossRef]
- Shannon, C.E. Communication in the presence of noise. Proc. IRE 1949, 37, 10–21. [Google Scholar] [CrossRef]
- Aguilera, E.; Nannini, M.; Reigber, A. Wavelet-based compressed sensing for SAR tomography of forested areas. IEEE Trans. Geosci. Remote Sens. 2013, 51, 5283–5295. [Google Scholar] [CrossRef]
- Strang, G.; Nguyen, T. Wavelet and Filter Banks; MIT: Wellesley, MA, USA, 1997. [Google Scholar]
- Li, X.; Liang, L.; Guo, H.; Huang, Y. Compressive sensing for multibaseline polarimetric SAR tomography of forested areas. IEEE Trans. Geosci. Remote Sens. 2016, 54, 153–166. [Google Scholar] [CrossRef]
- Bi, H.; Cheng, Y.; Zhu, D.Y.; Hong, W. Wavelet-based L1/2 regularization for CS-TomoSAR imaging of forested area. J. Syst. Eng. Electron. 2020, 31, 1160–1166. [Google Scholar]
- Cazcarra-Bes, V.; Pardini, M.; Tello, M.; Papathanassiou, K.P. Comparison of tomographic SAR reflectivity reconstruction algorithms for forest applications at L-band. IEEE Trans. Geosci. Remote Sens. 2020, 58, 147–164. [Google Scholar] [CrossRef]
- Tebaldini, S. Algebraic synthesis of forest scenarios from multibaseline polInSAR data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 4132–4142. [Google Scholar] [CrossRef]
- Tebaldini, S. Single and multipolarimetric SAR tomography of forested areas: A parametric approach. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2375–2387. [Google Scholar] [CrossRef]
- Aguilera, E.; Nannini, M.; Reigber, A. A data-adaptive compressed sensing approach to polarimetric SAR tomography of forested areas. IEEE Geosci. Remote Sens. Lett. 2013, 10, 543–547. [Google Scholar] [CrossRef]
- Aguilera, E.; Nannini, M.; Reigber, A. Multisignal compressed sensing for polarimetric SAR tomography. IEEE Geosci. Remote Sens. Lett. 2012, 9, 871–875. [Google Scholar] [CrossRef]
- Ponce, O.; Prats-Iraola, P.; Scheiber, R.; Reigber, A.; Moreira, A. First airborne demonstration of Holographic SAR tomography with fully polarimetric multicircular acquisitions at L-Band. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6170–6196. [Google Scholar] [CrossRef]
- Yardibi, T.; Li, J.; Stoica, P.; Xue, M.; Baggeroer, B. Source localization and sensing: A nonparametric iterative adaptive approach based on weighted least squares. IEEE Trans. Aerosp. Electron. Syst. 2010, 46, 425–443. [Google Scholar] [CrossRef]
- Roberts, W.; Stoica, P.; Li, J.; Yardibi, T.; Sadjadi, F.A. Iterative adaptive approaches to MIMO radar imaging. IEEE J. Sel. Top. Signal Process. 2010, 4, 5–20. [Google Scholar] [CrossRef]
- Campo, G.D.M.d.; Reigber, A.; Shkvarko, Y.V. Resolution enhanced SAR tomography a nonparametric iterative adaptive approach. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 10–15 July 2016. [Google Scholar]
- Peng, X.; Li, X.; Wang, C.; Fu, H.; Du, Y. A maximum likelihood based nonparametric iterative adaptive method of synthetic aperture radar tomography and its application for estimating underlying topography and forest height. Sensors 2018, 18, 2459. [Google Scholar] [CrossRef] [PubMed]
- Feng, D.; An, D.; Chen, L.; Huang, X. Holographic SAR tomography 3-D reconstruction based on iterative adaptive approach and generalized likelihood ratio test. IEEE Trans. Geosci. Remote Sens. 2021, 59, 305–315. [Google Scholar] [CrossRef]
- Lin, Y.; Sarabandi, K. Electromagnetic scattering model for a tree trunk above a tilted ground plane. IEEE Trans. Geosci. Remote Sens. 1995, 33, 1063–1070. [Google Scholar]
- Sarabandi, K. Scattering from dielectric structures above impedance surfaces and resistive sheets. IEEE Trans. Antennas Propag. 1992, 40, 67–78. [Google Scholar] [CrossRef]
- Nannini, M.; Scheiber, R.; Horn, R.; Moreira, A. First 3-D reconstructions of targets hidden beneath foliage by means of polarimetric SAR tomography. IEEE Geosci. Remote Sens. Lett. 2012, 9, 60–64. [Google Scholar] [CrossRef]
- Tebaldini, S.; Rocca, F. Multibaseline polarimetric SAR tomography of a boreal Forest at P- and L-Bands. IEEE Trans. Geosci. Remote Sens. 2012, 50, 232–246. [Google Scholar] [CrossRef]
- Hajnsek, I.; Scheiber, R.; Keller, M.; Horn, R.; Lee, S.; Ulander, L.M.H.; Gustavsson, A.; Sandberg, G.; Le Toan, T.; Tebaldini, S.; et al. BioSAR 2008: Final Report; Technical Report; ESA-ESTEC: Noordwijk, The Netherlands, 2009. [Google Scholar]
- Ferretti, A.; Monti-Guarnieri, A.; Prati, C.; Rocca, F.; Massonnet, D. InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation; ESA: Paris, France, 2007. [Google Scholar]
Parameter | Value |
---|---|
Tracks | 6 |
Radar center frequency | 1.3 GHz |
Center slant range | ≈4500 m |
Slant range resolution | 1.5 m |
Azimuth resolution | 1.6 m |
Height resolution | 6∼25 m (near range to far range) |
Algorithm | RMSE [m] | Time [s] | |
---|---|---|---|
Slice 1 | Slice 2 | ||
BF (All channels) | 16.71 | 13.08 | 0.003 |
Capon (All channels) | 9.10 | 11.69 | 0.003 |
MUSIC (All channels) | 6.42 | 5.46 | 0.004 |
Wavelet-based (All channels) | 10.31 | 12.95 | 0.080 |
IAA (All channels) | 4.93 | 6.22 | 0.007 |
The proposed method | 4.57 | 5.58 | 0.021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, S.; Bi, H.; Guo, Q.; Zhang, J.; Hong, W. Iterative Adaptive Based Multi-Polarimetric SAR Tomography of the Forested Areas. Remote Sens. 2024, 16, 1605. https://doi.org/10.3390/rs16091605
Jin S, Bi H, Guo Q, Zhang J, Hong W. Iterative Adaptive Based Multi-Polarimetric SAR Tomography of the Forested Areas. Remote Sensing. 2024; 16(9):1605. https://doi.org/10.3390/rs16091605
Chicago/Turabian StyleJin, Shuang, Hui Bi, Qian Guo, Jingjing Zhang, and Wen Hong. 2024. "Iterative Adaptive Based Multi-Polarimetric SAR Tomography of the Forested Areas" Remote Sensing 16, no. 9: 1605. https://doi.org/10.3390/rs16091605
APA StyleJin, S., Bi, H., Guo, Q., Zhang, J., & Hong, W. (2024). Iterative Adaptive Based Multi-Polarimetric SAR Tomography of the Forested Areas. Remote Sensing, 16(9), 1605. https://doi.org/10.3390/rs16091605